Jayadev R, Sherwood DR. Basement membranes. Curr Biol. 2017;27(6):R207-r211.
Article
CAS
PubMed
Google Scholar
Khalilgharibi N, Mao Y. To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and disease. Open Biol. 2021;11(2): 200360.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paulsson M. Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol. 1992;27(1–2):93–127.
CAS
PubMed
Google Scholar
George EL, et al. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development. 1993;119:1079–91.
Article
CAS
PubMed
Google Scholar
Pöschl E, et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 2004;131(7):1619–28.
Article
PubMed
CAS
Google Scholar
Smyth N, et al. Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol. 1999;144:151–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Satchell SC, Braet F. Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol. 2009;296(5):F947–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.
Article
CAS
PubMed
Google Scholar
Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview. Structure, regulation and clinical implications. Neurobiol Dis. 2004;16:1–13.
Article
CAS
PubMed
Google Scholar
Rubin LL, Staddon JM. The cell biology of the blood–brain barrier. Annu Rev Neurosci. 1999;22:11–28.
Article
CAS
PubMed
Google Scholar
Buttery PC, Ffrench-Constant C. Laminin-2/integrin interactions enhance myelin membrane formation by oligodendrocytes. Mol Cell Neurosci. 1999;14:199–212.
Article
CAS
PubMed
Google Scholar
Cohen J, et al. Retinal ganglion cells lose response to laminin with maturation. Nature. 1986;322:465–7.
Article
CAS
PubMed
Google Scholar
Cohen J, Johnson AR. Differential effects of laminin and merosin on neurite outgrowth by developing retinal ganglion cells. J Cell Sci Suppl. 1991;15:1–7.
Article
CAS
PubMed
Google Scholar
von der Mark K, Ocalan M. Antagonistic effects of laminin and fibronectin on the expression of the myogenic phenotype. Differentiation. 1989;40(2):150–7.
Article
PubMed
Google Scholar
Wang J, Milner R. Fibronectin promotes brain capillary endothelial cell survival and proliferation through α5β1 and αvβ3 integrins via MAP kinase signaling. J Neurochem. 2006;96:148–59.
Article
CAS
PubMed
Google Scholar
Gu Z, et al. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci. 2005;25:6401–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamann GF, et al. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke. 1995;26:2121–21266.
Article
Google Scholar
Li L, et al. Upregulation of fibronectin and the α5β1 and αvβ3 integrins on blood vessels within the cerebral ischemic penumbra. Exp Neurol. 2012;233:283–91.
Article
CAS
PubMed
Google Scholar
Zalewska T, et al. Transient forebrain ischemia modulates signal transduction from extracellular matrix in gerbil hippocampus. Brain Res. 2003;977(1):62–9.
Article
CAS
PubMed
Google Scholar
Halder SK, Kant R, Milner R. Chronic mild hypoxia promotes profound vascular remodeling in spinal cord blood vessels, preferentially in white matter, via an α5β1 integrin-mediated mechanism. Angiogenesis. 2018;21:251–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halder SK, Kant R, Milner R. Chronic mild hypoxia increases expression of laminins 111 and 411 and the laminin receptor α6β1 integrin at the blood–brain barrier. Brain Res. 2018;1700:78–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halder SK, Kant R, Milner R. Hypoxic pre-conditioning suppresses experimental autoimmune encephalomyelitis by modifying multiple properties of blood vessels. Acta Neuropathol Commun. 2018;6:86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li L, et al. In the hypoxic central nervous system, endothelial cell proliferation is followed by astrocyte activation, proliferation, and increased expression of the α6β4 integrin and dystroglycan. Glia. 2010;58:1157–67.
Article
PubMed
PubMed Central
Google Scholar
Chow BW, Gu C. The molecular constituents of the blood–brain barrier. Trends Neurosci. 2015;38(10):598–608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engelhardt S, Patkar S, Ogunshola OO. Cell-specific blood–brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmacol. 2014;171(5):1210–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neourosci. 2001;24:719–25.
Article
CAS
Google Scholar
Pardridge WM. Blood–brain barrier drug targeting: the future of brain drug development. Mol Med. 2003;3:90–105.
