The Health Consequences of Smoking—50 years of progress: a report of the surgeon general reports of the surgeon general (2014).
Cornelius ME, Wang TW, Jamal A, Loretan CG, Neff LJ. Tobacco product use among adults—United States, 2019. MMWR Morb Mortal Wkly Rep. 2020;69:1736–42. https://doi.org/10.15585/mmwr.mm6946a4.
Article
PubMed
PubMed Central
Google Scholar
McMillen RC, Gottlieb MA, Shaefer RM, Winickoff JP, Klein JD. Trends in electronic cigarette use among US adults: use is increasing in both smokers and nonsmokers. Nicotine Tob Res. 2015;17:1195–202. https://doi.org/10.1093/ntr/ntu213.
Article
PubMed
Google Scholar
Creamer MR, et al. Tobacco product use and cessation indicators among adults—United States, 2018. MMWR Morb Mortal Wkly Rep. 2019;68:1013–9. https://doi.org/10.15585/mmwr.mm6845a2.
Article
PubMed
PubMed Central
Google Scholar
Dai H, Leventhal AM. Prevalence of E-cigarette use among adults in the United States, 2014–2018. JAMA. 2019;322:1824–7. https://doi.org/10.1001/jama.2019.15331.
Article
PubMed
PubMed Central
Google Scholar
Kavuluru R, Han S, Hahn EJ. On the popularity of the USB flash drive-shaped electronic cigarette JUUL. Tob Control. 2019;28:110–2. https://doi.org/10.1136/tobaccocontrol-2018-054259.
Article
PubMed
Google Scholar
Talih S, et al. Characteristics and toxicant emissions of JUUL electronic cigarettes. Tob Control. 2019;28:678–80. https://doi.org/10.1136/tobaccocontrol-2018-054616.
Article
PubMed
Google Scholar
Bowen A, Xing C. Google patents; 2015.
Nardone N, Helen GS, Addo N, Meighan S, Benowitz NL. JUUL electronic cigarettes: nicotine exposure and the user experience. Drug Alcohol Depend. 2019;203:83–7. https://doi.org/10.1016/j.drugalcdep.2019.05.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Virani SS, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–596. https://doi.org/10.1161/CIR.0000000000000757.
Article
PubMed
Google Scholar
Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol. 2019;316:C2–15. https://doi.org/10.1152/ajpcell.00187.2018.
Article
CAS
PubMed
Google Scholar
Kaisar MA, et al. Offsetting the impact of smoking and e-cigarette vaping on the cerebrovascular system and stroke injury: is metformin a viable countermeasure? Redox Biol. 2017;13:353–62. https://doi.org/10.1016/j.redox.2017.06.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paulson JR, et al. nicotine exacerbates brain edema during in vitro and in vivo focal ischemic conditions. J Pharmacol Exp Ther. 2010;332:371–9. https://doi.org/10.1124/jpet.109.157776.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah KK, Boreddy PR, Abbruscato TJ. Nicotine pre-exposure reduces stroke-induced glucose transporter-1 activity at the blood-brain barrier in mice. Fluids Barriers CNS. 2015;12:10. https://doi.org/10.1186/s12987-015-0005-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sifat AE, Vaidya B, Kaisar MA, Cucullo L, Abbruscato TJ. Nicotine and electronic cigarette (E-Cig) exposure decreases brain glucose utilization in ischemic stroke. J Neurochem. 2018;147:204–21. https://doi.org/10.1111/jnc.14561.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iadecola C, Alexander M. Cerebral ischemia and inflammation. Curr Opin Neurol. 2001;14:89–94. https://doi.org/10.1097/00019052-200102000-00014.
Article
CAS
PubMed
Google Scholar
Abbruscato TJ, Lopez SP, Roder K, Paulson JR. Regulation of blood-brain barrier Na, K,2Cl-cotransporter through phosphorylation during in vitro stroke conditions and nicotine exposure. J Pharmacol Exp Ther. 2004;310:459–68. https://doi.org/10.1124/jpet.104.066274.
