Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37:13–25.
Article
CAS
PubMed
Google Scholar
Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol. 2002;38:323–37.
Article
CAS
Google Scholar
Daneman R. The blood–brain barrier in health and disease. Ann Neurol. 2012;72:648–72.
Article
CAS
PubMed
Google Scholar
Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood–brain barrier. Nat Med. 2013;19:1584–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wevers NR, de Vries HE. Morphogens and blood–brain barrier function in health and disease. Tissue Barriers. 2016;4:e1090524.
Article
PubMed
Google Scholar
Pardridge WM. Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab. 2012;32:1959–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pardridge WM. Drug and gene delivery to the brain: the vascular route. Neuron. 2002;36:555–8.
Article
CAS
PubMed
Google Scholar
Freskgård PO, Urich E. Antibody therapies in CNS diseases. Neuropharmacology. 2017;120:38–55.
Article
CAS
PubMed
Google Scholar
Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81:49–60.
Article
CAS
PubMed
Google Scholar
Webster CI, Caram-Salas N, Haqqani AS, et al. Brain penetration, target engagement, and disposition of the blood–brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1. FASEB J. 2016;30:1927–40.
Article
CAS
PubMed
Google Scholar
Zuchero YJY, Chen X, Bien-Ly N, et al. Discovery of novel blood–brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron. 2016;89:70–82.
Article
CAS
PubMed
Google Scholar
Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3:84ra44.
Article
CAS
PubMed
Google Scholar
Couch JA, Yu YJ, Zhang Y, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood–brain barrier. Sci Transl Med. 2013;5:183ra57.
Article
CAS
PubMed
Google Scholar
Haqqani AS, Delaney CE, Brunette E, et al. Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood brain barrier. J Cereb Blood Flow Metab. 2018;38:727–40.
Article
CAS
PubMed
Google Scholar
Thom G, Hatcher J, Hearn A, et al. Isolation of blood–brain barrier-crossing antibodies from a phage display library by competitive elution and their ability to penetrate the central nervous system. MAbs. 2018;10:304–14.
Article
CAS
PubMed
Google Scholar
Weber F, Bohrmann B, Niewoehner J, et al. Brain shuttle antibody for Alzheimer’s disease with attenuated peripheral effector function due to an inverted binding mode. Cell Rep. 2018;22:149–62.
Article
CAS
PubMed
Google Scholar
Ben-Zvi A, Lacoste B, Kur E, et al. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature. 2014;509:507–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villaseñor R, Ozmen L, Messaddeq N, et al. Trafficking of endogenous immunoglobulins by endothelial cells at the blood–brain barrier. Sci Rep. 2016;6:25658.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbott NJ, Hughes CC, Revest PA, Greenwood J. Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood–brain barrier. J Cell Sci. 1992;103(Pt 1):23–37.
CAS
PubMed
Google Scholar
Biegel D, Pachter JS. Growth of brain microvessel endothelial cells on collagen gels: applications to the study of blood–brain barrier physiology and CNS inflammation. In Vitro Cell Dev Biol Anim. 1994;30:581–8.
Article
Google Scholar
Gardner TW, Lieth E, Khin SA, et al. Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest Ophthalmol Vis Sci. 1997;38:2423–7.
CAS
PubMed
Google Scholar
He Y, Yao Y, Tsirka SE, Cao Y. Cell-culture models of the blood–brain barrier. Stroke. 2014;45:2514–26.
Article
PubMed
PubMed Central
Google Scholar
Wolff A, Antfolk M, Brodin B, Tenje M. In vitro blood–brain barrier models—an overview of established models and new microfluidic approaches. J Pharm Sci. 2015;104:2727–46.
Article
CAS
PubMed
Google Scholar
van der Helm MW, van der Meer AD, Eijkel JCT, van den Berg A, Segerink LI. Microfluidic organ-on-chip technology for blood–brain barrier research. Tissue Barriers. 2016;4:e1142493.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reichel A, Begley DJ, Abbott NJ. An overview of in vitro techniques for blood–brain barrier studies. Methods Mol Med. 2003;89:307–24.