CAS
Google Scholar
Halder SK, Milner R. A critical role for microglia in maintaining vascular integrity in the hypoxic spinal cord. Proc Natl Acad Sci U S A. 2019;116:26029–37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Halder SK, Milner R. Mild hypoxia triggers transient blood–brain barrier disruption: a fundamental protective role for microglia. Acta Neuropathol Commun. 2020;8(1):175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lou N, et al. Purinergic receptor P2RY12-dependent microglial closure of the injured blood–brain barrier. Pro Natl Acad Sci. 2016;113:1074–9.
Article
CAS
Google Scholar
Taylor S, et al. Suppressing interferon-γ stimulates microglial responses and repair of microbleeds in the diabetic brain. J Neurosci. 2018;38:8707–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier; development, composition and regulation. Vascul Pharmacol. 2002;38:323–37.
Article
CAS
PubMed
Google Scholar
Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97(6):512–23.
Article
CAS
PubMed
Google Scholar
Daneman R, et al. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature. 2010;468:562–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sengillo JD, et al. Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013;23(3):303–10.
Article
PubMed
Google Scholar
del Zoppo GJ, Milner R. Integrin-matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol. 2006;26:1966–75.
Article
PubMed
CAS
Google Scholar
Janzer RC, Raff MC. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature. 1987;325:253–7.
Article
CAS
PubMed
Google Scholar
Wolburg-Burcholz K, et al. Loss of astrocyte polarity marks blood–brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol. 2006;118:219–33.
Article
CAS
Google Scholar
Berndt P, et al. Tight junction proteins at the blood–brain barrier: far more than claudin-5. Cell Mol Life Sci. 2019;76(10):1987–2002.
Article
CAS
PubMed
Google Scholar
Greene C, Campbell M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers. 2016;4(1): e1138017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Irudayanathan FJ, et al. Molecular architecture of the blood brain barrier tight junction proteins—a synergistic computational and in vitro approach. J Phys Chem B. 2016;120(1):77–88.
Article
CAS
PubMed
Google Scholar
Brown RC, Davis TP. Calcium modulation of adherens and tight junction function: a potential mechanism for blood–brain barrier disruption after stroke. Stroke. 2002;33(6):1706–11.
Article
CAS
PubMed
Google Scholar
Stamatovic SM, et al. Junctional proteins of the blood–brain barrier: new insights into function and dysfunction. Tissue Barriers. 2016;4(1): e1154641.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bennett J, et al. Blood–brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol. 2010;229:180–91.
Article
CAS
PubMed
Google Scholar
Davies DC. Blood–brain barrier breakdown in septic encephalopathy and brain tumours. J Anat. 2002;200:639–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gay D, Esiri M. Blood–brain barrier damage in acute multiple sclerosis plaques. Brain. 1991;114:557–72.
Article
PubMed
Google Scholar
Kirk J, et al. Tight junction abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood–brain barrier leakage and active demyelination. J Pathol. 2003;201:319–27.
Article
PubMed
Google Scholar
Roberts J, de Hoog L, Bix GJ. Mice deficient in endothelial α5 integrin are profoundly resistant to experimental ischemic stroke. J Cereb Blood Flow Metab. 2015;37:85–96.
Article
PubMed
PubMed Central
Google Scholar
Brown WR. A review of string vessels or collapsed empty basement membrane tubes. J Alzheimer’s Dis. 2010;21:725–39.
Article
CAS
Google Scholar
Brown WR, Thore CR. Cerebral microvascular pathology in aging and neurodegeneration. Neuropath App Neurobiol. 2011;37:56–74.
Article
CAS
Google Scholar
Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol. 2001;64:575–611.
Article
CAS
PubMed
Google Scholar
Farrall AJ, Wardlaw JM. Blood–brain barrier: ageing and microvascular disease-a systematic review and meta-analysis. Neurobiol Aging. 2009;30:337–52.
Article
CAS
PubMed
Google Scholar
Senatorov VVJ, et al. Blood–brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci Transl Med. 2019;11:521.
Article
CAS
Google Scholar
Bauer AT, et al. Matrix metalloproteinase-9 hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab. 2010;30:837–48.