Article
CAS
PubMed
Google Scholar
Paulson JR, et al. Tobacco smoke chemicals attenuate brain-to-blood potassium transport mediated by the Na, K,2Cl-cotransporter during hypoxia-reoxygenation. J Pharmacol Exp Ther. 2006;316:248–54. https://doi.org/10.1124/jpet.105.090738.
Article
CAS
PubMed
Google Scholar
Li H, et al. Exposure to cigarette smoke augments post-ischemic brain injury and inflammation via mobilization of neutrophils and monocytes. Front Immunol. 2019;10:2576. https://doi.org/10.3389/fimmu.2019.02576.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sifat AE, et al. Prenatal electronic cigarette exposure decreases brain glucose utilization and worsens outcome in offspring hypoxic-ischemic brain injury. J Neurochem. 2020;153:63–79. https://doi.org/10.1111/jnc.14947.
Article
CAS
PubMed
Google Scholar
Alhaddad H, Wong W, Sari AT, Alexander LEC, Sari Y. Effects of 3-month exposure to E-cigarette aerosols on glutamatergic receptors and transporters in mesolimbic brain regions of female C57BL/6 Mice. Toxics. 2020. https://doi.org/10.3390/toxics8040095.
Article
PubMed
PubMed Central
Google Scholar
Ramirez JEM, et al. The JUUL E-cigarette elevates the risk of thrombosis and potentiates platelet activation. J Cardiovasc Pharmacol Ther. 2020;25:578–86. https://doi.org/10.1177/1074248420941681.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaisar MA, Kallem RR, Sajja RK, Sifat AE, Cucullo L. A convenient UHPLC-MS/MS method for routine monitoring of plasma and brain levels of nicotine and cotinine as a tool to validate newly developed preclinical smoking model in mouse. BMC Neurosci. 2017;18:71. https://doi.org/10.1186/s12868-017-0389-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sivandzade F, Alqahtani F, Sifat A, Cucullo L. The cerebrovascular and neurological impact of chronic smoking on post-traumatic brain injury outcome and recovery: an in vivo study. J Neuroinflammation. 2020;17:133. https://doi.org/10.1186/s12974-020-01818-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montanari C, Kelley LK, Kerr TM, Cole M, Gilpin NW. Nicotine e-cigarette vapor inhalation effects on nicotine & cotinine plasma levels and somatic withdrawal signs in adult male Wistar rats. Psychopharmacology. 2020;237:613–25. https://doi.org/10.1007/s00213-019-05400-2.
Article
CAS
PubMed
Google Scholar
Qasim H, et al. Short-term E-cigarette exposure increases the risk of thrombogenesis and enhances platelet function in mice. J Am Heart Assoc. 2018. https://doi.org/10.1161/JAHA.118.009264.
Article
PubMed
PubMed Central
Google Scholar
McGrath-Morrow SA, et al. The effects of electronic cigarette emissions on systemic cotinine levels, weight and postnatal lung growth in neonatal mice. PLoS ONE. 2015;10:e0118344. https://doi.org/10.1371/journal.pone.0118344.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matta SG, et al. Guidelines on nicotine dose selection for in vivo research. Psychopharmacology. 2007;190:269–319. https://doi.org/10.1007/s00213-006-0441-0.
Article
CAS
PubMed
Google Scholar
Abramovitz A, McQueen A, Martinez RE, Williams BJ, Sumner W. Electronic cigarettes: the nicotyrine hypothesis. Med Hypotheses. 2015;85:305–10. https://doi.org/10.1016/j.mehy.2015.06.002.
Article
CAS
PubMed
Google Scholar
Chen H, et al. effect of short-term cigarette smoke exposure on body weight, appetite and brain neuropeptide Y in mice. Neuropsychopharmacology. 2005;30:713–9. https://doi.org/10.1038/sj.npp.1300597.
