Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):26.
Article
PubMed
PubMed Central
Google Scholar
Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013;93(4):1847–92.
Article
CAS
PubMed
Google Scholar
Brown PD, Davies SL, Speake T, Millar ID. Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 2004;129(4):955–68.
Article
CAS
Google Scholar
Perry TL, Hansen S, Kennedy J. CSF amino acids and plasma-CSF amino acid ratios in adults 1. J Neurochem. 1975;24(3):587–9.
Article
CAS
PubMed
Google Scholar
McGale EHF, Pye IF, Stonier C, Hutchinson EC, Aber GM. Studies of the inter-relationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals. J Neurochem. 1977;29(2):291–7.
Article
CAS
PubMed
Google Scholar
Perry TL, Krieger C, Hansen S, Eisen A. Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid. Ann Neurol. 1990;28(1):12–7.
Article
CAS
PubMed
Google Scholar
Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol. 1990;28(1):18–25.
Article
CAS
PubMed
Google Scholar
Camu W, Billiard M, Baldy-Moulinier M. Fasting plasma and CSF amino acid levels in amyotrophic lateral sclerosis: a subtype analysis. Acta Neurol Scand. 1993;88(1):51–5.
Article
CAS
PubMed
Google Scholar
Málly J, Baranyi M, Vizi ES. Change in the concentrations of amino acids in CSF and serum of patients with essential tremor. J Neural Transm. 1996;103(5):555–60.
Article
PubMed
Google Scholar
Jimenez-Jimenez FJ, Molina JA, Gomez P, Vargas C, de Bustos F, Benito-Leon J, et al. Neurotransmitter amino acids in cerebrospinal fluid of patients with Alzheimer’s disease. J Neural Transm. 1998;105(2–3):269–77.
CAS
PubMed
Google Scholar
Pomara N, Singh R, Deptula D, Chou JC, Schwartz MB, LeWitt PA. Glutamate and other CSF amino acids in Alzheimer’s disease. Am J Psychiatry. 1992;149(2):251–4.
Article
CAS
PubMed
Google Scholar
Molina JA, Jimenez-Jimenez FJ, Vargas C, Gomez P, de Bustos F, Orti-Pareja M, et al. Cerebrospinal fluid levels of non-neurotransmitter amino acids in patients with Alzheimer’s disease. J Neural Transm. 1998;105(2–3):279–86.
Article
CAS
PubMed
Google Scholar
Madeira C, Lourenco MV, Vargas-Lopes C, Suemoto CK, Brandao CO, Reis T, et al. d-serine levels in Alzheimer’s disease: implications for novel biomarker development. Transl Psychiatry. 2015;5:e561.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biemans EA, Verhoeven-Duif NM, Gerrits J, Claassen JA, Kuiperij HB, Verbeek MM. CSF d-serine concentrations are similar in Alzheimer’s disease, other dementias, and elderly controls. Neurobiol Aging. 2016;42:213–6.
Article
CAS
PubMed
Google Scholar
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.
Article
CAS
PubMed
Google Scholar
Zhang Z, Tachikawa M, Uchida Y, Terasaki T. Drug clearance from cerebrospinal fluid mediated by organic anion transporters 1 (Slc22a6) and 3 (Slc22a8) at arachnoid membrane of rats. Mol Pharm. 2018;15(3):911–22.
Article
CAS
PubMed
Google Scholar
Yasuda K, Cline C, Vogel P, Onciu M, Fatima S, Sorrentino BP, et al. Drug transporters on arachnoid barrier cells contribute to the blood–cerebrospinal fluid barrier. Drug Metab Dispos. 2013;41(4):923–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takanaga H, Mackenzie B, Suzuki Y, Hediger MA. Identification of mammalian proline transporter SIT1 (SLC6A20) with characteristics of classical system imino. J Biol Chem. 2005;280(10):8974–84.
Article
CAS
PubMed
Google Scholar
Dahlin A, Royall J, Hohmann JG, Wang J. Expression profiling of the solute carrier gene family in the mouse brain. J Pharmacol Exp Ther. 2009;329(2):558–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marques F, Sousa JC, Coppola G, Gao F, Puga R, Brentani H, et al. Transcriptome signature of the adult mouse choroid plexus. Fluids Barriers CNS. 2011;8(1):10.
Article
PubMed
PubMed Central
Google Scholar
Ho HTB, Dahlin A, Wang J. Expression profiling of solute carrier gene families at the blood–CSF barrier. Front Pharmacol. 2012;3:154.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiang J, Ennis SR, Abdelkarim GE, Fujisawa M, Kawai N, Keep RF. Glutamine transport at the blood–brain and blood–cerebrospinal fluid barriers. Neurochem Int. 2003;43(4–5):279–88.