Article
CAS
PubMed
Google Scholar
Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain. 2002;125:2549–57.
Article
PubMed
Google Scholar
Li L, Welser JV, Milner R. Absence of the αvβ3 integrin dictates the time-course of angiogenesis in the hypoxic central nervous system: accelerated endothelial proliferation correlates with compensatory increases in α5β1 integrin expression. J Cereb Blood Flow Metab. 2010;30:1031–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts JM, Maniskas ME, Bix GJ. Bilateral carotid artery stenosis causes unexpected early changes in brain extracellular matrix and blood–brain barrier integrity in mice. PLoS ONE. 2018;13(4): e0195765.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sobel RA. The extracellular matrix in multiple sclerosis lesions. J Neuropath Exp Neurol. 1998;57:205–17.
Article
CAS
PubMed
Google Scholar
Mohan PS, Spiro RG. Macromolecular organization of basement membranes. Characterization and comparison of glomerular basement membrane and lens capsule components by immunochemical and lectin affinity procedures. J Biol Chem. 1986;261(9):4328–36.
Article
CAS
PubMed
Google Scholar
Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem. 1989;180:487–502.
Article
CAS
PubMed
Google Scholar
Timpl R, Brown J. The laminins. Matrix Biol. 1994;14:275–81.
Article
CAS
PubMed
Google Scholar
Yurchenco PD, Amenta PS, Patton BL. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 2004;22(7):521–38.
Article
CAS
PubMed
Google Scholar
Yurchenco PD, Patton BL. Developmental and pathogenic mechanisms of basement membrane assembly. Curr Pharm Des. 2009;15(12):1277–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hynes, R.O., Fibronectins. Springer series in molecular biology, ed. A. Rich. 1990, New York: Springer-Verlag. p. 546.
Hemler ME. Integrins. In: Kreis T, Vale R, editors. guidebook to the extracellular matrix, anchor and adhesion proteins. New York: Oxford University Press; 1999. p. 196–212.
Google Scholar
Hynes RO. Integrins: versatility, modulation and signaling in cell adhesion. Cell. 1992;69:11–25.
Article
CAS
PubMed
Google Scholar
Hynes RO. Targeted mutations in cell adhesion genes: what have we learned from them? Dev Biol. 1996;180:402–12.
Article
CAS
PubMed
Google Scholar
Moore SA, et al. Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature. 2002;418:422–5.
Article
CAS
PubMed
Google Scholar
Nodari A, et al. α6β4 integrin and dystroglycan cooperate to stablize the myelin sheath. J Neurosci. 2008;28:6714–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar D. Neuronal laminin receptors. Trends Neurosci. 1989;12:248–51.
Article
CAS
PubMed
Google Scholar
Kang M, Yao Y. Laminin regulates oligodendrocyte development and myelination. Glia. 2022;70(3):414–29.
Article
CAS
PubMed
Google Scholar
Milner R, Campbell IL. Developmental regulation of β1 integrins during angiogenesis in the central nervous system. Mol Cell Neurosci. 2002;20:616–26.
Article
CAS
PubMed
Google Scholar
Milner R, Campbell IL. Increased expression of the beta 4 and alpha 5 integrin subunits in cerebral blood vessels of transgenic mice chronically producing the pro-inflammatory cytokines IL-6 or IFN-alpha in the central nervous system. Mol Cell Neurosci. 2006;33:429–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sixt M, et al. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood–brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol. 2001;153:933–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gautam J, Cao Y, Yao Y. Pericytic laminin maintains blood–brain barrier integrity in an age-dependent manner. Transl Stroke Res. 2020;11(2):228–42.
Article
PubMed
Google Scholar
Iivanainen A, et al. Primary structure, developmental expression, and immunolocalization of the murine laminin alpha4 chain. J Biol Chem. 1997;272(44):27862–8.
Article
CAS
PubMed
Google Scholar
Patton BL, et al. Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J Cell Biol. 1997;139(6):1507–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorokin LM, et al. Developmental regulation of the laminin alpha5 chain suggests a role in epithelial and endothelial cell maturation. Dev Biol. 1997;189(2):285–300.
