Liebner S, Czupalla CJ, Wolburg H. Current concepts of blood–brain barrier development. Int J Dev Biol. 2011;55(4–5):467–76.
Article
CAS
PubMed
Google Scholar
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.
Article
CAS
PubMed
Google Scholar
Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol. 2005;25(1):5–23.
Article
PubMed
Google Scholar
Nag S, Begley D. Blood–brain barrier, exchange of metabolites and gases. In: Pathology and genetics cerebrovascular diseases. Basel: ISN Neuropath Press; 2005. p. 22–9.
Google Scholar
Brown P, Davies S, Speake T, Millar I. Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 2004;129(4):955–68.
Article
CAS
Google Scholar
Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45(4):545–52.
Article
CAS
PubMed
Google Scholar
Cserr HF, Cooper DN, Suri PK, Patlak CS. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol. 1981;240(4):F319–28.
CAS
PubMed
Google Scholar
Cserr H, Patlak C. Secretion and bulk flow of interstitial fluid. In: Physiology and pharmacology of the blood–brain barrier. New York: Springer; 1992. p. 245–61.
Chapter
Google Scholar
Dolman D, Drndarski S, Abbott NJ, Rattray M. Induction of aquaporin 1 but not aquaporin 4 messenger RNA in rat primary brain microvessel endothelial cells in culture. J Neurochem. 2005;93(4):825–33.
Article
CAS
PubMed
Google Scholar
Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.
Article
CAS
PubMed
Google Scholar
Kandel ER, Schwartz JH, Jessell TM, Biochemistry Do, Jessell MBT, Siegelbaum S, et al. Principles of neural science. New York: McGraw-hill; 2000.
Google Scholar
Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13.
Article
CAS
PubMed
Google Scholar
Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites. Proc Natl Acad Sci USA. 1989;86(2):695–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eisenblatter T, Galla HJ. A new multidrug resistance protein at the blood–brain barrier. Biochem Biophys Res Commun. 2002;293(4):1273–8.
Article
PubMed
CAS
Google Scholar
Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, Meier PJ. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood–brain barrier. J Pharmacol Exp Ther. 2000;294(1):73–9.
CAS
PubMed
Google Scholar
Agarwal S, Hartz AM, Elmquist WF, Bauer B. Breast cancer resistance protein and P-glycoprotein in brain cancer: two gatekeepers team up. Curr Pharm Des. 2011;17(26):2793–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Lange EC. Potential role of ABC transporters as a detoxification system at the blood–CSF barrier. Adv Drug Deliv Rev. 2004;56(12):1793–809.
Article
PubMed
CAS
Google Scholar
Ghersi-Egea JF, Leininger-Muller B, Cecchelli R, Fenstermacher JD. Blood–brain interfaces: relevance to cerebral drug metabolism. Toxicol Lett. 1995;82–83:645–53.
Article
PubMed
Google Scholar
Shawahna R, Uchida Y, Decleves X, Ohtsuki S, Yousif S, Dauchy S, et al. Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm. 2011;8(4):1332–41.
Article
CAS
PubMed
Google Scholar
Ghosh C, Puvenna V, Gonzalez-Martinez J, Janigro D, Marchi N. Blood–brain barrier P450 enzymes and multidrug transporters in drug resistance: a synergistic role in neurological diseases. Curr Drug Metab. 2011;12(8):742–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood–brain barrier. J Neurochem. 2008;107(6):1518–28.
Article
CAS
PubMed
Google Scholar
Ghosh C, Gonzalez-Martinez J, Hossain M, Cucullo L, Fazio V, Janigro D, et al. Pattern of P450 expression at the human blood–brain barrier: roles of epileptic condition and laminar flow. Epilepsia. 2010;51(8):1408–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pardridge WM. The blood–brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14.
Article
PubMed
PubMed Central
Google Scholar
Pardridge WM. Blood–brain barrier biology and methodology. J Neurovirol. 1999;5(6):556–69.
Article
CAS
PubMed
Google Scholar
Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12(12):723–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liebner S, Engelhardt B. Development of the blood–brain barrier. In: The blood brain barrier and its microenvironment: basic physiology to neurological disease. New York: Taylor and Francis; 2005. p. 1–25.
Google Scholar
Pardridge WM. Blood–brain barrier endogenous transporters as therapeutic targets: a new model for small molecule CNS drug discovery. Expert Opin Ther Targets. 2015;19(8):1059–72.
Article
CAS
PubMed
Google Scholar
Pardridge WM, Eisenberg J, Yang J. Human blood–brain barrier insulin receptor. J Neurochem. 1985;44(6):1771–8.
Article
CAS
PubMed
Google Scholar
Zhang Y, Pardridge WM. Rapid transferrin efflux from brain to blood across the blood–brain barrier. J Neurochem. 2001a;76(5):1597–600.
Article
CAS
PubMed
Google Scholar
Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215.
Article
CAS
PubMed
Google Scholar
Smyth LCD, Rustenhoven J, Scotter EL, Schweder P, Faull RLM, Park TIH, et al. Markers for human brain pericytes and smooth muscle cells. J Chem Neuroanat. 2018;92:48–60.
Article
CAS
PubMed
Google Scholar
Alarcon-Martinez L, Yilmaz-Ozcan S, Yemisci M, Schallek J, Kilic K, Can A, et al. Capillary pericytes express alpha-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. Elife. 2018;7:e34861.
Article
PubMed
PubMed Central
Google Scholar
Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68(3):409–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci. 2011;14(11):1398–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006;443(7112):700–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, et al. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun. 2013;4:2932.
Article
PubMed
CAS
Google Scholar
Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells. 2015;33(6):1962–74.
Article
CAS
PubMed
Google Scholar
Elfont RM, Sundaresan PR, Sladek CD. Adrenergic receptors on cerebral microvessels: pericyte contribution. Am J Physiol. 1989;256(1 Pt 2):R224–30.