Article
CAS
PubMed
Google Scholar
Wager-Srdar SA, Levine AS, Morley JE, Hoidal JR, Niewoehner DE. Effects of cigarette smoke and nicotine on feeding and energy. Physiol Behav. 1984;32:389–95. https://doi.org/10.1016/0031-9384(84)90252-x.
Article
CAS
PubMed
Google Scholar
Albanes D, Jones DY, Micozzi MS, Mattson ME. Associations between smoking and body weight in the US population: analysis of NHANES II. Am J Public Health. 1987;77:439–44. https://doi.org/10.2105/ajph.77.4.439.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klesges RC, Meyers AW, Klesges LM, La Vasque ME. Smoking, body weight, and their effects on smoking behavior: a comprehensive review of the literature. Psychol Bull. 1989;106:204–30. https://doi.org/10.1037/0033-2909.106.2.204.
Article
CAS
PubMed
Google Scholar
Shi H, et al. The effect of electronic-cigarette vaping on cardiac function and angiogenesis in mice. Sci Rep. 2019;9:4085. https://doi.org/10.1038/s41598-019-40847-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larcombe AN, et al. The effects of electronic cigarette aerosol exposure on inflammation and lung function in mice. Am J Physiol Lung Cell Mol Physiol. 2017;313:L67–79. https://doi.org/10.1152/ajplung.00203.2016.
Article
PubMed
Google Scholar
Wu G, et al. The impact of tobacco smoking on physical activity and metabolism in mice. Int J Mol Epidemiol Genet. 2019;10:67–76.
PubMed
PubMed Central
Google Scholar
Masood S, et al. Cigarette smoking is associated with unhealthy patterns of food consumption, physical activity, sleep impairment, and alcohol drinking in Chinese male adults. Int J Public Health. 2015;60:891–9. https://doi.org/10.1007/s00038-015-0730-7.
Article
PubMed
Google Scholar
Papathanasiou G, et al. Smoking and physical activity interrelations in health science students. Is smoking associated with physical inactivity in young adults? Hellenic J Cardiol. 2012;53:17–25.
PubMed
Google Scholar
Li C, Sun H, Arrick DM, Mayhan WG. Chronic nicotine exposure exacerbates transient focal cerebral ischemia-induced brain injury. J Appl Physiol. 2016;1985(120):328–33. https://doi.org/10.1152/japplphysiol.00663.2015.
Article
CAS
Google Scholar
Bradford ST, Stamatovic SM, Dondeti RS, Keep RF, Andjelkovic AV. Nicotine aggravates the brain postischemic inflammatory response. Am J Physiol Heart Circ Physiol. 2011;300:H1518-1529. https://doi.org/10.1152/ajpheart.00928.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hotter B, et al. IL-6 plasma levels correlate with cerebral perfusion deficits and infarct sizes in stroke patients without associated infections. Front Neurol. 2019;10:83. https://doi.org/10.3389/fneur.2019.00083.
Article
PubMed
PubMed Central
Google Scholar
Shaafi S, et al. Interleukin-6, a reliable prognostic factor for ischemic stroke. Iran J Neurol. 2014;13:70–6.
PubMed
PubMed Central
Google Scholar
Waje-Andreassen U, et al. IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurol Scand. 2005;111:360–5. https://doi.org/10.1111/j.1600-0404.2005.00416.x.
Article
CAS
PubMed
Google Scholar
Tuttolomondo A, et al. Plasma levels of inflammatory and thrombotic/fibrinolytic markers in acute ischemic strokes: relationship with TOAST subtype, outcome and infarct site. J Neuroimmunol. 2009;215:84–9. https://doi.org/10.1016/j.jneuroim.2009.06.019.
Article
CAS
PubMed
Google Scholar
Gredal H, et al. Interleukin-6 is increased in plasma and cerebrospinal fluid of community-dwelling domestic dogs with acute ischaemic stroke. NeuroReport. 2017;28:134–40. https://doi.org/10.1097/WNR.0000000000000728.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou R, et al. Propofol protects against focal cerebral ischemia via inhibition of microglia-mediated proinflammatory cytokines in a rat model of experimental stroke. PLoS ONE. 2013;8:e82729. https://doi.org/10.1371/journal.pone.0082729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boffa MC, Karmochkine M. Thrombomodulin: an overview and potential implications in vascular disorders. Lupus. 1998;7(Suppl 2):S120-125. https://doi.org/10.1177/096120339800700227.
