Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. CMLS. 2021;78(6):2429–57.
Article
CAS
Google Scholar
Lindstrøm EK, Ringstad G, Mardal K-A, Eide PK. Cerebrospinal fluid volumetric net flow rate and direction in idiopathic normal pressure hydrocephalus. Neuroimage Clin. 2018;20:731–41.
Article
Google Scholar
Ringstad G, Emblem KE, Eide PK. Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus. JNS. 2016;124(6):1850–7.
Article
Google Scholar
Luetmer PH, Huston J, Friedman JA, Dixon GR, Petersen RC, Jack CR, et al. Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery. 2002;50(3):534–43.
Google Scholar
Haughton VM, Korosec FR, Medow JE, Dolar MT, Iskandar BJ. Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants. AJNR Am J Neuroradiol. 2003;24(2):169–76.
Google Scholar
Bunck AC, Kroeger JR, Juettner A, Brentrup A, Fiedler B, Crelier GR, et al. Magnetic resonance 4D flow analysis of cerebrospinal fluid dynamics in Chiari I malformation with and without syringomyelia. Eur Radiol. 2012;22(9):1860–70.
Article
Google Scholar
Khani M, Burla GKR, Sass LR, Arters ON, Xing T, Wu H, et al. Human in silico trials for parametric computational fluid dynamics investigation of cerebrospinal fluid drug delivery: impact of injection location, injection protocol, and physiology. Fluids and Barriers of the CNS. 2022;19(1):8.
Article
CAS
Google Scholar
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, et al. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev. 2021;173:20–59.
Article
CAS
Google Scholar
Takizawa K, Matsumae M, Hayashi N, Hirayama A, Yatsushiro S, Kuroda K. Hyperdynamic CSF motion profiles found in idiopathic normal pressure hydrocephalus and Alzheimer’s disease assessed by fluid mechanics derived from magnetic resonance images. Fluids and Barriers of the CNS. 2017;14(1):29.
Article
Google Scholar
Berliner JA, Woodcock T, Najafi E, Hemley SJ, Lam M, Cheng S, et al. Effect of extradural constriction on CSF flow in rat spinal cord. Fluids Barriers CNS. 2019;16(1):7.
Article
Google Scholar
Yeo J, Cheng S, Hemley S, Lee BB, Stoodley M, Bilston L. Characteristics of CSF Velocity-Time Profile in Posttraumatic Syringomyelia. Am J Neuroradiol. 2017;38(9):1839–44.
Article
CAS
Google Scholar
Spijkerman JM, Geurts LJ, Siero JCW, Hendrikse J, Luijten PR, Zwanenburg JJM. Phase contrast MRI measurements of net cerebrospinal fluid flow through the cerebral aqueduct are confounded by respiration. J Magn Reson Imaging. 2019;49(2):433–44.
Article
Google Scholar
Wymer DT, Patel KP, Bhatia VK. Phase-contrast MRI: physics, techniques, and clinical applications. Radiographics. 2020;40(1):122–40.
Article
Google Scholar
Enzmann D, Pelc N. Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology. 1991;178:467–74.
Article
CAS
Google Scholar
Henry-Feugeas MC, Idy-Peretti I, Blanchet B, Hassine D, Zannoli G, Schouman-Claeys E. Temporal and spatial assessment of normal cerebrospinal fluid dynamics with MR imaging. Magn Reson Imaging. 1993;11(8):1107–18.
Article
CAS
Google Scholar
Greitz D. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1993;386:1–23.
CAS
Google Scholar
Alperin N, Vikingstad EM, Gomez-Anson B, Levin DN. Hemodynamically independent analysis of cerebrospinal fluid and brain motion observed with dynamic phase contrast MRI. Magn Reson Med. 1996;35(5):741–54.
Article
CAS
Google Scholar
Bradley WG, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P. Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology. 1996;198(2):523–9.
Article
Google Scholar
Balédent O, Gondry-Jouet C, Meyer M-E, De Marco G, Le Gars D, Henry-Feugeas M-C, et al. Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest Radiol. 2004;39(1):45–55.
Article
Google Scholar
Dolar MT, Haughton VM, Iskandar BJ, Quigley M. Effect of craniocervical decompression on peak CSF velocities in symptomatic patients with Chiari I malformation. AJNR Am J Neuroradiol. 2004;25(1):142–5.
Google Scholar
Clarke EC, Stoodley MA, Bilston LE. Changes in temporal flow characteristics of CSF in Chiari malformation Type I with and without syringomyelia: implications for theory of syrinx development: Clinical article. JNS. 2013;118(5):1135–40.