CAS
PubMed
Google Scholar
Healy DP, Wilk S. Localization of immunoreactive glutamyl aminopeptidase in rat brain. II. Distribution and correlation with angiotensin II. Brain Res. 1993;606(2):295–303.
Article
CAS
PubMed
Google Scholar
Benagiano V, Virgintino D, Maiorano E, Rizzi A, Palombo S, Roncali L, et al. VIP-like immunoreactivity within neurons and perivascular neuronal processes of the human cerebral cortex. Eur J Histochem. 1996;40(1):53–6.
CAS
PubMed
Google Scholar
Dehouck MP, Vigne P, Torpier G, Breittmayer JP, Cecchelli R, Frelin C. Endothelin-1 as a mediator of endothelial cell-pericyte interactions in bovine brain capillaries. J Cereb Blood Flow Metab. 1997;17(4):464–9.
Article
CAS
PubMed
Google Scholar
van Zwieten EJ, Ravid R, Swaab DF, Van de Woude T. Immunocytochemically stained vasopressin binding sites on blood vessels in the rat brain. Brain Res. 1988;474(2):369–73.
Article
PubMed
Google Scholar
Ramsauer M, Krause D, Dermietzel R. Angiogenesis of the blood–brain barrier in vitro and the function of cerebral pericytes. FASEB J. 2002;16(10):1274–6.
Article
CAS
PubMed
Google Scholar
Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277(5323):242–5.
Article
CAS
PubMed
Google Scholar
Baloyannis SJ, Baloyannis IS. The vascular factor in Alzheimer’s disease: a study in Golgi technique and electron microscopy. J Neurol Sci. 2012;322(1–2):117–21.
Article
CAS
PubMed
Google Scholar
Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol. 2001;64(6):575–611.
Article
CAS
PubMed
Google Scholar
Halliday MR, Pomara N, Sagare AP, Mack WJ, Frangione B, Zlokovic BV. Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein e4 carriers and blood–brain barrier breakdown. JAMA Neurol. 2013;70(9):1198–200.
Article
PubMed
PubMed Central
Google Scholar
Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV. Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer’s disease. Brain Pathol. 2013;23(3):303–10.
Article
PubMed
Google Scholar
Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood–brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35.
Article
PubMed
Google Scholar
Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood–brain barrier. Neuroscientist. 2009;15(2):180–93.
Article
CAS
PubMed
Google Scholar
Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF. Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol. 2011;287:1–41.
Article
CAS
PubMed
Google Scholar
Stewart PA, Wiley MJ. Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev Biol. 1981;84(1):183–92.
Article
CAS
PubMed
Google Scholar
Janzer RC, Raff MC. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature. 1987;325(6101):253–7.
Article
CAS
PubMed
Google Scholar
Rubin LL, Barbu K, Bard F, Cannon C, Hall DE, Horner H, et al. Differentiation of brain endothelial cells in cell culture. Ann N Y Acad Sci. 1991;633:420–5.
Article
CAS
PubMed
Google Scholar
Neuhaus J, Risau W, Wolburg H. Induction of blood–brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture. Ann N Y Acad Sci. 1991;633:578–80.
Article
CAS
PubMed
Google Scholar
Clarke LE, Barres BA. Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci. 2013;14(5):311–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol. 2002;38(6):323–37.
Article
CAS
Google Scholar
Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141(7):1539–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol. 1999;147(4):891–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000;100(3):323–31.
Article
CAS
PubMed
Google Scholar
Morita K, Sasaki H, Furuse M, Tsukita S. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol. 1999;147(1):185–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liebner S, Kniesel U, Kalbacher H, Wolburg H. Correlation of tight junction morphology with the expression of tight junction proteins in blood–brain barrier endothelial cells. Eur J Cell Biol. 2000;79(10):707–17.
Article
CAS
PubMed
Google Scholar
Lippoldt A, Kniesel U, Liebner S, Kalbacher H, Kirsch T, Wolburg H, et al. Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneously hypertensive rat blood–brain barrier endothelial cells. Brain Res. 2000;885(2):251–61.
Article
CAS
PubMed
Google Scholar
Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, et al. Localization of claudin-3 in tight junctions of the blood–brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol. 2003;105(6):586–92.
Article
CAS
PubMed
Google Scholar
Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, et al. Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol. 2003;161(3):653–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto Y, Shirakura K, Okada Y, Takeda H, Endo K, Tamura M, et al. Claudin-5-binders enhance permeation of solutes across the blood–brain barrier in a mammalian model. J Pharmacol Exp Ther. 2017;363(2):275–83.
Article
CAS
PubMed
Google Scholar
Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, et al. Tight junction proteins at the blood–brain barrier: far more than claudin-5. Cell Mol Life Sci. 2019;76(10):1987–2002.
Article
CAS
PubMed
Google Scholar
Greene C, Hanley N, Campbell M. Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS. 2019;16(1):3.
Article
PubMed
PubMed Central
Google Scholar
Jia W, Lu R, Martin TA, Jiang WG. The role of claudin-5 in blood–brain barrier (BBB) and brain metastases (review). Mol Med Rep. 2014;9(3):779–85.
Article
CAS
PubMed
Google Scholar
Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber GA, et al. Rho-mediated regulation of tight junctions during monocyte migration across the blood–brain barrier in HIV-1 encephalitis (HIVE). Blood. 2006;107(12):4770–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bronstein JM, Popper P, Micevych PE, Farber DB. Isolation and characterization of a novel oligodendrocyte-specific protein. Neurology. 1996;47(3):772–8.
Article
CAS
PubMed
Google Scholar
Uchida Y, Sumiya T, Tachikawa M, Yamakawa T, Murata S, Yagi Y, et al. Involvement of claudin-11 in disruption of blood–brain, -spinal cord, and -arachnoid barriers in multiple sclerosis. Mol Neurobiol. 2019;56(3):2039–56.
Article
CAS
PubMed
Google Scholar
Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123(6 Pt 2):1777–88.
Article
CAS
PubMed
Google Scholar
Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M, et al. Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol. 1996;133(1):43–7.
