Stebbins MJ, Gastfriend BD, Canfield SG, Lee MS, Richards D, Faubion MG, Li WJ, Daneman R, Palecek SP, Shusta EV. Human pluripotent stem cell-derived brain pericyte-like cells induce blood–brain barrier properties. Sci Adv. 2019;5(3):eaau7375.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neal EH, Marinelli NA, Shi Y, McClatchey PM, Balotin KM, Gullett DR, Hagerla KA, Bowman AB, Ess KC, Wikswo JP, et al. A simplified, fully defined differentiation scheme for producing blood–brain barrier endothelial cells from human iPSCs. Stem Cell Rep. 2019;12(6):1380–8.
Article
CAS
Google Scholar
Canfield SG, Stebbins MJ, Faubion MG, Gastfriend BD, Palecek SP, Shusta EV. An isogenic neurovascular unit model comprised of human induced pluripotent stem cell-derived brain microvascular endothelial cells, pericytes, astrocytes, and neurons. Fluids Barriers CNS. 2019;16(1):25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Katt ME, Mayo LN, Ellis SE, Mahairaki V, Rothstein JD, Cheng L, Searson PC. The role of mutations associated with familial neurodegenerative disorders on blood–brain barrier function in an iPSC model. Fluids Barriers CNS. 2019;16(1):20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cakir B, Xiang Y, Tanaka Y, Kural MH, Parent M, Kang YJ, Chapeton K, Patterson B, Yuan Y, He CS, et al. Engineering of human brain organoids with a functional vascular-like system. Nat Methods. 2019;16(11):1169–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Motallebnejad P, Thomas A, Swisher SL, Azarin SM. An isogenic hiPSC-derived BBB-on-a-chip. Biomicrofluidics. 2019;13(6):064119.
Article
PubMed
CAS
PubMed Central
Google Scholar
Park TE, Mustafaoglu N, Herland A, Hasselkus R, Mannix R, FitzGerald EA, Prantil-Baun R, Watters A, Henry O, Benz M, et al. Hypoxia-enhanced blood–brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun. 2019;10(1):2621.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vatine GD, Barrile R, Workman MJ, Sances S, Barriga BK, Rahnama M, Barthakur S, Kasendra M, Lucchesi C, Kerns J, et al. Human iPSC-derived blood–brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell. 2019;24(6):995–1005.e1006.
Article
CAS
PubMed
Google Scholar
Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC. Super-resolution microscopy demystified. Nat Cell Biol. 2019;21(1):72–84.
Article
CAS
PubMed
Google Scholar
Neglia L, Fumagalli S, Orsini F, Zanetti A, Perego C, De Simoni MG. Mannose-binding lectin has a direct deleterious effect on ischemic brain microvascular endothelial cells. J Cerebral Blood Flow Metab. 2019;7:271678x19874509.
Google Scholar
Johnson AM, Roach JP, Hu A, Stamatovic SM, Zochowski MR, Keep RF, Andjelkovic AV. Connexin 43 gap junctions contribute to brain endothelial barrier hyperpermeability in familial cerebral cavernous malformations type III by modulating tight junction structure. FASEB J. 2018;32(5):2615–29.
Article
PubMed
PubMed Central
Google Scholar
Fan J, Sun Y, Xia Y, Tarbell JM, Fu BM. Endothelial surface glycocalyx (ESG) components and ultra-structure revealed by stochastic optical reconstruction microscopy (STORM). Biorheology. 2019;56(2–3):77–88.
Article
CAS
PubMed
Google Scholar
Takado Y, Cheng T, Bastiaansen JAM, Yoshihara HAI, Lanz B, Mishkovsky M, Lengacher S, Comment A. Hyperpolarized (13)C magnetic resonance spectroscopy reveals the rate-limiting role of the blood–brain barrier in the cerebral uptake and metabolism of l-lactate in vivo. ACS Chem Neurosci. 2018;9(11):2554–62.
Article
CAS
PubMed
Google Scholar
Dieguez-Hurtado R, Kato K, Giaimo BD, Nieminen-Kelha M, Arf H, Ferrante F, Bartkuhn M, Zimmermann T, Bixel MG, Eilken HM, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10(1):2817.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alterman JF, Godinho B, Hassler MR, Ferguson CM, Echeverria D, Sapp E, Haraszti RA, Coles AH, Conroy F, Miller R, et al. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat Biotechnol. 2019;37(8):884–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang FHF, Staquicini FI, Teixeira AAR, Michaloski JS, Namiyama GM, Taniwaki NN, Setubal JC, da Silva AM, Sidman RL, Pasqualini R, et al. A ligand motif enables differential vascular targeting of endothelial junctions between brain and retina. Proc Natl Acad Sci USA. 2019;116(6):2300–5.
