Haußmann R, Homeyer P, Brandt MD, Donix M. Prognostic and diagnostic value of cerebrospinal fluid analysis in neurodegenerative dementia diseases. Nervenarzt. 2022. https://doi.org/10.1007/s00115-022-01339-6.
Article
Google Scholar
Doroszkiewicz J, Groblewska M, Mroczko B. Molecular biomarkers and their implications for the early diagnosis of selected neurodegenerative diseases. Int J Mol Sci. 2022;23(9):4610.
Article
CAS
Google Scholar
Husain N, Husain A, Mishra S, Srivastava P. Liquid biopsy in CNS tumors: current status & future perspectives. Indian J Pathol Microbiol. 2022;65(Supplement):S111–21.
Google Scholar
Ghaith HS, Nawar AA, Gabra MD, Abdelrahman ME, Nafady MH, Bahbah EI, Ebada MA, Ashraf GM, Negida A, Barreto GE. A literature review of traumatic brain injury biomarkers. Mol Neurobiol. 2022;59(7):4141–58.
Article
CAS
Google Scholar
Chen C, Hu C, Zhou W, Chen J, Shi Q, Xiao K, Wang Y, Dong XP. Calmodulin level is significantly increased in the cerebrospinal fluid of patients with sporadic Creutzfeldt-Jakob disease. Eur J Neurol. 2021;28(4):1134–41.
Article
Google Scholar
Abdulmawjood A, Schönenbrücher H, Bülte M. Novel molecular method for detection of bovine-specific central nervous system tissues as bovine spongiform encephalopathy risk material in meat and meat products. J Mol Diagn. 2005;7(3):368–74.
Article
CAS
Google Scholar
Park SA, Jang YJ, Kim MK, Lee SM, Moon SY. Promising blood biomarkers for clinical use in Alzheimer’s disease: a focused update. J Clin Neurol. 2022;18(4):401–9.
Article
Google Scholar
Schindler SE. Fluid biomarkers in dementia diagnosis. Continuum. 2022;28(3):822–33.
Google Scholar
Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022;21(8):726–34.
Article
CAS
Google Scholar
Simonsen CS, Flemmen HØ, Lauritzen T, Berg-Hansen P, Moen SM, Celius EG. The diagnostic value of IgG index versus oligoclonal bands in cerebrospinal fluid of patients with multiple sclerosis. Mult Scler J Exp Transl Clin. 2020;6(1):205521731990129.
Google Scholar
van Gorkom T, Voet W, van Arkel GHJ, Heron M, Hoeve-Bakker BJA, Notermans DW, Thijsen SFT, Kremer K. Retrospective evaluation of various serological assays and multiple parameters for optimal diagnosis of lyme neuroborreliosis in a routine clinical setting. Microbiol Spectr. 2022;10(3):e0006122.
Article
Google Scholar
Pietikäinen A, Backman I, Henningsson AJ, Hytönen J. Clinical performance and analytical accuracy of a C6 peptide-based point-of-care lateral flow immunoassay in Lyme borreliosis serology. Diagn Microbiol Infect Dis. 2022;103(1): 115657.
Article
Google Scholar
Lager M, Wilhelmsson P, Matussek A, Lindgren PE, Henningsson AJ. Molecular detection of borrelia bacteria in cerebrospinal fluid-optimisation of pre-analytical sample handling for increased analytical sensitivity. Diagnostics. 2021;11(11):2088.
Article
CAS
Google Scholar
Schmitz M, Villar-Piqué A, Hermann P, Escaramís G, Calero M, Chen C, Kruse N, Cramm M, Golanska E, Sikorska B, Liberski PP, Pocchiari M, Lange P, Stehmann C, Sarros S, Martí E, Baldeiras I, Santana I, Žáková D, Mitrová E, Dong XP, Collins S, Poleggi A, Ladogana A, Mollenhauer B, Kovacs GG, Geschwind MD, Sánchez-Valle R, Zerr I, Llorens F. Diagnostic accuracy of cerebrospinal fluid biomarkers in genetic prion diseases. Brain. 2022;145(2):700–12.
Article
Google Scholar
Abu-Rumeileh S, Barschke P, Oeckl P, Baiardi S, Mammana A, Mastrangelo A, Al Shweiki MR, Steinacker P, Ladogana A, Capellari S, Otto M, Parchi P. Prodynorphin and proenkephalin in cerebrospinal fluid of sporadic Creutzfeldt-Jakob disease. Int J Mol Sci. 2022;23(4):2051.
Article
CAS
Google Scholar
Hermann P, Haller P, Goebel S, Bunck T, Schmidt C, Wiltfang J, Zerr I. Total and phosphorylated cerebrospinal fluid tau in the differential diagnosis of sporadic creutzfeldt-jakob disease and rapidly progressive Alzheimer’s disease. Viruses. 2022;14(2):1–14.