Article
CAS
PubMed
Google Scholar
Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci. 1997;110(Pt 14):1603–13.
CAS
PubMed
Google Scholar
Papadopoulos MC, Saadoun S, Woodrow CJ, Davies DC, Costa-Martins P, Moss RF, et al. Occludin expression in microvessels of neoplastic and non-neoplastic human brain. Neuropathol Appl Neurobiol. 2001;27(5):384–95.
Article
CAS
PubMed
Google Scholar
Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol. 2003;4(3):225–36.
Article
CAS
PubMed
Google Scholar
Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, et al. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol. 1999;147(1):195–204.
Article
PubMed
PubMed Central
Google Scholar
Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol. 1998;142(1):117–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aurrand-Lions M, Johnson-Leger C, Wong C, Du Pasquier L, Imhof BA. Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood. 2001;98(13):3699–707.
Article
CAS
PubMed
Google Scholar
Bazzoni G, Martinez-Estrada OM, Mueller F, Nelboeck P, Schmid G, Bartfai T, et al. Homophilic interaction of junctional adhesion molecule. J Biol Chem. 2000;275(40):30970–6.
Article
CAS
PubMed
Google Scholar
Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol. 1999;147(6):1351–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitic LL, Van Itallie CM, Anderson JM. Molecular physiology and pathophysiology of tight junctions I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol Gastrointest Liver Physiol. 2000;279(2):G250–4.
Article
CAS
PubMed
Google Scholar
Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem. 2000;275(36):27979–88.
CAS
PubMed
Google Scholar
Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol. 1998;141(1):199–208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer H-C, Traweger A, Bauer H. Proteins of the tight junction in the blood–brain barrier. In: Blood–spinal cord and brain barriers in health and disease. Amsterdam: Elsevier; 2004. p. 1–10.
Google Scholar
Balda MS, Gonzalez-Mariscal L, Contreras RG, Macias-Silva M, Torres-Marquez ME, Garcia-Sainz JA, et al. Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol. 1991;122(3):193–202.
Article
CAS
PubMed
Google Scholar
Rennels ML, Gregory TF, Fujimoto K. Innervation of capillaries by local neurons in the cat hypothalamus: a light microscopic study with horseradish peroxidase. J Cereb Blood Flow Metab. 1983;3(4):535–42.
Article
CAS
PubMed
Google Scholar
Ott MJ, Olson JL, Ballermann BJ. Chronic in vitro flow promotes ultrastructural differentiation of endothelial cells. Endothelium. 1995;3(1):21–30.
Article
Google Scholar
Akimoto S, Mitsumata M, Sasaguri T, Yoshida Y. Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1). Circ Res. 2000;86(2):185–90.
Article
CAS
PubMed
Google Scholar
Ngai AC, Winn HR. Modulation of cerebral arteriolar diameter by intraluminal flow and pressure. Circ Res. 1995;77(4):832–40.
Article
CAS
PubMed
Google Scholar
Desai SY, Marroni M, Cucullo L, Krizanac-Bengez L, Mayberg MR, Hossain MT, et al. Mechanisms of endothelial survival under shear stress. Endothelium. 2002;9(2):89–102.
Article
CAS
PubMed
Google Scholar
Krizanac-Bengez L, Kapural M, Parkinson F, Cucullo L, Hossain M, Mayberg MR, et al. Effects of transient loss of shear stress on blood–brain barrier endothelium: role of nitric oxide and IL-6. Brain Res. 2003;977(2):239–46.
Article
CAS
PubMed
Google Scholar
Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D. The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci. 2011;12:40.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeStefano JG, Xu ZS, Williams AJ, Yimam N, Searson PC. Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs). Fluids Barriers CNS. 2017;14(1):20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rochfort KD, Cummins PM. Thrombomodulin regulation in human brain microvascular endothelial cells in vitro: role of cytokines and shear stress. Microvasc Res. 2015;97:1–5.
Article
CAS
PubMed
Google Scholar
Bhalerao A, Sivandzade F, Archie SR, Chowdhury EA, Noorani B, Cucullo L. In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS. 2020;17(1):22.
Article
PubMed
PubMed Central
Google Scholar
Sivandzade F, Cucullo L. In-vitro blood–brain barrier modeling: A review of modern and fast-advancing technologies. J Cereb Blood Flow Metab. 2018;38(10):1667–81.
Article
PubMed
PubMed Central
Google Scholar
Bradbury MW, Stubbs J, Hughes IE, Parker P. The distribution of potassium, sodium, chloride and urea between lumbar cerebrospinal fluid and blood serum in human subjects. Clin Sci. 1963;25:97–105.
CAS
PubMed
Google Scholar
Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985;65(1):101–48.
Article
CAS
PubMed
Google Scholar
Jeong SM, Hahm KD, Shin JW, Leem JG, Lee C, Han SM. Changes in magnesium concentration in the serum and cerebrospinal fluid of neuropathic rats. Acta Anaesthesiol Scand. 2006;50(2):211–6.
Article
CAS
PubMed
Google Scholar
Nischwitz V, Berthele A, Michalke B. Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: an approach to investigate the permeability of the human blood–cerebrospinal fluid-barrier. Anal Chim Acta. 2008;627(2):258–69.
Article
CAS
PubMed
Google Scholar
Gendelman HE, Ding S, Gong N, Liu J, Ramirez SH, Persidsky Y, et al. Monocyte chemotactic protein-1 regulates voltage-gated K+ channels and macrophage transmigration. J Neuroimmune Pharmacol. 2009;4(1):47–59.
Article
PubMed
Google Scholar
Wilhelm I, Farkas AE, Nagyoszi P, Varo G, Balint Z, Vegh GA, et al. Regulation of cerebral endothelial cell morphology by extracellular calcium. Phys Med Biol. 2007;52(20):6261–74.
Article
CAS
PubMed
Google Scholar
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood–brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):21–78.
