Segraves JM, Frishman WH. Highly sensitive cardiac troponin assays: a comprehensive review of their clinical utility. Cardiol Rev. 2015;23(6):282–9.
Article
PubMed
Google Scholar
Janigro D, Bailey DM, Lehmann S, Badaut J, O’Flynn R, Hirtz C, et al. Peripheral blood and salivary biomarkers of blood-brain barrier permeability and neuronal damage: clinical and applied concepts. Front Neurol. 2020;11: 577312.
Article
PubMed
Google Scholar
Dadas A, Washington J, Marchi N, Janigro D. Improving the clinical management of traumatic brain injury through the pharmacokinetic modeling of peripheral blood biomarkers. Fluids Barriers CNS. 2016;13(1):21.
Article
PubMed
PubMed Central
Google Scholar
Bargerstock E, Puvenna V, Iffland P, Falcone T, Hossain M, Vetter S, et al. Is peripheral immunity regulated by blood-brain barrier permeability changes? PLoS ONE. 2014;9(7): e101477.
Article
PubMed
PubMed Central
Google Scholar
Pham N, Fazio V, Cucullo L, Teng Q, Biberthaler P, Bazarian JJ, et al. Extracranial sources of S100B do not affect serum levels. PLoS ONE. 2010;5(9): e12691.
Article
PubMed
PubMed Central
CAS
Google Scholar
Preston E, Webster J, Small D. Characteristics of sustained blood-brain barrier opening and tissue injury in a model for focal trauma in the rat. J Neurotrauma. 2001;18(1):83–92.
Article
CAS
PubMed
Google Scholar
Kanner AA, Marchi N, Fazio V, Mayberg MR, Koltz MT, Siomin V, et al. Serum S100beta: a noninvasive marker of blood-brain barrier function and brain lesions. Cancer. 2003;97(11):2806–13.
Article
CAS
PubMed
Google Scholar
Marchi N, Rasmussen P, Kapural M, Fazio V, Kight K, Mayberg MR, et al. Peripheral markers of brain damage and blood-brain barrier dysfunction. Restor Neurol Neurosci. 2003;21(3–4):109–21.
CAS
PubMed
PubMed Central
Google Scholar
Marchi N, Cavaglia M, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clin Chim Acta. 2004;342(1–2):1–12.
Article
CAS
PubMed
Google Scholar
Falcone T, Fazio V, Lee C, Simon B, Franco K, Marchi N, et al. Serum S100B: a potential biomarker for suicidality in adolescents? PLoS ONE. 2010;5(6): e11089.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bouzat P, Francony G, Declety P, Brun J, Kaddour A, Renversez JC, et al. Can serum protein S100 beta predict neurological deterioration after moderate or minor traumatic brain injury? Annales Francaises D Anesthesie et de Reanimation. 2009;28(2):135–9.
Article
CAS
PubMed
Google Scholar
Hasselblatt M, Mooren FC, von Ahsen N, Keyvani K, Fromme A, Schwarze-Eicker K, et al. Serum S100beta increases in marathon runners reflect extracranial release rather than glial damage. Neurology. 2004;62(9):1634–6.
Article
CAS
PubMed
Google Scholar
Korfias S, Stranjalis G, Papadimitriou A, Psachoulia C, Daskalakis G, Antsaklis A, et al. Serum S-100B protein as a biochemical marker of brain injury: a review of current concepts. Curr Med Chem. 2006;13(30):3719–31.
Article
CAS
PubMed
Google Scholar
Papa L, Silvestri S, Brophy GM, Giordano P, Falk JL, Braga CF, et al. GFAP out-performs S100beta in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions. J Neurotrauma. 2014;31(22):1815–22.
Article
PubMed
PubMed Central
Google Scholar
Savola O, Pyhtinen J, Leino TK, Siitonen S, Niemela O, Hillbom M. Effects of head and extracranial injuries on serum protein S100B levels in trauma patients. J Trauma. 2004;56(6):1229–34.
Article
CAS
PubMed
Google Scholar
Thelin EP, Jeppsson E, Frostell A, Svensson M, Mondello S, Bellander BM, et al. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit Care. 2016;20:285.
Article
PubMed
PubMed Central
Google Scholar
Anderson RE, Hansson LO, Nilsson O, Dijlai-Merzoug R, Settergren G. High serum S100B levels for trauma patients without head injuries. Neurosurgery. 2001;48(6):1255–8.
CAS
PubMed
Google Scholar
Posti JP, Hossain I, Takala RS, Liedes H, Newcombe V, Outtrim J, et al. Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 are not specific biomarkers for mild CT-negative traumatic brain injury. J Neurotrauma. 2017. https://doi.org/10.1089/neu.2016.4442.