Article
Google Scholar
Cutler RWP, Murray JE, Cornick LR. Variations in protein permeability in different regions of the cerebrospinal fluid. Exp Neurol. 1970;28(2):257–65.
Article
CAS
Google Scholar
Weisner B, Bernhardt W. Protein fractions of lumbar, cisternal, and ventricular cerebrospinal fluid. Separate areas of reference. J Neurol Sci. 1978;37(3):205–14.
Article
CAS
Google Scholar
Bailey CS, Higgins RJ. Comparison of total white blood cell count and total protein content of lumbar and cisternal cerebrospinal fluid of healthy dogs. Am J Vet Res. 1985;46(5):1162–5.
CAS
Google Scholar
Isaacs AM, Williams MA, Hamilton MG. Current update on treatment strategies for idiopathic normal pressure hydrocephalus. Curr Treat Options Neurol. 2019;21(12):65.
Article
Google Scholar
Halperin JJ, Kurlan R, Schwalb JM, Cusimano MD, Gronseth G, Gloss D. Practice guideline: idiopathic normal pressure hydrocephalus: response to shunting and predictors of response: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology. 2015;85(23):2063–71.
Article
Google Scholar
Said HM, Kaya D, Yavuz I, Dost FS, Altun ZS, Isik AT. A comparison of cerebrospinal fluid beta-amyloid and tau in idiopathic normal pressure hydrocephalus and neurodegenerative dementias. Clin Interv Aging. 2022;17:467–77.
Article
CAS
Google Scholar
Lukkarinen H, Jeppsson A, Wikkelsö C, Blennow K, Zetterberg H, Constantinescu R, Remes AM, Herukka SK, Hiltunen M, Rauramaa T, Nägga K, Leinonen V, Tullberg M. Cerebrospinal fluid biomarkers that reflect clinical symptoms in idiopathic normal pressure hydrocephalus patients. Fluids Barriers CNS. 2022;19(1):11.
Article
CAS
Google Scholar
Bommarito G, Van De Ville D, Frisoni GB, Garibotto V, Ribaldi F, Stampacchia S, Assal F, Allali G, Griffa A. Alzheimer’s disease biomarkers in idiopathic normal pressure hydrocephalus: linking functional connectivity and clinical outcome. J Alzheimers Dis. 2021;83(4):1717–28.
Article
CAS
Google Scholar
Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S4-16; discussion ii-v.
Google Scholar
Sæhle T, Farahmand D, Eide PK, Tisell M, Wikkelsö C. A randomized controlled dual-center trial on shunt complications in idiopathic normal-pressure hydrocephalus treated with gradually reduced or “fixed” pressure valve settings. J Neurosurg. 2014;121(5):1257–63.
Article
Google Scholar
del Campo M, Mollenhauer B, Bertolotto A, Engelborghs S, Hampel H, Simonsen AH, Kapaki E, Kruse N, Le Bastard N, Lehmann S, et al. Recommendations to standardize preanalytical confounding factors in Alzheimer’s and Parkinson’s disease cerebrospinal fluid biomarkers: an update. Biomark Med. 2012;6(4):419–30.
Article
Google Scholar
Bader JM, Geyer PE, Müller JB, Strauss MT, Koch M, Leypoldt F, Koertvelyessy P, Bittner D, Schipke CG, Incesoy EI, et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer’s disease. Mol Syst Biol. 2020;16(6): e9356.
Article
CAS
Google Scholar
Geyer PE, Wewer Albrechtsen NJ, Tyanova S, Grassl N, Iepsen EW, Lundgren J, Madsbad S, Holst JJ, Torekov SS, Mann M. Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Mol Syst Biol. 2016;12(12):901.
Article
Google Scholar
Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods. 2014;11(3):319–24.
Article
CAS
Google Scholar
Bruderer R, Bernhardt OM, Gandhi T, Xuan Y, Sondermann J, Schmidt M, Gomez-Varela D, Reiter L. Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol Cell Proteomics. 2017;16(12):2296–309.
Article
CAS
Google Scholar
Callister SJ, Barry RC, Adkins JN, Johnson ET, Qian WJ, Webb-Robertson BJM, Smith RD, Lipton MS. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J Proteome Res. 2006;5(2):277–86.
Article
CAS
Google Scholar
Santos A, Colaço AR, Nielsen AB, Niu L, Strauss M, Geyer PE, Coscia F, Albrechtsen NJW, Mundt F, Jensen LJ, Mann M. A knowledge graph to interpret clinical proteomics data. Nat Biotechnol. 2022;40(5):692–702.