Article
CAS
PubMed
Google Scholar
Hladky SB, Barrand MA. Fluid and ion transfer across the blood–brain and blood–cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS. 2016;13(1):19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bernacki J, Dobrowolska A, Nierwinska K, Malecki A. Physiology and pharmacological role of the blood–brain barrier. Pharmacol Rep. 2008;60(5):600–22.
CAS
PubMed
Google Scholar
Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood–brain barrier. Fluids Barriers CNS. 2018;15(1):30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nadal A, Fuentes E, Pastor J, McNaughton PA. Plasma albumin is a potent trigger of calcium signals and DNA synthesis in astrocytes. Proc Natl Acad Sci USA. 1995;92(5):1426–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gingrich MB, Traynelis SF. Serine proteases and brain damage—is there a link? Trends Neurosci. 2000;23(9):399–407.
Article
CAS
PubMed
Google Scholar
Lewey L. Force-feeding-a clinical or administrative decision? Can Med Assoc J. 1977;116(4):416–9.
CAS
PubMed
PubMed Central
Google Scholar
Lim DA, Huang YC, Alvarez-Buylla A. The adult neural stem cell niche: lessons for future neural cell replacement strategies. Neurosurg Clin N Am. 2007;18(1):81–92, ix.
Liu X, Tu M, Kelly RS, Chen C, Smith BJ. Development of a computational approach to predict blood–brain barrier permeability. Drug Metab Dispos. 2004;32(1):132–9.
Article
CAS
PubMed
Google Scholar
Clark DE. In silico prediction of blood–brain barrier permeation. Drug Discov Today. 2003;8(20):927–33.
Article
CAS
PubMed
Google Scholar
Fischer H, Gottschlich R, Seelig A. Blood–brain barrier permeation: molecular parameters governing passive diffusion. J Membr Biol. 1998;165(3):201–11.
Article
CAS
PubMed
Google Scholar
Trauble H. The movement of molecules across lipid membranes: a molecular theory. J Membr Biol. 1971;4(1):193–208.
Article
CAS
PubMed
Google Scholar
Marrink SJ, Jahnig F, Berendsen HJ. Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys J. 1996;71(2):632–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pardridge WM, Mietus LJ. Transport of steroid hormones through the rat blood–brain barrier. Primary role of albumin-bound hormone. J Clin Invest. 1979;64(1):145–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diamond JM, Wright EM. Molecular forces governing non-electrolyte permeation through cell membranes. Proc R Soc Lond B Biol Sci. 1969;171(1028):273–316.
CAS
PubMed
Google Scholar
Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem. 2008;51(4):817–34.
Article
CAS
PubMed
Google Scholar
Eilers M, Roy U, Mondal D. MRP (ABCC) transporters-mediated efflux of anti-HIV drugs, saquinavir and zidovudine, from human endothelial cells. Exp Biol Med (Maywood). 2008;233(9):1149–60.
Article
CAS
Google Scholar
Forster F, Volz A, Fricker G. Compound profiling for ABCC2 (MRP2) using a fluorescent microplate assay system. Eur J Pharm Biopharm. 2008;69(1):396–403.
Article
PubMed
CAS
Google Scholar
Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55–68.
Article
CAS
PubMed
Google Scholar
Miller DS. Regulation of ABC transporters blood–brain barrier: the good, the bad, and the ugly. Adv Cancer Res. 2015;125:43–70.
Article
CAS
PubMed
Google Scholar
Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, et al. P-glycoprotein deficiency at the blood–brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest. 2005;115(11):3285–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts LM, Black DS, Raman C, Woodford K, Zhou M, Haggerty JE, et al. Subcellular localization of transporters along the rat blood–brain barrier and blood–cerebral–spinal fluid barrier by in vivo biotinylation. Neuroscience. 2008;155(2):423–38.
Article
CAS
PubMed
Google Scholar
Shimizu F, Sano Y, Maeda T, Abe MA, Nakayama H, Takahashi R, et al. Peripheral nerve pericytes originating from the blood–nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells. J Cell Physiol. 2008;217(2):388–99.
Article
CAS
PubMed
Google Scholar
Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov. 2015;14(8):543–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res. 2007;24(9):1745–58.
Article
CAS
PubMed
Google Scholar
Abbott NJ. Astrocyte-endothelial interactions and blood–brain barrier permeability. J Anat. 2002;200(6):629–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Begley DJ, Brightman MW. Structural and functional aspects of the blood–brain barrier. Prog Drug Res. 2003;61:39–78.
CAS
PubMed
Google Scholar
Zlokovic BV, Begley DJ, Chain-Eliash DG. Blood–brain barrier permeability to leucine-enkephalin, d-alanine2-d-leucine5-enkephalin and their N-terminal amino acid (tyrosine). Brain Res. 1985;336(1):125–32.
Article
CAS
PubMed
Google Scholar
Zlokovic BV. Cerebrovascular permeability to peptides: manipulations of transport systems at the blood–brain barrier. Pharm Res. 1995;12(10):1395–406.
Article
CAS
PubMed
Google Scholar
Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.
Article
CAS
PubMed
Google Scholar
Sauer I, Dunay IR, Weisgraber K, Bienert M, Dathe M. An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells. Biochemistry. 2005;44(6):2021–9.
Article
CAS
PubMed
Google Scholar
Claudio L, Kress Y, Norton WT, Brosnan CF. Increased vesicular transport and decreased mitochondrial content in blood–brain barrier endothelial cells during experimental autoimmune encephalomyelitis. Am J Pathol. 1989;135(6):1157–68.
CAS
PubMed
PubMed Central
Google Scholar
Stewart PA. Endothelial vesicles in the blood–brain barrier: are they related to permeability? Cell Mol Neurobiol. 2000;20(2):149–63.
Article
CAS
PubMed
Google Scholar
Duffy KR, Pardridge WM. Blood–brain barrier transcytosis of insulin in developing rabbits. Brain Res. 1987;420(1):32–8.
Article
CAS
PubMed
Google Scholar
Skarlatos S, Yoshikawa T, Pardridge WM. Transport of [125I]transferrin through the rat blood–brain barrier. Brain Res. 1995;683(2):164–71.