CAS
PubMed
Google Scholar
van der Meer AD, Orlova VV, ten Dijke P, van den Berg A, Mummery CL. Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab Chip. 2013;13:3562.
Article
CAS
PubMed
Google Scholar
Prabhakarpandian B, Shen MC, Nichols JB, et al. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip. 2013;13:1093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herland A, Van Der Meer AD, FitzGerald EA, Park TE, Sleeboom JJF, Ingber DE. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain barrier on a chip. PLoS ONE. 2016;11:1–21.
Article
CAS
Google Scholar
Bang S, Lee SR, Ko J, et al. A low permeability microfluidic blood–brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci Rep. 2017;7:1–10.
Article
CAS
Google Scholar
Sano Y, Shimizu F, Abe M, et al. Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood–brain barrier function. J Cell Physiol. 2010;225:519–28.
Article
CAS
PubMed
Google Scholar
Sano Y, Kashiwamura Y, Abe M, et al. Stable human brain microvascular endothelial cell line retaining its barrier-specific nature independent of the passage number. Clin Exp Neuroimmunol. 2013;4:92–103.
Article
CAS
Google Scholar
Shimizu F, Sano Y, Tominaga O, Maeda T, Abe M, Kanda T. Advanced glycation end-products disrupt the blood–brain barrier by stimulating the release of transforming growth factor-β by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro. Neurobiol Aging. 2013;34:1902–12.
Article
CAS
PubMed
Google Scholar
Haruki H, Sano Y, Shimizu F, et al. NMO sera down-regulate AQP4 in human astrocyte and induce cytotoxicity independent of complement. J Neurol Sci. 2013;331:136–44.
Article
CAS
PubMed
Google Scholar
Shimizu F, Sano Y, Abe M, et al. Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol. 2011;226:255–66.
Article
CAS
PubMed
Google Scholar
Takeshita Y, Obermeier B, Cotleur A, Sano Y, Kanda T, Ransohoff RM. An in vitro blood–brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. J Neurosci Methods. 2014;232:165–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spampinato SF, Obermeier B, Cotleur A, et al. Sphingosine 1 plhosphate at the blood brain barrier: can the modulation of S1P receptor 1 influence the response of endothelial cells and astrocytes to inflammatory stimuli? PLoS ONE. 2015;10:e0133392.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takeshita Y, Obermeier B, Cotleur AC, et al. Effects of neuromyelitis optica-IgG at the blood–brain barrier in vitro. Neurol Neuroimmunol Neuroinflamm. 2017;4:e311.
Article
PubMed
Google Scholar
Shimizu F, Schaller KL, Owens GP, et al. Glucose-regulated protein 78 autoantibody associates with blood–brain barrier disruption in neuromyelitis optica. Sci Transl Med. 2017;9:eaai9111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.
Article
CAS
PubMed
Google Scholar
Trietsch SJ, Israëls GD, Joore J, Hankemeier T, Vulto P. Microfluidic titer plate for stratified 3D cell culture. Lab Chip. 2013;13:3548–54.
Article
CAS
PubMed
Google Scholar
Wevers NR, van Vught R, Wilschut KJ, et al. High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform. Sci Rep. 2016;6:38856.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Duinen V, van den Heuvel A, Trietsch SJ, et al. 96 perfusable blood vessels to study vascular permeability in vitro. Sci Rep. 2017;7:18071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tietz S, Engelhardt B. Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol. 2015;209:493–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys J. 2004;87:4259–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hawe A, Hulse WL, Jiskoot W, Forbes RT. Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates. Pharm Res. 2011;28:2302–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trietsch SJ, Naumovska E, Kurek D, et al. Membrane-free culture and real-time barrier integrity assessment of perfused intestinal epithelium tubes. Nat Commun. 2017;8:262.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sade H, Baumgartner C, Hugenmatter A, Moessner E, Freskgård P-O, Niewoehner J. A human blood–brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding. PLoS ONE. 2014;9:e96340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldbaum FA, Cauerhff A, Velikovsky CA, Llera AS, Riottot MM, Poljak RJ. Lack of significant differences in association rates and affinities of antibodies from short-term and long-term responses to hen egg lysozyme. J Immunol. 1999;162:6040–5.