Article
CAS
Google Scholar
Gobom J, Parnetti L, Rosa-Neto P, Vyhnalek M, Gauthier S, Cataldi S, Lerch O, Laczo J, Cechova K, Clarin M, et al. Validation of the LUMIPULSE automated immunoassay for the measurement of core AD biomarkers in cerebrospinal fluid. Clin Chem Lab Med. 2022;60(2):207–19.
CAS
Google Scholar
Gaetani L, Höglund K, Parnetti L, Pujol-Calderon F, Becker B, Eusebi P, Sarchielli P, Calabresi P, Di Filippo M, Zetterberg H, Blennow K. A new enzyme-linked immunosorbent assay for neurofilament light in cerebrospinal fluid: analytical validation and clinical evaluation. Alzheimers Res Ther. 2018;10(1):8.
Article
Google Scholar
Josse J, Husson F. missMDA : a package for handling missing values in multivariate data analysis. J Stat Softw. 2016. https://doi.org/10.18637/jss.v070.i01.
Article
Google Scholar
Cook RD, Weisberg S. Residuals and influence in regression. New York: Chapman and Hall; 1982.
Google Scholar
Michetti F, Di Sante G, Clementi ME, Sampaolese B, Casalbore P, Volonté C, Romano Spica V, Parnigotto PP, Di Liddo R, Amadio S, Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci Biobehav Rev. 2021;127:446–58.
Article
CAS
Google Scholar
Sapin V, Gaulmin R, Aubin R, Walrand S, Coste A, Abbot M. Blood biomarkers of mild traumatic brain injury: state of art. Neurochirurgie. 2021;67(3):249–54.
Article
CAS
Google Scholar
Arrais AC, Melo LHMF, Norrara B, Almeida MAB, Freire KF, Melo AMMF, de Oliveira LC, Lima FOV, Engelberth RCGJ, de Souza Cavalcante J, et al. S100B protein: general characteristics and pathophysiological implications in the Central Nervous System. Int J Neurosci. 2022;132(3):313–21.
Article
CAS
Google Scholar
Angelopoulou E, Paudel YN, Piperi C. Emerging role of S100B protein implication in Parkinson’s disease pathogenesis. Cell Mol Life Sci. 2021;78(4):1445–53.
Article
CAS
Google Scholar
Hawksworth J, Fernández E, Gevaert K. A new generation of AD biomarkers: 2019 to 2021. Ageing Res Rev. 2022;79: 101654.
Article
CAS
Google Scholar
Yang J, Hamade M, Wu Q, Wang Q, Axtell R, Giri S, Mao-Draayer Y. Current and future biomarkers in multiple sclerosis. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23115877.
Article
CAS
Google Scholar
Wong YY, Wu CY, Yu D, Kim E, Wong M, Elez R, Zebarth J, Ouk M, Tan J, Liao J, et al. Biofluid markers of blood-brain barrier disruption and neurodegeneration in Lewy body spectrum diseases: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2022;101:119–28.
Article
CAS
Google Scholar
Zanardini R, Saraceno C, Benussi L, Squitti R, Ghidoni R. Exploring neurofilament light chain and exosomes in the genetic forms of frontotemporal dementia. Front Neurosci. 2022;16: 758182.
Article
Google Scholar
Rubalcava MA, Sotelo J. Differences between ventricular and lumbar cerebrospinal fluid in hydrocephalus secondary to cysticercosis. Neurosurgery. 1995;37(4):668–71; discussion 671-2.
Article
CAS
Google Scholar
Bergman J, Svenningsson A, Liv P, Bergenheim T, Burman J. Location matters: highly divergent protein levels in samples from different CNS compartments in a clinical trial of rituximab for progressive MS. Fluids Barriers CNS. 2020;17(1):49.
Article
CAS
Google Scholar
Minta K, Jeppsson A, Brinkmalm G, Portelius E, Zetterberg H, Blennow K, Tullberg M, Andreasson U. Lumbar and ventricular CSF concentrations of extracellular matrix proteins before and after shunt surgery in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2021;18(1):23.
Article
CAS
Google Scholar
Jeppsson A, Zetterberg H, Blennow K, Wikkelsø C. Idiopathic normal-pressure hydrocephalus pathophysiology and diagnosis by CSF biomarkers. Neurology. 2013;80(15):1385–92.
Article
CAS
Google Scholar
Pyykkö OT, Lumela M, Rummukainen J, Nerg O, Seppälä TT, Herukka SK, Koivisto AM, Alafuzoff I, Puli L, Savolainen S, et al. Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PLoS ONE. 2014;9(3): e91974.
Article
Google Scholar
Schutzer SE, Liu T, Natelson BH, Angel TE, Schepmoes AA, Purvine SO, Hixson KK, Lipton MS, Camp DG, Coyle PK, Smith RD, Bergquist J. Establishing the proteome of normal human cerebrospinal fluid. PLoS ONE. 2010;5(6): e10980.