Article
CAS
PubMed
Google Scholar
Zhang Y, Pardridge WM. Mediated efflux of IgG molecules from brain to blood across the blood–brain barrier. J Neuroimmunol. 2001b;114(1–2):168–72.
Article
CAS
PubMed
Google Scholar
Triguero D, Buciak J, Pardridge WM. Capillary depletion method for quantification of blood–brain barrier transport of circulating peptides and plasma proteins. J Neurochem. 1990;54(6):1882–8.
Article
CAS
PubMed
Google Scholar
Che C, Yang G, Thiot C, Lacoste MC, Currie JC, Demeule M, et al. New angiopep-modified doxorubicin (ANG1007) and etoposide (ANG1009) chemotherapeutics with increased brain penetration. J Med Chem. 2010;53(7):2814–24.
Article
CAS
PubMed
Google Scholar
Zhou QH, Boado RJ, Lu JZ, Hui EK, Pardridge WM. Monoclonal antibody-glial-derived neurotrophic factor fusion protein penetrates the blood–brain barrier in the mouse. Drug Metab Dispos. 2010;38(4):566–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pardridge WM. Molecular Trojan horses for blood–brain barrier drug delivery. Discov Med. 2006;6(34):139–43.
PubMed
Google Scholar
Pardridge WM. Blood–brain barrier drug targeting: the future of brain drug development. Mol Interv. 2003;3(2):90–105, 51.
Pardridge WM. Blood–brain barrier delivery. Drug Discov Today. 2007;12(1–2):54–61.
Article
CAS
PubMed
Google Scholar
Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014;509(7501):503–6.
Article
CAS
PubMed
Google Scholar
Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, et al. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature. 2014;509(7501):507–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Z, Zlokovic BV. Blood–brain barrier: a dual life of MFSD2A? Neuron. 2014;82(4):728–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glezer I, Simard AR, Rivest S. Neuroprotective role of the innate immune system by microglia. Neuroscience. 2007;147(4):867–83.
Article
CAS
PubMed
Google Scholar
Engelhardt B, Wolburg H. Mini-review: Transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol. 2004;34(11):2955–63.
Article
CAS
PubMed
Google Scholar
Davoust N, Vuaillat C, Androdias G, Nataf S. From bone marrow to microglia: barriers and avenues. Trends Immunol. 2008;29(5):227–34.
Article
CAS
PubMed
Google Scholar
Anthony DC, Bolton SJ, Fearn S, Perry VH. Age-related effects of interleukin-1 beta on polymorphonuclear neutrophil-dependent increases in blood–brain barrier permeability in rats. Brain. 1997;120(Pt 3):435–44.
Article
PubMed
Google Scholar
Carman CV, Martinelli R. T lymphocyte-endothelial interactions: emerging understanding of trafficking and antigen-specific immunity. Front Immunol. 2015;6:603.
Article
PubMed
PubMed Central
CAS
Google Scholar
Larochelle C, Cayrol R, Kebir H, Alvarez JI, Lecuyer MA, Ifergan I, et al. Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain. 2012;135(Pt 10):2906–24.
Article
PubMed
Google Scholar
Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol. 2008;9(2):137–45.
Article
CAS
PubMed
Google Scholar
Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol. 2018;135(3):311–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winger RC, Harp CT, Chiang MY, Sullivan DP, Watson RL, Weber EW, et al. Cutting edge: CD99 is a novel therapeutic target for control of T cell-mediated central nervous system autoimmune disease. J Immunol. 2016;196(4):1443–8.
Article
CAS
PubMed
Google Scholar
Correale J, Villa A. The blood–brain-barrier in multiple sclerosis: functional roles and therapeutic targeting. Autoimmunity. 2007;40(2):148–60.
Article
CAS
PubMed
Google Scholar
Kaur C, Ling EA. Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res. 2008;5(1):71–81.
Article
CAS
PubMed
Google Scholar
Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood–brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant. 2007;16(3):285–99.
Article
PubMed
Google Scholar
Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain. 2006;129(Pt 1):18–35.
Article
PubMed
Google Scholar
Bronger H, Konig J, Kopplow K, Steiner HH, Ahmadi R, Herold-Mende C, et al. ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood–tumor barrier. Cancer Res. 2005;65(24):11419–28.
Article
CAS
PubMed
Google Scholar
Grieshaber MC, Flammer J. Does the blood–brain barrier play a role in glaucoma? Surv Ophthalmol. 2007;52(Suppl 2):S115–21.
Article
PubMed
Google Scholar
Begley DJ, Pontikis CC, Scarpa M. Lysosomal storage diseases and the blood–brain barrier. Curr Pharm Des. 2008;14(16):1566–80.
Article
CAS
PubMed
Google Scholar
Moya ML, Triplett M, Simon M, Alvarado J, Booth R, Osburn J, et al. A reconfigurable in vitro model for studying the blood–brain barrier. Ann Biomed Eng. 2020;48(2):780–93.
Article
PubMed
Google Scholar
Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006;1(3):223–36.
Article
PubMed
Google Scholar
Chen Y, McCarron RM, Azzam N, Bembry J, Reutzler C, Lenz FA, et al. Endothelin-1 and nitric oxide affect human cerebromicrovascular endothelial responses and signal transduction. Acta Neurochir Suppl. 2000;76:131–5.
CAS
PubMed
Google Scholar
Kustova Y, Grinberg A, Basile AS. Increased blood–brain barrier permeability in LP-BM5 infected mice is mediated by neuroexcitatory mechanisms. Brain Res. 1999;839(1):153–63.
Article
CAS
PubMed
Google Scholar
Annunziata P, Cioni C, Toneatto S, Paccagnini E. HIV-1 gp120 increases the permeability of rat brain endothelium cultures by a mechanism involving substance P. AIDS. 1998;12(18):2377–85.
Article
CAS
PubMed
Google Scholar
St’astny F, Skultetyova I, Pliss L, Jezova D. Quinolinic acid enhances permeability of rat brain microvessels to plasma albumin. Brain Res Bull. 2000;53(4):415–20.