Article
CAS
PubMed
Google Scholar
Menezes MJ, et al. The extracellular matrix protein laminin α2 regulates the maturation and function of the blood–brain barrier. J Neurosci. 2014;12:15260–80.
Article
CAS
Google Scholar
Thyboll J, et al. Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol. 2002;22(4):1194–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu C, et al. Endothelial basement membrane laminin α5 selectively inhibits T lymphocyte extravasation into the brain. Nat Med. 2009;15:519–27.
Article
CAS
PubMed
Google Scholar
Miyagoe Y, et al. Laminin alpha2 chain-null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy. FEBS Lett. 1997;415(1):33–9.
Article
CAS
PubMed
Google Scholar
Chen ZL, et al. Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. J Cell Biol. 2013;202(2):381–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao Y, et al. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nature Comm. 2014;5:3413.
Article
CAS
Google Scholar
Gautam J, Zhang X, Yao Y. The role of pericyte laminin in blood brain barrier integrity maintenance. Sci Rep. 2016;6:36450.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gautam J, et al. Loss of mural cell-derived laminin aggravates hemorrhagic brain injury. J Neuroinflammation. 2020;17(1):103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miner JH, Cunningham J, Sanes JR. Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J Cell Biol. 1998;143(6):1713–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gautam J, Miner JH, Yao Y. Loss of endothelial laminin α5 exacerbates hemorrhagic brain injury. Transl Stroke Res. 2019;10(6):705–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nirwane A, et al. Mural cell-derived laminin-α5 plays a detrimental role in ischemic stroke. Acta Neuropathol Commun. 2019;7(1):23.
Article
PubMed
PubMed Central
Google Scholar
Hynes RO. Integrins: bidirectional allosteric signaling machines. Cell. 2002;110:673–87.
Article
CAS
PubMed
Google Scholar
Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol. 2019;20(8):457–73.
Article
CAS
PubMed
Google Scholar
Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209(2):139–51.
Article
CAS
PubMed
Google Scholar
Silva R, et al. Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol. 2008;28(10):1703–13.
Article
CAS
PubMed
Google Scholar
Hynes RO, et al. The diverse roles of integrins and their ligands in angiogenesis. Cold Spring Harb Symp Quant Biol. 2002;67:143–53.
Article
CAS
PubMed
Google Scholar
Hemler ME, et al. Multiple very late antigen (VLA) heterodimers on platelets. Evidence for distinct VLA-2, VLA-5 (fibronectin receptor) and VLA-6 structures. J Biol Chem. 1988;264:6529–35.
Article
Google Scholar
Hogervorst F, et al. Biochemical characterization and tissue distribution of the A and B variants of the integrin α6 subunit. J Cell Biol. 1993;121:179–91.
Article
CAS
PubMed
Google Scholar
Kikkawa Y, et al. Integrin binding specificity of laminin-10/11: laminin-10/11 are recognized by alpha 3 beta 1, alpha 6 beta 1 and alpha 6 beta 4 integrins. J Cell Sci. 2000;113(Pt 5):869–76.
Article
CAS
PubMed
Google Scholar
Niessen CM, et al. Expression of the integrin α6β4 in peripheral nerves: localization in Schwann and perineural cells and different variants of the b4 subunit. J Cell Sci. 1994;107:543–52.
Article
CAS
PubMed
Google Scholar
Sonnenberg A, Modderman PW, Hogervorst F. Laminin receptor on platelets is the integrin VLA-6. Nature. 1988;336:487–9.
Article
CAS
PubMed
Google Scholar
Sorokin L, et al. Recognition of the laminin E8 cell-binding site by an integrin possessing the alpha 6 subunit is essential for epithelial cell polarization in developing kidney tubules. J Cell Biol. 1990;111:1265–73.
Article
CAS
PubMed
Google Scholar
Kloss CU, et al. Integrin family of cell adhesion molecules in the injured brain: regulation and cellular localization in the normal and regenerating mouse facial motor nucleus. J Comp Neurol. 1999;411:162–78.
Article
CAS
PubMed
Google Scholar
Kloss, C.U.A., et al., Decrease in vascular integrin immunoreactivity and selective loss of capillaries during focal cerebral ischemia and reperfusion. Soc Neurosci Abstr, 2001: p. 434.15.