Article
PubMed
Google Scholar
Zhang Y, Zhu J, Xu H, Yi Q, Yan L, Ye L, et al. Time-dependent internalization of S100B by mesenchymal stem cells via the pathways of clathrin- and lipid raft-mediated endocytosis. Front Cell Dev Biol. 2021;9: 674995.
Article
PubMed
PubMed Central
Google Scholar
Pham N, Fazio V, Cucullo L, Teng Q, Biberthaler P, Bazarian JJ, et al. Extracranial sources of S100B do not affect serum levels. PLoS ONE. 2010. https://doi.org/10.1371/journal.pone.0012691.
Article
PubMed
PubMed Central
Google Scholar
Steiner J, Schiltz K, Walter M, Wunderlich MT, Keilhoff G, Brisch R, et al. S100B serum levels are closely correlated with body mass index: an important caveat in neuropsychiatric research. Psychoneuroendocrinology. 2010;35(2):321–4.
Article
CAS
PubMed
Google Scholar
Kawata K, Rubin LH, Takahagi M, Lee JH, Sim T, Szwanki V, et al. Subconcussive impact-dependent increase in plasma S100beta levels in collegiate football players. J Neurotrauma. 2017;34(14):2254–60.
Article
PubMed
Google Scholar
Zonner SW, Ejima K, Bevilacqua ZW, Huibregtse ME, Charleston C, Fulgar C, et al. Association of increased serum S100B levels with high school football subconcussive head impacts. Front Neurol. 2019;10:327.
Article
PubMed
PubMed Central
Google Scholar
Tagge CA, Fisher AM, Minaeva OV, Gaudreau-Balderrama A, Moncaster JA, Zhang XL, et al. Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain. 2018;141(2):422–58.
Article
PubMed
PubMed Central
Google Scholar
Schulte S, Podlog LW, Hamson-Utley JJ, Strathmann FG, Struder HK. A systematic review of the biomarker S100B: implications for sport-related concussion management. J Athl Train. 2014;49(6):830–50.
Article
PubMed
PubMed Central
Google Scholar
Michetti F, Bruschettini M, Frigiola A, Abella R, Giamberti A, Marchese N, et al. Saliva S100B in professional sportsmen: high levels at resting conditions and increased after vigorous physical activity. Clin Biochem. 2011;44(2–3):245–7.
Article
CAS
PubMed
Google Scholar
Watson P, Shirreffs SM, Maughan RJ. Blood-brain barrier integrity may be threatened by exercise in a warm environment. Am J Physiol Regul Integr Comp Physiol. 2005;288(6):R1689–94.
Article
CAS
PubMed
Google Scholar
Watson P, Black KE, Clark SC, Maughan RJ. Exercise in the heat: effect of fluid ingestion on blood-brain barrier permeability. Med Sci Sports Exerc. 2006;38(12):2118–24.
Article
PubMed
Google Scholar
Schulte S, Schiffer T, Sperlich B, Kleinoder H, Holmberg HC. Serum concentrations of S100B are not affected by cycling to exhaustion with or without vibration. J Hum Kinet. 2011;30:59–63.
Article
PubMed
PubMed Central
Google Scholar
Koh SX, Lee JK. S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med. 2014;44(3):369–85.
Article
PubMed
Google Scholar
Bailey DM, et al. Hypoxemia promotes blood-brain barrier destabilization of the neurovascular unit during extreme apnea in humans. J Cereb Blood Flow Metab. 2022. https://doi.org/10.1177/0271678X221075967.
Article
PubMed
Google Scholar
Dadas A, Janigro D. The role and diagnostic significance of cellular barriers after concussive head trauma. Concussion. 2018;3(1):Cnc53.
Article
PubMed
PubMed Central
Google Scholar
Janigro D, Kawata K, Silverman E, Marchi N, Diaz-Arrastia R. Is Salivary S100B a biomarker of traumatic brain injury? A pilot study. Front Neurol. 2020;11:528.
Article
PubMed
PubMed Central
Google Scholar
Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clin Chim Acta. 2004;342(1–2):1–12.
Article
CAS
PubMed
Google Scholar
Marchi N, Rasmussen PA, Kapural M, Fazio V, Cavaglia M, Janigro D. Peripheral markers of brain damage and blood-brain barrier dysfunction. Restor Neurol Neurosci. 2003;21(3–4):109–21.
CAS
PubMed
PubMed Central
Google Scholar
Plog BA, Dashnaw ML, Hitomi E, Peng WG, Liao YH, Lou NH, et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015;35(2):518–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gill KL, Gardner I, Li L, Jamei M. A bottom-up whole-body physiologically based pharmacokinetic model to mechanistically predict tissue distribution and the rate of subcutaneous absorption of therapeutic proteins. AAPS J. 2016;18(1):156–70.