Article
CAS
PubMed
Google Scholar
Wenzel J, Assmann JC, Schwaninger M. Thrombomodulin–a new target for treating stroke at the crossroad of coagulation and inflammation. Curr Med Chem. 2014;21:2025–34. https://doi.org/10.2174/0929867321666131228204839.
Article
CAS
PubMed
Google Scholar
Nomura E, Kohriyama T, Kozuka K, Kajikawa H, Nakamura S. Sequential changes in von Willebrand factor and soluble thrombomodulin in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2001;10:257–64. https://doi.org/10.1053/jscd.2001.123776.
Article
CAS
PubMed
Google Scholar
Zhang X, et al. Plasma thrombomodulin, fibrinogen, and activity of tissue factor as risk factors for acute cerebral infarction. Am J Clin Pathol. 2007;128:287–92. https://doi.org/10.1309/HB6AB1YR4DQUT5AU.
Article
CAS
PubMed
Google Scholar
Wenzel J, et al. Endogenous THBD (thrombomodulin) mediates angiogenesis in the ischemic brain—brief report. Arterioscler Thromb Vasc Biol. 2020;40:2837–44. https://doi.org/10.1161/ATVBAHA.120.315061.
Article
CAS
PubMed
Google Scholar
Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 2018;315:C343–56. https://doi.org/10.1152/ajpcell.00095.2018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seo HB, et al. Partially purified components of Uncaria sinensis attenuate blood brain barrier disruption after ischemic brain injury in mice. BMC Complement Altern Med. 2015;15:157. https://doi.org/10.1186/s12906-015-0678-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Jin X, Liu KJ, Liu W. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci. 2012;32:3044–57. https://doi.org/10.1523/JNEUROSCI.6409-11.2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lochhead JJ, et al. Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab. 2010;30:1625–36. https://doi.org/10.1038/jcbfm.2010.29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronaldson PT, Demarco KM, Sanchez-Covarrubias L, Solinsky CM, Davis TP. Transforming growth factor-beta signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. J Cereb Blood Flow Metab. 2009;29:1084–98. https://doi.org/10.1038/jcbfm.2009.32.
Article
CAS
PubMed
Google Scholar
Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem. 1998;273:29745–53. https://doi.org/10.1074/jbc.273.45.29745.
Article
CAS
PubMed
Google Scholar
Prasad S, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58–69. https://doi.org/10.1016/j.redox.2017.02.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernard A, Ku JM, Vlahos R, Miller AA. Cigarette smoke extract exacerbates hyperpermeability of cerebral endothelial cells after oxygen glucose deprivation and reoxygenation. Sci Rep. 2019;9:15573. https://doi.org/10.1038/s41598-019-51728-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sladojevic N, et al. Claudin-1-dependent destabilization of the blood-brain barrier in chronic stroke. J Neurosci. 2019;39:743–57. https://doi.org/10.1523/JNEUROSCI.1432-18.2018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garbuzova-Davis S, et al. Blood-brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model. PLoS ONE. 2013;8:e63553. https://doi.org/10.1371/journal.pone.0063553.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Kaam RC, van Putten M, Vermeer SE, Hofmeijer J. Contralesional brain activity in acute ischemic stroke. Cerebrovasc Dis. 2018;45:85–92. https://doi.org/10.1159/000486535.
Article
PubMed
Google Scholar
Liu L, Locascio LM, Dore S. Critical role of Nrf2 in experimental ischemic stroke. Front Pharmacol. 2019;10:153. https://doi.org/10.3389/fphar.2019.00153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Wei R, Zhang L, Tan Y, Qian C. Sirtuin 6 protects the brain from cerebral ischemia/reperfusion injury through NRF2 activation. Neuroscience. 2017;366:95–104. https://doi.org/10.1016/j.neuroscience.2017.09.035.