Article
CAS
PubMed
Google Scholar
Feuerstein GZ, Liu T, Barone FC. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev. 1994;6(4):341–60.
CAS
PubMed
Google Scholar
Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, et al. Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clin Exp Immunol. 1997;110(3):492–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Smith C, Shapiro A, Monette R, Hutchison J, Stanimirovic D. Increased expression of bioactive chemokines in human cerebromicrovascular endothelial cells and astrocytes subjected to simulated ischemia in vitro. J Neuroimmunol. 1999;101(2):148–60.
Article
CAS
PubMed
Google Scholar
Zhang W, Smith C, Howlett C, Stanimirovic D. Inflammatory activation of human brain endothelial cells by hypoxic astrocytes in vitro is mediated by IL-1beta. J Cereb Blood Flow Metab. 2000;20(6):967–78.
Article
CAS
PubMed
Google Scholar
Bolton SJ, Anthony DC, Perry VH. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood–brain barrier breakdown in vivo. Neuroscience. 1998;86(4):1245–57.
Article
CAS
PubMed
Google Scholar
Mark KS, Davis TP. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am J Physiol Heart Circ Physiol. 2002;282(4):H1485–94.
Article
CAS
PubMed
Google Scholar
Groothuis DR, Vriesendorp FJ, Kupfer B, Warnke PC, Lapin GD, Kuruvilla A, et al. Quantitative measurements of capillary transport in human brain tumors by computed tomography. Ann Neurol. 1991;30(4):581–8.
Article
CAS
PubMed
Google Scholar
Long DM. Capillary ultrastructure and the blood–brain barrier in human malignant brain tumors. J Neurosurg. 1970;32(2):127–44.
Article
CAS
PubMed
Google Scholar
de Vries HE, Blom-Roosemalen MC, van Oosten M, de Boer AG, van Berkel TJ, Breimer DD, et al. The influence of cytokines on the integrity of the blood–brain barrier in vitro. J Neuroimmunol. 1996;64(1):37–43.
Article
PubMed
Google Scholar
Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry. 2002;72(2):262–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taniguchi M, Yamashita T, Kumura E, Tamatani M, Kobayashi A, Yokawa T, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res. 2000;78(1–2):131–7.
Article
CAS
PubMed
Google Scholar
Vizuete ML, Venero JL, Vargas C, Ilundain AA, Echevarria M, Machado A, et al. Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain edema. Neurobiol Dis. 1999;6(4):245–58.
Article
CAS
PubMed
Google Scholar
Norden AD, Wen PY, Kesari S. Brain metastases. Curr Opin Neurol. 2005;18(6):654–61.
PubMed
Google Scholar
Steeg PS, Camphausen KA, Smith QR. Brain metastases as preventive and therapeutic targets. Nat Rev Cancer. 2011;11(5):352–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41.
Article
CAS
PubMed
Google Scholar
Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, et al. Heterogeneous blood–tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res. 2010;16(23):5664–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osswald M, Blaes J, Liao Y, Solecki G, Gommel M, Berghoff AS, et al. Impact of blood–brain barrier integrity on tumor growth and therapy response in brain metastases. Clin Cancer Res. 2016;22(24):6078–87.
Article
CAS
PubMed
Google Scholar
Papadopoulos MC, Davies DC, Moss RF, Tighe D, Bennett ED. Pathophysiology of septic encephalopathy: a review. Crit Care Med. 2000;28(8):3019–24.
Article
CAS
PubMed
Google Scholar
Clawson CC, Hartmann JF, Vernier RL. Electron microscopy of the effect of gram-negative endotoxin on the blood–brain barrier. J Comp Neurol. 1966;127(2):183–98.
Article
CAS
PubMed
Google Scholar
Jeppsson B, Freund HR, Gimmon Z, James JH, von Meyenfeldt MF, Fischer JE. Blood–brain barrier derangement in sepsis: cause of septic encephalopathy? Am J Surg. 1981;141(1):136–42.
Article
CAS
PubMed
Google Scholar
Deng X, Wang X, Andersson R. Endothelial barrier resistance in multiple organs after septic and nonseptic challenges in the rat. J Appl Physiol. 1995;78(6):2052–61.
Article
CAS
PubMed
Google Scholar
Tighe D, Moss R, Bennett D. Cell surface adrenergic receptor stimulation modifies the endothelial response to SIRS. Systemic inflammatory response syndrome. New Horiz. 1996;4(4):426–42.
CAS
PubMed
Google Scholar
Sharer LR. Pathology of HIV-1 infection of the central nervous system: a review. J Neuropathol Exp Neurol. 1992;51(1):3–11.
Article
CAS
PubMed
Google Scholar
Johnson RT, McArthur JC, Narayan O. The neurobiology of human immunodeficiency virus infections. FASEB J. 1988;2(14):2970–81.
Article
CAS
PubMed
Google Scholar
Petito CK, Cash KS. Blood–brain barrier abnormalities in acquired immunodeficiency syndrome: immunohistochemical localization of serum proteins in postmortem brain. Ann Neurol. 1992;32(5):658–66.
Article
CAS
PubMed
Google Scholar
Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, et al. Blood–brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol. 1999;155(6):1915–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toneatto S, Finco O, van der Putten H, Abrignani S, Annunziata P. Evidence of blood–brain barrier alteration and activation in HIV-1 gp120 transgenic mice. AIDS. 1999;13(17):2343–8.
Article
CAS
PubMed
Google Scholar
Cioni C, Annunziata P. Circulating gp120 alters the blood–brain barrier permeability in HIV-1 gp120 transgenic mice. Neurosci Lett. 2002;330(3):299–301.
Article
CAS
PubMed
Google Scholar
Huang MB, Hunter M, Bond VC. Effect of extracellular human immunodeficiency virus type 1 glycoprotein 120 on primary human vascular endothelial cell cultures. AIDS Res Hum Retrovir. 1999;15(14):1265–77.