Article
CAS
PubMed
Google Scholar
Heizmann CW, Fritz G, Schafer BW. S100 proteins: structure, functions and pathology. Front Biosci. 2002;7:D1356–68.
CAS
PubMed
Google Scholar
Sepp A, Meno-Tetang G, Weber A, Sanderson A, Schon O, Berges A. Computer-assembled cross-species/cross-modalities two-pore physiologically based pharmacokinetic model for biologics in mice and rats. J Pharmacokinet Pharmacodyn. 2019;46(4):339–59.
Article
CAS
PubMed
Google Scholar
Tiemann CA, Vanlier J, Oosterveer MH, Groen AK, Hilbers PA, van Riel NA. Parameter trajectory analysis to identify treatment effects of pharmacological interventions. PLoS Comput Biol. 2013;9(8): e1003166.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah DK, Betts AM. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn. 2012;39(1):67–86.
Article
CAS
PubMed
Google Scholar
Morquette P, Verdier D, Kadala A, Fethiere J, Philippe AG, Robitaille R, et al. An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat Neurosci. 2015;18(6):844–54.
Article
CAS
PubMed
Google Scholar
Iverson GL, Posti JP, Ohman J, Blennow K, Zetterberg H, Luoto TM. Reliability of serum S100B measurement following mild traumatic brain injury: a comparison of assay measurements from two laboratories. Brain Inj. 2020;34(9):1237–44.
Article
PubMed
Google Scholar
Bouvier D, Duret T, Rouzaire P, Jabaudon M, Rouzaire M, Nourrisson C, et al. Preanalytical, analytical, gestational and pediatric aspects of the S100B immuno-assays. Clin Chem Lab Med. 2016;54(5):833–42.
Article
CAS
PubMed
Google Scholar
Rahim MA, Rahim ZH, Ahmad WA, Hashim OH. Can saliva proteins be used to predict the onset of acute myocardial infarction among high-risk patients? Int J Med Sci. 2015;12(4):329–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jasim H, Olausson P, Hedenberg-Magnusson B, Ernberg M, Ghafouri B. The proteomic profile of whole and glandular saliva in healthy pain-free subjects. Sci Rep. 2016;6:39073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okonkwo DO, Puffer RC, Puccio AM, Yuh EL, Yue JK, Diaz-Arrastia R, et al. Point-of-care platform blood biomarker testing of glial fibrillary acidic protein versus S100 calcium-binding protein B for prediction of traumatic brain injuries: a transforming research and clinical knowledge in traumatic brain injury study. J Neurotrauma. 2020. https://doi.org/10.1089/neu.2020.7140.
Article
PubMed
PubMed Central
Google Scholar
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS. 2022;19(1):9.
Article
PubMed
PubMed Central
Google Scholar
Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a “glymphatic” system? Acta Neuropathol. 2018;135(3):387–407.
Article
CAS
PubMed
Google Scholar
Dadas A, Washington J, Janigro D. Cerebral waste accumulation and glymphatic clearance as mechanisms of human neurological diseases. J Neurol Neuromed. 2016;1(7):15–9.
Article
Google Scholar
Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol. 2017. https://doi.org/10.1146/annurev-pathol-051217-111018.
Article
Google Scholar
Dadas A, Washington J, Diaz-Arrastia R, Janigro D. Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr Dis Treat. 2018;14:2989–3000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azizi S, Hier DB, Allen B, Obafemi-Ajayi T, Olbricht GR, Thimgan MS, et al. A kinetic model for blood biomarker levels after mild traumatic brain injury. Front Neurol. 2021;12: 668606.
Article
PubMed
PubMed Central
Google Scholar
Sakatani S, Seto-Ohshima A, Shinohara Y, Yamamoto Y, Yamamoto H, Itohara S, et al. Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gamma oscillations in vivo. J Neurosci. 2008;28(43):10928–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winter CD, Clough GF, Pringle AK, Church MK. Outcome following severe traumatic brain injury TBI correlates with serum S100B but not brain extracellular fluid S100B: an intracerebral microdialysis study. World J Neurosci. 2013;3:93–9.
Article
CAS
Google Scholar
Sen J, Belli A, Petzold A, Russo S, Keir G, Thompson EJ, et al. Extracellular fluid S100B in the injured brain: a future surrogate marker of acute brain injury? Acta Neurochir. 2005;147(8):897–900.
Article
CAS
PubMed
Google Scholar
Hajdukova L, Sobek O, Prchalova D, Bilkova Z, Koudelkova M, Lukaskova J, et al. Biomarkers of brain damage: S100B and NSE concentrations in cerebrospinal fluid—a normative study. Biomed Res Int. 2015;2015: 379071.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chim Acta. 2001;310(2):173–86.
Article
CAS
PubMed
Google Scholar