Paulus W, et al. Characterisation of integrin receptors in normal and neoplastic brain. Am J Pathol. 1993;143:154–63.
CAS
PubMed
PubMed Central
Google Scholar
Haring H-P, et al. Distribution of integrin-like immunoreactivity on primate brain microvasculature. J Neuropath Exp Neurol. 1996;55:236–45.
Article
CAS
PubMed
Google Scholar
Tagaya M, et al. Rapid loss of microvascular integrin expression during focal brain ischemia reflects neuron injury. J Cereb Blood Flow Metab. 2001;21:835–46.
Article
CAS
PubMed
Google Scholar
Welser-Alves J, et al. Endothelial β4 integrin is predominantly expressed in arterioles, where it promotes vascular remodeling in hypoxic brain. Arterioscler Thromb Vasc Biol. 2013;33:943–53.
Article
CAS
PubMed
Google Scholar
Welser J, et al. Endothelial α6β4 integrin protects during experimental autoimmune encephalomyelitis-induced neuroinflammation by maintaining vascular integrity and tight junction protein expression. J Neuroinflamm. 2017;14:217.
Article
CAS
Google Scholar
Abumiya T, et al. Activated microvessels express vascular endothelial growth factor and integrin alpha (v) beta3 during focal cerebral ischemia. J Cereb Blood Flow Metab. 1999;19:1038–50.
Article
CAS
PubMed
Google Scholar
Okada Y, et al. Integrin αvβ3 is expressed in selective microvessels following focal cerebral ischemia. Am J Pathol. 1996;149:37–44.
CAS
PubMed
PubMed Central
Google Scholar
van der Neut R, et al. Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice. Nat Genet. 1996;13:366–9.
Article
PubMed
Google Scholar
Dowling J, Yu Q-C, Fuchs E. β4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J Cell Biol. 1996;134:559–72.
Article
CAS
PubMed
Google Scholar
Nakano A, et al. Epidermolysis bullosa with congenital pyloric atresia: novel mutations in the beta 4 integrin gene (ITGB4) and genotype/phenotype correlations. Pedatr Res. 2001;49:618–26.
Article
CAS
Google Scholar
Carlson TR, et al. Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development. 2008;135(12):2193–202.
Article
CAS
PubMed
Google Scholar
Lei L, et al. Endothelial expression of beta1 integrin is required for embryonic vascular patterning and postnatal vascular remodeling. Mol Cell Biol. 2008;28(2):794–802.
Article
CAS
PubMed
Google Scholar
Izawa Y, et al. β1-integrin-matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability. J Cereb Blood Flow Metab. 2018;38(4):641–58.
Article
CAS
PubMed
Google Scholar
Osada T, et al. Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by β1 integrins. J Cereb Blood Flow Metab. 2011;31:1972–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boroujerdi A, Welser-Alves J, Milner R. Extensive vascular remodeling in the spinal cord of pre-symptomatic experimental autoimmune encephalomyelitis mice; increased vessel expression of fibronectin and the α5β1 integrin. Exp Neurol. 2013;250:43–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milner R, et al. Increased expression of fibronectin and the α5β1 integrin in angiogenic cerebral blood vessels of mice subject to hypobaric hypoxia. Mol Cell Neurosci. 2008;38:43–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S, et al. Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell-binding domain of fibronectin. Am J Pathol. 2000;156:1345–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Harris M, Varner JA. Regulation of αvβ3-mediated endothelial cell migration and angiogenesis by integrin α5β1 and protein kinase A. J Biol Chem. 2000;275:33920–8.
Article
CAS
PubMed
Google Scholar
Li L, et al. An angiogenic role for the α5β1 integrin in promoting endothelial cell proliferation during cerebral hypoxia. Exp Neurol. 2012;237:46–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kant R, et al. Absence of endothelial α5β1 integrin triggers early onset of experimental autoimmune encephalomyelitis due to reduced vascular remodeling and compromised vascular integrity. Acta Neuropathol Commun. 2019;7:11.
Article
PubMed
PubMed Central
Google Scholar