Article
CAS
PubMed
Google Scholar
Louboutin JP, Strayer DS. Blood–brain barrier abnormalities caused by HIV-1 gp120: mechanistic and therapeutic implications. Sci World J. 2012;2012:482575.
Article
CAS
Google Scholar
Giulian D, Haverkamp LJ, Li J, Karshin WL, Yu J, Tom D, et al. Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain. Neurochem Int. 1995;27(1):119–37.
Article
CAS
PubMed
Google Scholar
Klegeris A, McGeer PL. beta-amyloid protein enhances macrophage production of oxygen free radicals and glutamate. J Neurosci Res. 1997;49(2):229–35.
Article
CAS
PubMed
Google Scholar
Akama KT, Albanese C, Pestell RG, Van Eldik LJ. Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism. Proc Natl Acad Sci USA. 1998;95(10):5795–800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sivandzade F, Prasad S, Bhalerao A, Cucullo L. NRF2 and NF-B interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol. 2019;21:101059.
Article
CAS
PubMed
Google Scholar
Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K, et al. Central role for PICALM in amyloid-beta blood–brain barrier transcytosis and clearance. Nat Neurosci. 2015;18(7):978–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.
Article
CAS
PubMed
Google Scholar
Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485(7399):512–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wekerle H, Hohlfeld R. Molecular mimicry in multiple sclerosis. N Engl J Med. 2003;349(2):185–6.
Article
PubMed
Google Scholar
Chao CC, Hu S, Sheng WS, Peterson PK. Tumor necrosis factor-alpha production by human fetal microglial cells: regulation by other cytokines. Dev Neurosci. 1995;17(2):97–105.
Article
CAS
PubMed
Google Scholar
Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol. 1993;151(4):2132–41.
CAS
PubMed
Google Scholar
Bonda DJ, Wang X, Perry G, Nunomura A, Tabaton M, Zhu X, et al. Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology. 2010;59(4–5):290–4.
Article
CAS
PubMed
Google Scholar
Ortiz GG, Macias-Islas MA, Pacheco-Moises FP, Cruz-Ramos JA, Sustersik S, Barba EA, et al. Oxidative stress is increased in serum from Mexican patients with relapsing-remitting multiple sclerosis. Dis Markers. 2009;26(1):35–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD. Markers for blood–brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front Neurosci. 2015;9:385.
PubMed
PubMed Central
Google Scholar
Noorani B, Chowdhury EA, Alqahtani F, Ahn Y, Patel D, Al-Ahmad A, et al. LC–MS/MS-based in vitro and in vivo investigation of blood–brain barrier integrity by simultaneous quantitation of mannitol and sucrose. Fluids Barriers CNS. 2020;17(1):61.
Article
PubMed
PubMed Central
Google Scholar
Rossner W, Tempel K. Quantitative determination of the permeability of the so-called blood–brain barrier of Evans blue (T 1824). Med Pharmacol Exp Int J Exp Med. 1966;14(2):169–82.
CAS
PubMed
Google Scholar
Wolman M, Klatzo I, Chui E, Wilmes F, Nishimoto K, Fujiwara K, et al. Evaluation of the dye-protein tracers in pathophysiology of the blood–brain barrier. Acta Neuropathol. 1981;54(1):55–61.
Article
CAS
PubMed
Google Scholar
Kaya M, Ahishali B. Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol. 2011;763:369–82.
Article
CAS
PubMed
Google Scholar
Clasen RA, Pandolfi S, Hass GM. Vital staining, serum albumin and the blood–brain barrier. J Neuropathol Exp Neurol. 1970;29(2):266–84.
Article
CAS
PubMed
Google Scholar
Reese TS, Karnovsky MJ. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol. 1967;34(1):207–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol. 1969;40(3):648–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyners H, de Reyners EG, Jadin JM, Maisin JR. An ultrastructural quantitative method for the evaluation of the permeability to horseradish peroxidase of cerebral cortex endothelial cells of the rat. Cell Tissue Res. 1975;157(1):93–9.
Article
CAS
PubMed
Google Scholar
Broadwell RD, Charlton HM, Balin BJ, Salcman M. Angioarchitecture of the CNS, pituitary gland, and intracerebral grafts revealed with peroxidase cytochemistry. J Comp Neurol. 1987;260(1):47–62.
Article
CAS
PubMed
Google Scholar
Majno G, Palade GE, Schoefl GI. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961;11:607–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cotran RS, Karnovsky MJ. Ultrastructural studies on the permeability of the mesothelium to horseradish peroxidase. J Cell Biol. 1968;37(1):123–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cotran RS, Karnovsky MJ, Goth A. Resistance of Wistar-Furth rats to the mast cell-damaging effect of horseradish peroxidase. J Histochem Cytochem. 1968;16(5):382–3.
Article
CAS
PubMed
Google Scholar
Hoffman HJ, Olszewski J. Spread of sodium fluorescein in normal brain tissue. A study of the mechanism of the blood–brain barrier. Neurology. 1961;11:1081–5.
Article
CAS
PubMed
Google Scholar
Malmgren LT, Olsson Y. Differences between the peripheral and the central nervous system in permeability to sodium fluorescein. J Comp Neurol. 1980;191(1):103–7.
Article
CAS
PubMed
Google Scholar
Salem H, Loux JJ, Smith S, Nichols CW. Evaluation of the toxicologic and teratogenic potentials of sodium fluorescein in the rat. Toxicology. 1979;12(2):143–50.
Article
CAS
PubMed
Google Scholar
Reed DJ, Woodbury DM. Kinetics of movement of iodide, sucrose, inulin and radio-iodinated serum albumin in the central nervous system and cerebrospinal fluid of the rat. J Physiol. 1963;169:816–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davson H, Segal MB. Effect of cerebrospinal fluid on volume of distribution of extracellular markers. Brain. 1969;92(1):131–6.