Article
Google Scholar
Bert RJ, Settipalle N, Tiwana E, Muddasani D, Nath R, Wellman B, et al. The relationships among spinal CSF flows, spinal cord geometry, and vascular correlations: evidence of intrathecal sources and sinks. Am J Physiol Regul Integr Comp Physiol. 2019;317(3):R470–84.
Article
CAS
Google Scholar
Aktas G, Kollmeier JM, Joseph AA, Merboldt K-D, Ludwig H-C, Gärtner J, et al. Spinal CSF flow in response to forced thoracic and abdominal respiration. Fluids and barriers of the CNS. 2019;16(1):10.
Article
Google Scholar
Dreha-Kulaczewski S, Konopka M, Joseph AA, Kollmeier J, Merboldt K-D, Ludwig H-C, et al. Respiration and the watershed of spinal CSF flow in humans. Sci Rep. 2018;8(1):5594.
Article
Google Scholar
Yan L, Liu H, Shang H. Quantitative analysis of intraspinal cerebrospinal fluid flow in normal adults. Neural Regen Res. 2012;7(15):1164–9.
Google Scholar
Khani M, Lawrence BJ, Sass LR, Gibbs CP, Pluid JJ, Oshinski JN, et al. Characterization of intrathecal cerebrospinal fluid geometry and dynamics in cynomolgus monkeys (macaca fascicularis) by magnetic resonance imaging. PLoS ONE. 2019;14(2): e0212239.
Article
CAS
Google Scholar
Bae YJ, Lee JW, Lee E, Yeom JS, Kim K-J, Kang HS. Cervical compressive myelopathy: flow analysis of cerebrospinal fluid using phase-contrast magnetic resonance imaging. Eur Spine J. 2017;26(1):40–8.
Article
Google Scholar
Shibuya R, Yonenobu K, Koizumi T, Kato Y, Mitta M, Yoshikawa H. Pulsatile cerebrospinal fluid flow measurement using phase-contrast magnetic resonance imaging in patients with cervical myelopathy. Spine. 2002;27(10):1087–93.
Article
Google Scholar
Tominaga T, Watabe N, Takahashi T, Shimizu H, Yoshimoto T. Quantitative assessment of surgical decompression of the cervical spine with cine phase contrast magnetic resonance imaging. Neurosurgery. 2002;50(4):791–6.
Article
Google Scholar
Kim H-J, Kim H, Kim Y-T, Sohn C-H, Kim K, Kim D-J. Cerebrospinal fluid dynamics correlate with neurogenic claudication in lumbar spinal stenosis. PLoS ONE. 2021;16(5): e0250742.
Article
CAS
Google Scholar
Saadoun S, Werndle MC, Lopez de Heredia L, Papadopoulos MC. The dura causes spinal cord compression after spinal cord injury. Br J Neurosurg. 2016;30(5):582–4.
Leypold BG, Flanders AE, Burns AS. The early evolution of spinal cord lesions on MR imaging following traumatic spinal cord injury. AJNR Am J Neuroradiol. 2008;29(5):1012–6.
Article
CAS
Google Scholar
Kim SY, Shin MJ, Chang JH, Lee CH, Shin YI, Shin YB, et al. Correlation of diffusion tensor imaging and phase-contrast MR with clinical parameters of cervical spinal cord injuries. Spinal Cord. 2015;53(8):608–14.
Article
Google Scholar
Yeo J, Cheng S, Hemley S, Lee BB, Stoodley M, Bilston L. Characteristics of CSF Velocity-Time Profile in Posttraumatic Syringomyelia. AJNR Am J Neuroradiol. 2017;38(9):1839–44.
Article
CAS
Google Scholar
Kwon BK, Streijger F, Hill CE, Anderson AJ, Bacon M, Beattie MS, et al. Large animal and primate models of spinal cord injury for the testing of novel therapies. Exp Neurol. 2015;269:154–68.
Article
Google Scholar
Busscher I, Ploegmakers JJ, Verkerke GJ, Veldhuizen AG. Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J. 2010;19(7):1104–14.
Article
Google Scholar
Jones CF, Cripton PA, Kwon BK. Gross morphological changes of the spinal cord immediately after surgical decompression in a large animal model of traumatic spinal cord injury. Spine (Phila Pa 1976). 2012;37(15):E890–9.
Article
Google Scholar
Toossi A, Bergin B, Marefatallah M, Parhizi B, Tyreman N, Everaert DG, et al. Comparative neuroanatomy of the lumbosacral spinal cord of the rat, cat, pig, monkey, and human. Sci Rep. 2021;11(1):1955.