Article
CAS
PubMed
Google Scholar
Akanuma S-I, Sakurai T, Tachikawa M, Kubo Y, Hosoya K-I. Transporter-mediated l-glutamate elimination from cerebrospinal fluid: possible involvement of excitatory amino acid transporters expressed in ependymal cells and choroid plexus epithelial cells. Fluids Barriers CNS. 2015;12:11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Font-Llitjós M. Renal reabsorption of amino acids: SLC7A9 mutation analysis, the type B cystinuria gene and characterization of a Knockout murin model Slc7a8. Doctoral thesis, University of Barcelona. 2005.
Dolgodilina E, Imobersteg S, Laczko E, Welt T, Verrey F, Makrides V. Brain interstitial fluid glutamine homeostasis is controlled by blood-brain barrier SLC7A5/LAT1 amino acid transporter. J Cereb Blood Flow Metab. 2016;36(11):1929–41.
Article
PubMed
Google Scholar
Bowyer JF, Thomas M, Patterson TA, George NI, Runnells JA, Levi MS. A visual description of the dissection of the cerebral surface vasculature and associated meninges and the choroid plexus from rat brain. J Vis Exp. 2012;69:e4285.
Google Scholar
Warfel NA, Kraft AS. PIM kinase (and Akt) biology and signaling in tumors. Pharmacol Ther. 2015;151:41–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: new views in health and disease. Trends Biochem Sci. 2018;43(10):752–89.
Article
CAS
PubMed
Google Scholar
Xie X, Dumas T, Tang L, Brennan T, Reeder T, Thomas W, et al. Lack of the alanine–serine–cysteine transporter 1 causes tremors, seizures, and early postnatal death in mice. Brain Res. 2005;1052(2):212–21.
Article
CAS
PubMed
Google Scholar
Ruderisch N, Virgintino D, Makrides V, Verrey F. Differential axial localization along the mouse brain vascular tree of luminal sodium-dependent glutamine transporters Snat1 and Snat3. J Cereb Blood Flow Metab. 2011;31(7):1637–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernández E, Jiménez-Vidal M, Calvo M, Zorzano A, Tebar F, Palacín M, et al. The structural and functional units of heteromeric amino acid transporters: the heavy subunit rBAT dictates oligomerization of the heteromeric amino acid transporters. J Biol Chem. 2006;281(36):26552–61.
Article
PubMed
CAS
Google Scholar
Vilches C, Boiadjieva-Knopfel E, Bodoy S, Camargo S, Lopez de Heredia M, Prat E, et al. Cooperation of antiporter LAT2/CD98hc with uniporter TAT1 for renal reabsorption of neutral amino acids. J Am Soc Nephrol. 2018;29(6):1624–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Espino Guarch M, Font-Llitjós M, Murillo-Cuesta S, Errasti- Murugarren E, Celaya AM, Girotto G, et al. Mutations in L-type amino acid transporter-2 support SLC7A8 as a novel gene involved in age-related hearing loss. eLife. 2018;7:e31511.
Article
PubMed
PubMed Central
Google Scholar
Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, et al. LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem. 1999;274(49):34948–54.
Article
CAS
PubMed
Google Scholar
Masuzawa T, Ohta T, Kawamura M, Nakahara N, Sato F. Immunohistochemical localization of Na+, K+-ATPase in the choroid plexus. Brain Res. 1984;302(2):357–62.
Article
CAS
PubMed
Google Scholar
Lindsey AE, Schneider K, Simmons DM, Baron R, Lee BS, Kopito RR. Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proc Natl Acad Sci. 1990;87(14):5278–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braun D, Wirth EK, Wohlgemuth F, Reix N, Klein MO, Gruters A, et al. Aminoaciduria, but normal thyroid hormone levels and signalling, in mice lacking the amino acid and thyroid hormone transporter Slc7a8. Biochem J. 2011;439(2):249–55.
Article
CAS
PubMed
Google Scholar
Meier C, Ristic Z, Klauser S, Verrey F. Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J. 2002;21(4):580–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee A, Anderson AR, Rayfield AJ, Stevens MG, Poronnik P, Meabon JS, et al. Localisation of novel forms of glutamate transporters and the cystine-glutamate antiporter in the choroid plexus: implications for CSF glutamate homeostasis. J Chem Neuroanat. 2012;43(1):64–75.
Article
CAS
PubMed
Google Scholar
Mackenzie B, Schafer MK, Erickson JD, Hediger MA, Weihe E, Varoqui H. Functional properties and cellular distribution of the system A glutamine transporter SNAT1 support specialized roles in central neurons. J Biol Chem. 2003;278(26):23720–30.
Article
CAS
PubMed
Google Scholar
Deitmer JW, Broer A, Broer S. Glutamine efflux from astrocytes is mediated by multiple pathways. J Neurochem. 2003;87(1):127–35.
Article
CAS
PubMed
Google Scholar
Todd AC, Marx MC, Hulme SR, Broer S, Billups B. SNAT3-mediated glutamine transport in perisynaptic astrocytes in situ is regulated by intracellular sodium. Glia. 2017;65(6):900–16.
Article
PubMed
Google Scholar