Article
CAS
PubMed
Google Scholar
Oldendorf WH, Davson H. Brain extracellular space and the sink action of cerebrospinal fluid. Measurement of rabbit brain extracellular space using sucrose labeled with carbon 14. Arch Neurol. 1967;17(2):196–205.
Article
CAS
PubMed
Google Scholar
Ziylan YZ, Robinson PJ, Rapoport SI. Blood–brain barrier permeability to sucrose and dextran after osmotic opening. Am J Physiol. 1984;247(4 Pt 2):R634–8.
CAS
PubMed
Google Scholar
Preston E, Webster J. Differential passage of [14C]sucrose and [3H]inulin across rat blood–brain barrier after cerebral ischemia. Acta Neuropathol. 2002;103(3):237–42.
Article
CAS
PubMed
Google Scholar
Miah MK, Chowdhury EA, Bickel U, Mehvar R. Evaluation of [(14)C] and [(13)C]sucrose as blood–brain barrier permeability markers. J Pharm Sci. 2017;106(6):1659–69.
Article
CAS
PubMed
Google Scholar
Preston E, Foster DO, Mills PA. Effects of radiochemical impurities on measurements of transfer constants for [14C]sucrose permeation of normal and injured blood–brain barrier of rats. Brain Res Bull. 1998;45(1):111–6.
Article
CAS
PubMed
Google Scholar
Alqahtani F, Chowdhury EA, Bhattacharya R, Noorani B, Mehvar R, Bickel U. Brain uptake of [13C] and [14C]sucrose quantified by microdialysis and whole tissue analysis in mice. Drug Metab Dispos. 2018;46(11):1514–8.
Article
CAS
PubMed
Google Scholar
Miah MK, Bickel U, Mehvar R. Development and validation of a sensitive UPLC-MS/MS method for the quantitation of [(13)C]sucrose in rat plasma, blood, and brain: Its application to the measurement of blood–brain barrier permeability. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1015–1016:105–10.
Article
CAS
Google Scholar
Chowdhury EA, Alqahtani F, Bhattacharya R, Mehvar R, Bickel U. Simultaneous UPLC-MS/MS analysis of two stable isotope labeled versions of sucrose in mouse plasma and brain samples as markers of blood–brain barrier permeability and brain vascular space. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1073:19–26.
Article
CAS
Google Scholar
Evans CA, Reynolds JM, Reynolds ML, Saunders NR, Segal MB. The development of a blood–brain barrier mechanism in foetal sheep. J Physiol. 1974;238(2):371–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poduslo JF, Curran GL, Berg CT. Macromolecular permeability across the blood–nerve and blood–brain barriers. Proc Natl Acad Sci USA. 1994;91(12):5705–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ek CJ, Dziegielewska KM, Stolp H, Saunders NR. Functional effectiveness of the blood–brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica). J Comp Neurol. 2006;496(1):13–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liddelow SA, Dziegielewska KM, Ek CJ, Johansson PA, Potter AM, Saunders NR. Cellular transfer of macromolecules across the developing choroid plexus of Monodelphis domestica. Eur J Neurosci. 2009;29(2):253–66.
Article
PubMed
Google Scholar
Neuwelt EA, Abbott NJ, Drewes L, Smith QR, Couraud PO, Chiocca EA, et al. Cerebrovascular biology and the various neural barriers: challenges and future directions. Neurosurgery. 1999;44(3):604–8 (Discussion 8–9).
Article
CAS
PubMed
Google Scholar
Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood–brain barrier damage. Clin Chim Acta. 2004;342(1–2):1–12.
Article
CAS
PubMed
Google Scholar
Kapural M, Krizanac-Bengez L, Barnett G, Perl J, Masaryk T, Apollo D, et al. Serum S-100beta as a possible marker of blood–brain barrier disruption. Brain Res. 2002;940(1–2):102–4.
Article
CAS
PubMed
Google Scholar
Mossakowski MJ, Lossinsky AS, Pluta R, Wisniewski HM. Abnormalities of the blood–brain barrier in global cerebral ischemia in rats due to experimental cardiac arrest. Acta Neurochir Suppl (Wien). 1994;60:274–6.
CAS
Google Scholar
Pluta R, Lossinsky AS, Wisniewski HM, Mossakowski MJ. Early blood–brain barrier changes in the rat following transient complete cerebral ischemia induced by cardiac arrest. Brain Res. 1994;633(1–2):41–52.
Article
CAS
PubMed
Google Scholar
Reiber H. Cerebrospinal fluid—physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases. Mult Scler J. 1998;4(3):99–107.
CAS
Google Scholar
Marchi N, Fazio V, Cucullo L, Kight K, Masaryk T, Barnett G, et al. Serum transthyretin monomer as a possible marker of blood-to-CSF barrier disruption. J Neurosci. 2003;23(5):1949–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dyck RH, Van Eldik LJ, Cynader MS. Immunohistochemical localization of the S-100 beta protein in postnatal cat visual cortex: spatial and temporal patterns of expression in cortical and subcortical glia. Brain Res Dev Brain Res. 1993;72(2):181–92.
Article
CAS
PubMed
Google Scholar
Mercier F, Hatton GI. Immunocytochemical basis for a meningeo-glial network. J Comp Neurol. 2000;420(4):445–65.
Article
CAS
PubMed
Google Scholar
Jonsson H, Johnsson P, Alling C, Backstrom M, Bergh C, Blomquist S. S100beta after coronary artery surgery: release pattern, source of contamination, and relation to neuropsychological outcome. Ann Thorac Surg. 1999;68(6):2202–8.
Article
CAS
PubMed
Google Scholar
Brochez L, Naeyaert JM. Serological markers for melanoma. Br J Dermatol. 2000;143(2):256–68.
Article
CAS
PubMed
Google Scholar
Marchi N, Rasmussen P, Kapural M, Fazio V, Kight K, Mayberg MR, et al. Peripheral markers of brain damage and blood–brain barrier dysfunction. Restor Neurol Neurosci. 2003;21(3–4):109–21.
CAS
PubMed
PubMed Central
Google Scholar