CAS
PubMed
Google Scholar
Gumbleton M, Audus KL. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood–brain barrier. J Pharm Sci. 2001;90:1681–98.
Article
CAS
PubMed
Google Scholar
Cho C-F, Wolfe JM, Fadzen CM, et al. Blood–brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun. 2017;8:15623.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lippmann ES, Azarin SM, Kay JE, et al. Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012;30:783–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood–brain barrier model derived from stem cell sources. Sci Rep. 2014;4:4160.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katt ME, Linville RM, Mayo LN, Xu ZS, Searson PC. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids Barriers CNS. 2018;15:7.
Article
PubMed
PubMed Central
Google Scholar
Hollmann EK, Bailey AK, Potharazu AV, Neely MD, Bowman AB, Lippmann ES. Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS. 2017;14:9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ribecco-Lutkiewicz M, Sodja C, Haukenfrers J, et al. A novel human induced pluripotent stem cell blood–brain barrier model: applicability to study antibody-triggered receptor-mediated transcytosis. Sci Rep. 2018;8:1873.
Article
PubMed
PubMed Central
Google Scholar
Biegel D, Pachter JS. Growth of brain microvessel endothelial cells on collagen gels: applications to the study of blood–brain barrier physiology and CNS inflammation. In Vitro Cell Dev Biol Anim. 1994;30A:581–8.
Article
CAS
PubMed
Google Scholar
Hopkins AM, DeSimone E, Chwalek K, Kaplan DL. 3D in vitro modeling of the central nervous system. Prog Neurobiol. 2015;125:1–25.
Article
PubMed
Google Scholar
Naik P, Cucullo L. In vitro blood–brain barrier models: current and perspective technologies. J Pharm Sci. 2012;101:1337–54.
Article
CAS
PubMed
Google Scholar
Dewey CF, Bussolari SR, Gimbrone MA, Davies PF. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981;103:177.
Article
PubMed
Google Scholar
Cucullo L, Hossain M, Tierney W, Janigro D. A new dynamic in vitro modular capillaries-venules modular system: cerebrovascular physiology in a box. BMC Neurosci. 2013;14:18.
Article
PubMed
PubMed Central
Google Scholar
Seebach J, Dieterich P, Luo F, et al. Endothelial barrier function under laminar fluid shear stress. Lab Invest. 2000;80:1819–31.
Article
CAS
PubMed
Google Scholar
Siddharthan V, Kim YV, Liu S, Kim KS. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007;1147:39–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci. 2011;12:40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reinitz A, DeStefano J, Ye M, Wong AD, Searson PC. Human brain microvascular endothelial cells resist elongation due to shear stress. Microvasc Res. 2015;99:8–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeStefano JG, Xu ZS, Williams AJ, Yimam N, Searson PC. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs). Fluids Barriers CNS. 2017;14:20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Chiao M. Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J Med Biol Eng. 2015;35:143–55.
Article
PubMed
PubMed Central
Google Scholar
Wong I, Ho CM. Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluidics. 2009;7:291–306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY. Transferrin receptor on endothelium of brain capillaries. Nature. 1984;312:162–3.
Article
CAS
PubMed
Google Scholar
Johnsen KB, Moos T. Revisiting nanoparticle technology for blood–brain barrier transport: unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release. 2016;222:32–46.
Article
CAS
PubMed
Google Scholar
Farrington GK, Caram-Salas N, Haqqani AS, et al. A novel platform for engineering blood–brain barrier-crossing bispecific biologics. FASEB J. 2014;28:4764–78.
Article
CAS
PubMed
Google Scholar
Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13:1551–9.
Article
CAS
PubMed
Google Scholar
Garg A, Balthasar JP. Investigation of the Influence of FcRn on the distribution of IgG to the brain. AAPS J. 2009;11:553–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moos T, Morgan EH. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood–brain barrier in the rat. J Neurochem. 2001;79:119–29.
Article
CAS
PubMed
Google Scholar