Article
CAS
PubMed
Google Scholar
Dang J, et al. Nrf2 expression by neurons, astroglia, and microglia in the cerebral cortical penumbra of ischemic rats. J Mol Neurosci. 2012;46:578–84. https://doi.org/10.1007/s12031-011-9645-9.
Article
CAS
PubMed
Google Scholar
Lindsberg PJ, Carpen O, Paetau A, Karjalainen-Lindsberg ML, Kaste M. Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation. 1996;94:939–45. https://doi.org/10.1161/01.cir.94.5.939.
Article
CAS
PubMed
Google Scholar
Prasad S, et al. Impact of cigarette smoke extract and hyperglycemic conditions on blood-brain barrier endothelial cells. Fluids Barriers CNS. 2015;12:18. https://doi.org/10.1186/s12987-015-0014-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shyu KG, Chang H, Lin CC. Serum levels of intercellular adhesion molecule-1 and E-selectin in patients with acute ischaemic stroke. J Neurol. 1997;244:90–3. https://doi.org/10.1007/s004150050055.
Article
CAS
PubMed
Google Scholar
Frijns CJ, Kappelle LJ. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke. 2002;33:2115–22. https://doi.org/10.1161/01.str.0000021902.33129.69.
Article
CAS
PubMed
Google Scholar
Okada Y, et al. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke. 1994;25:202–11. https://doi.org/10.1161/01.str.25.1.202.
Article
CAS
PubMed
Google Scholar
Jander S, Kraemer M, Schroeter M, Witte OW, Stoll G. Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab. 1995;15:42–51. https://doi.org/10.1038/jcbfm.1995.5.
Article
CAS
PubMed
Google Scholar
Ahmed SM, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 1863;585–597:2017. https://doi.org/10.1016/j.bbadis.2016.11.005.
Article
CAS
Google Scholar
Yang PM, Wu ZZ, Zhang YQ, Wung BS. Lycopene inhibits ICAM-1 expression and NF-kappaB activation by Nrf2-regulated cell redox state in human retinal pigment epithelial cells. Life Sci. 2016;155:94–101. https://doi.org/10.1016/j.lfs.2016.05.006.
Article
CAS
PubMed
Google Scholar
Jin W, et al. Disruption of Nrf2 enhances upregulation of nuclear factor-kappaB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury. Mediators Inflamm. 2008;2008:725174. https://doi.org/10.1155/2008/725174.
Article
CAS
PubMed
Google Scholar
Villalba H, et al. Potential role of myo-inositol to improve ischemic stroke outcome in diabetic mouse. Brain Res. 2018;1699:166–76. https://doi.org/10.1016/j.brainres.2018.08.028.
Article
CAS
PubMed
Google Scholar
Yang L, Islam MR, Karamyan VT, Abbruscato TJ. In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment. Brain Res. 2015;1609:1–11. https://doi.org/10.1016/j.brainres.2015.03.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab. 1996;16:605–11. https://doi.org/10.1097/00004647-199607000-00010.
Article
CAS
PubMed
Google Scholar
Yang T, Roder KE, Bhat GJ, Thekkumkara TJ, Abbruscato TJ. Protein kinase C family members as a target for regulation of blood-brain barrier Na, K,2Cl-cotransporter during in vitro stroke conditions and nicotine exposure. Pharm Res. 2006;23:291–302. https://doi.org/10.1007/s11095-005-9143-2.
Article
CAS
PubMed
Google Scholar
Zhang Y, et al. Role of P53-senescence induction in suppression of LNCaP prostate cancer growth by cardiotonic compound bufalin. Mol Cancer Ther. 2018;17:2341–52. https://doi.org/10.1158/1535-7163.MCT-17-1296.
Article
CAS
PubMed
PubMed Central
Google Scholar