Article
CAS
Google Scholar
Sun Y, Zhang LH, Fu YM, Li ZR, Liu JH, Peng J, et al. Establishment of a rat model of chronic thoracolumbar cord compression with a flat plastic screw. Neural Regen Res. 2016;11(6):963–70.
Article
Google Scholar
Lee JH, Jones CF, Okon EB, Anderson L, Tigchelaar S, Kooner P, et al. A novel porcine model of traumatic thoracic spinal cord injury. J Neurotrauma. 2013;30(3):142–59.
Article
Google Scholar
National Health and Medical Research Council. Australian code for the care and use of animals for scientific purposes. 8th ed. Canberra: National Health and Medical Research Council; 2013.
Google Scholar
Heiberg E, Sjögren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of Segment–freely available software for cardiovascular image analysis. BMC Med Imaging. 2010;10:1.
Article
Google Scholar
Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84(1004):758–65.
Article
CAS
Google Scholar
Sonnabend K, Brinker G, Maintz D, Bunck AC, Weiss K. Cerebrospinal fluid pulse wave velocity measurements: In vitro and in vivo evaluation of a novel multiband cine phase-contrast MRI sequence. Magn Reson Med. 2021;85(1):197–208.
Article
CAS
Google Scholar
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63.
Article
Google Scholar
Bert RJ, Settipalle N, Muddasani D, Tiwana E, Wellman B, Negahdar MJ, et al. ECG gating is more precise than peripheral pulse gating when quantifying spinal CSF pulsations using phase contrast cine MRI. Acad Radiol. 2020;27(4):552–62.
Article
Google Scholar
Kalata W, Martin BA, Oshinski JN, Jerosch-Herold M, Royston TJ, Loth F. MR measurement of cerebrospinal fluid velocity wave speed in the spinal canal. IEEE Trans Biomed Eng. 2009;56(6):1765–8.
Article
Google Scholar
Alperin N, Lee SH, Sivaramakrishnan A, Hushek SG. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging. 2005;22(5):591–6.
Article
Google Scholar
Alperin N, Burman R, Lee SH. Role of the spinal canal compliance in regulating posture-related cerebrospinal fluid hydrodynamics in humans. J Magn Reson Imaging. 2021;54(1):206–14.
Article
Google Scholar
Muccio M, Chu D, Minkoff L, Kulkarni N, Damadian B, Damadian RV, et al. Upright versus supine MRI: effects of body position on craniocervical CSF flow. Fluids Barriers CNS. 2021;18(1):61.
Article
Google Scholar
Algin O, Koc U, Yalcin N. Cerebrospinal fluid velocity changes of idiopathic scoliosis: a preliminary study on 3-T PC-MRI and 3D-SPACE-VFAM data. Childs Nerv Syst. 2022;38(2):379–86.
Article
CAS
Google Scholar
Gayen C, Bessen MA, Dorrian R, Quarrington RD, Mulaibrahimovic A, O’Hare Doig R, et al. A survival model of thoracic contusion spinal cord injury in the domestic pig. J Neurotrauma. 2022. https://doi.org/10.1089/neu.2022.0281.
Article
Google Scholar
Gellad F, Rao KC, Joseph PM, Vigorito RD. Morphology and dimensions of the thoracic cord by computer-assisted metrizamide myelography. AJNR Am J Neuroradiol. 1983;4(3):614–7.
CAS
Google Scholar
Liu S, Bilston LE, Flores Rodriguez N, Wright C, McMullan S, Lloyd R, et al. Changes in intrathoracic pressure, not arterial pulsations, exert the greatest effect on tracer influx in the spinal cord. Fluids Barriers CNS. 2022;19(1):14.
Article
CAS
Google Scholar
Yamada S, Miyazaki M, Yamashita Y, Ouyang C, Yui M, Nakahashi M, et al. Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS. 2013;10(1):36.
Article
Google Scholar
Dreha-Kulaczewski S, Joseph AA, Merboldt K-D, Ludwig H-C, Gärtner J, Frahm J. Identification of the upward movement of human CSF in vivo and its relation to the brain venous system. J Neurosci. 2017;37(9):2395–402.
Article
CAS
Google Scholar
Linge SO, Mardal KA, Haughton V, Helgeland A. Simulating CSF flow dynamics in the normal and the chiari i subarachnoid space during rest and exertion. Am J Neuroradiol. 2013;34(1):41–5.