Article
Google Scholar
Leinonen V, Menon LG, Carroll RS, Dello Iacono D, Grevet J, Jääskeläinen JE, Black PM. Cerebrospinal fluid biomarkers in idiopathic normal pressure hydrocephalus. Int J Alzheimers Dis. 2011;2011: 312526.
Google Scholar
Tullberg M, Blennow K, Månsson JE, Fredman P, Tisell M, Wikkelsö C. Cerebrospinal fluid markers before and after shunting in patients with secondary and idiopathic normal pressure hydrocephalus. Cerebrospinal Fluid Res. 2008;5:1–8.
Article
Google Scholar
Ågren-Wilsson A, Lekman A, Sjöberg W, Rosengren L, Blennow K, Bergenheim AT, Malm J. CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2007;116(5):333–9.
Article
Google Scholar
Lukkarinen H, Tesseur I, Pemberton D, Van Der Ark P, Timmers M, Slemmon R, Janssens L, Streffer J, Van Nueten L, Bottelbergs A, et al. Time trends of cerebrospinal fluid biomarkers of neurodegeneration in idiopathic normal pressure hydrocephalus. J Alzheimer’s Dis. 2021;80:1–14.
Google Scholar
Rothermundt M, Peters M, Prehn JHM, Arolt V. S100B in brain damage and neurodegeneration. Microsc Res Tech. 2003;60(6):614–32.
Article
CAS
Google Scholar
Chaudhry SR, Hafez A, Rezai Jahromi B, Kinfe TM, Lamprecht A, Niemelä M, Muhammad S. Role of damage associated molecular pattern molecules (DAMPs) in aneurysmal subarachnoid hemorrhage (aSAH). Int J Mol Sci. 2018;19(7):2035.
Article
Google Scholar
Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE, Alvarez-Cermeño JC, Andreasson U, Axelsson M, Bäckström DC, et al. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: a systematic review and meta-analysis. JAMA Neurol. 2019;76(9):1035–48.
Article
Google Scholar
Kmezic I, Samuelsson K, Finn A, Upate Z, Blennow K, Zetterberg H, Press R. Neurofilament light chain and total tau in the differential diagnosis and prognostic evaluation of acute and chronic inflammatory polyneuropathies. Eur J Neurol. 2022;29(9):2810–22.
Article
Google Scholar
Petzold A, Keir G, Lim D, Smith M, Thompson EJ. Cerebrospinal fluid (CSF) and serum S100B: release and wash-out pattern. Brain Res Bull. 2003;61(3):281–5.
Article
CAS
Google Scholar
Benninghaus A, Balédent O, Lokossou A, Castelar C, Leonhardt S, Radermacher K. Enhanced in vitro model of the CSF dynamics. Fluids Barriers CNS. 2019;16(1):11.
Article
Google Scholar
Puy V, Zmudka-Attier J, Capel C, Bouzerar R, Serot JM, Bourgeois AM, Ausseil J, Balédent O. Interactions between flow oscillations and biochemical parameters in the cerebrospinal fluid. Front Aging Neurosci. 2016;8(JUN):154.
Google Scholar
Requena-Jimenez A, Nabiuni M, Miyan JA. Profound changes in cerebrospinal fluid proteome and metabolic profile are associated with congenital hydrocephalus. J Cereb Blood Flow Metab. 2021;41(12):3400–14.
Article
CAS
Google Scholar
Seymour RS. Model analogues in the study of cephalic circulation. Comp Biochem Physiol A Mol Integr Physiol. 2000;125(4):517–24.
Article
CAS
Google Scholar
Lillywhite HB, Albert JS, Sheehy CM, Seymour RS. Gravity and the evolution of cardiopulmonary morphology in snakes. Comp Biochem Physiol A Mol Integr Physiol. 2012;161(2):230–42.
Article
CAS
Google Scholar
Iwasaki KI, Ogawa Y, Kurazumi T, Imaduddin SM, Mukai C, Furukawa S, Yanagida R, Kato T, Konishi T, Shinojima A, Levine BD, Heldt T. Long-duration spaceflight alters estimated intracranial pressure and cerebral blood velocity. J Physiol. 2021;599(4):1067–81.
Article
CAS
Google Scholar
Konen FF, Lange P, Wurster U, Jendretzky KF, Gingele S, Möhn N, Sühs K-W, Stangel M, Skripuletz T, Schwenkenbecher P. The influence of the ventricular-lumbar gradient on cerebrospinal fluid analysis in serial samples. Brain Sci. 2022;12(3):410.
Article
CAS
Google Scholar
Edsbagge M, Starck G, Zetterberg H, Ziegelitz D, Wikkelso C. Spinal cerebrospinal fluid volume in healthy elderly individuals. Clin Anat. 2011;24(6):733–40.
Article
CAS
Google Scholar