Article
CAS
Google Scholar
Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103(2):419–28.
Article
Google Scholar
Lloyd RA, Stoodley MA, Fletcher DF, Bilston LE. The effects of variation in the arterial pulse waveform on perivascular flow. J Biomech. 2019;90:65–70.
Article
Google Scholar
Stoodley MA, Brown SA, Brown CJ, Jones NR. Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord. J Neurosurg. 1997;86(4):686–93.
Article
CAS
Google Scholar
Li J, Pei M, Bo B, Zhao X, Cang J, Fang F, et al. Whole-brain mapping of mouse CSF flow via HEAP-METRIC phase-contrast MRI. Magn Reson Med. 2022;87(6):2851–61.
Article
CAS
Google Scholar
Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun. 2018;9(1):4878.
Article
Google Scholar
Sato K, Sadamoto T, Hirasawa A, Oue A, Subudhi AW, Miyazawa T, et al. Differential blood flow responses to CO2 in human internal and external carotid and vertebral arteries. J Physiol. 2012;590(14):3277–90.
Article
CAS
Google Scholar
van Hulst RA, Hasan D, Lachmann B. Intracranial pressure, brain PCO2, PO2, and pH during hypo- and hyperventilation at constant mean airway pressure in pigs. Intensive Care Med. 2002;28(1):68–73.
Article
Google Scholar
Adolph R, Fukusumi H, Fowler N. Origin of cerebrospinal fluid pulsations. Am J Physiol Legacy Cont. 1967;212(4):840–6.
Article
CAS
Google Scholar
Nakamura K, Urayama K, Hoshino Y. Lumbar cerebrospinal fluid pulse wave rising from pulsations of both the spinal cord and the brain in humans. Spinal Cord. 1997;35(11):735–9.
Article
CAS
Google Scholar
Henry-Feugeas M-C, Idy-Peretti I, Baledent O, Poncelet-Didon A, Zannoli G, Bittoun J, et al. Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis. Magn Reson Imaging. 2000;18(4):387–95.
Article
CAS
Google Scholar
Sass LR, Khani M, Romm J, Schmid Daners M, McCain K, Freeman T, et al. Non-invasive MRI quantification of cerebrospinal fluid dynamics in amyotrophic lateral sclerosis patients. Fluids Barriers CNS. 2020;17(1):4.
Article
Google Scholar
Bertram CD, Brodbelt AR, Stoodley MA. The origins of syringomyelia: numerical models of fluid/structure interactions in the spinal cord. J Biomech Eng. 2005;127(7):1099–109.
Article
CAS
Google Scholar
Martin BA, Reymond P, Novy J, Balédent O, Stergiopulos N. A coupled hydrodynamic model of the cardiovascular and cerebrospinal fluid system. Am J Physiol Heart Circ Physiol. 2012;302(7):H1492–509.
Article
CAS
Google Scholar
Cerda-Gonzalez S, Olby NJ, Broadstone R, McCullough S, Osborne JA. Characteristics of cerebrospinal fluid flow in cavalier king charles spaniels analysed using phase-contrast velocity cine magnetic resonance imaging. Vet Radiol Ultrasound. 2009;50(5):467–76.
Article
Google Scholar
Shah S, Haughton V, del Río AM. CSF flow through the upper cervical spinal canal in chiari i malformation. Am J Neuroradiol. 2011;32(6):1149–53.
Article
CAS
Google Scholar
Christen MA, Schweizer-Gorgas D, Richter H, Joerger FB, Dennler M. Quantification of cerebrospinal fluid flow in dogs by cardiac-gated phase-contrast magnetic resonance imaging. J Vet Intern Med. 2021;35(1):333–40.
Article
Google Scholar
Boulton M, Flessner M, Armstrong D, Hay J, Johnston M. Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol Regul Integr Comp Physiol. 1998;274(1):R88–96.
Article
CAS
Google Scholar
Dorniak K, Heiberg E, Hellmann M, Rawicz-Zegrzda D, Wesierska M, Galaska R, et al. Required temporal resolution for accurate thoracic aortic pulse wave velocity measurements by phase-contrast magnetic resonance imaging and comparison with clinical standard applanation tonometry. BMC Cardiovasc Disord. 2016;16(1):110.
Article
Google Scholar
Chun SW, Lee HJ, Nam KH, Sohn CH, Kim KD, Jeong EJ, et al. Cerebrospinal fluid dynamics at the lumbosacral level in patients with spinal stenosis: A pilot study. J Orthop Res. 2017;35(1):104-12.
Article
Google Scholar