Article
PubMed
CAS
PubMed Central
Google Scholar
Elshafeey N, Kotrotsou A, Hassan A, Elshafei N, Hassan I, Ahmed S, Abrol S, Agarwal A, El Salek K, Bergamaschi S, et al. Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma. Nat Commun. 2019;10(1):3170.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sakai K, Yamada K. Machine learning studies on major brain diseases: 5-year trends of 2014-2018. Jpn J Radiol. 2019;37(1):34–72.
Article
PubMed
Google Scholar
Dhar R, Chen Y, An H, Lee JM. Application of machine learning to automated analysis of cerebral edema in large cohorts of ischemic stroke patients. Front Neurol. 2018;9:687.
Article
PubMed
PubMed Central
Google Scholar
Dhar R, Falcone GJ, Chen Y, Hamzehloo A, Kirsch EP, Noche RB, Roth K, Acosta J, Ruiz A, Phuah CL, et al. Deep learning for automated measurement of hemorrhage and perihematomal edema in supratentorial intracerebral hemorrhage. Stroke. 2020;51:648–651.
Article
PubMed
Google Scholar
Miao R, Xia LY, Chen HH, Huang HH, Liang Y. Improved classification of blood–brain-barrier drugs using deep learning. Sci Rep. 2019;9(1):8802.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saxena D, Sharma A, Siddiqui MH, Kumar R. Blood brain barrier permeability prediction using machine learning techniques: an update. Curr Pharm Biotechnol. 2019;20(14):1163–71.
Article
CAS
PubMed
Google Scholar
Tan C, Lu NN, Wang CK, Chen DY, Sun NH, Lyu H, Korbelin J, Shi WX, Fukunaga K, Lu YM, et al. Endothelium-derived semaphorin 3g regulates hippocampal synaptic structure and plasticity via neuropilin-2/PlexinA4. Neuron. 2019;101(5):920–937.e913.
Article
CAS
PubMed
Google Scholar
Wu KW, Lv LL, Lei Y, Qian C, Sun FY. Endothelial cells promote excitatory synaptogenesis and improve ischemia-induced motor deficits in neonatal mice. Neurobiol Dis. 2019;121:230–9.
Article
CAS
PubMed
Google Scholar
Niu J, Tsai HH, Hoi KK, Huang N, Yu G, Kim K, Baranzini SE, Xiao L, Chan JR, Fancy SPJ. Aberrant oligodendroglial-vascular interactions disrupt the blood–brain barrier, triggering CNS inflammation. Nat Neurosci. 2019;22(5):709–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benz F, Wichitnaowarat V, Lehmann M, Germano RF, Mihova D, Macas J, Adams RH, Taketo MM, Plate KH, Guerit S, et al. Low wnt/beta-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. eLife. 2019;8(04):01.
Google Scholar
Wang Y, Sabbagh MF, Gu X, Rattner A, Williams J, Nathans J. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. eLife. 2019;8(04):01.
Google Scholar
Spampinato SF, Bortolotto V, Canonico PL, Sortino MA, Grilli M. Astrocyte-derived paracrine signals: relevance for neurogenic niche regulation and blood–brain barrier integrity. Front Pharmacol. 2019;10:1346.
Article
PubMed
PubMed Central
Google Scholar
Bonsack B, Borlongan MC, Lo EH, Arai K. Brief overview: protective roles of astrocyte-derived pentraxin-3 in blood–brain barrier integrity. Brain Circulation. 2019;5(3):145–9.
Article
PubMed
PubMed Central
Google Scholar
Tan S, Shan Y, Lin Y, Liao S, Zhang B, Zeng Q, Wang Y, Deng Z, Chen C, Hu X, et al. Neutralization of interleukin-9 ameliorates experimental stroke by repairing the blood–brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. FASEB J. 2019;33(3):4376–87.
Article
CAS
PubMed
Google Scholar
Michetti F, D’Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC. The S100B story: from biomarker to active factor in neural injury. J Neurochem. 2019;148(2):168–87.
Article
CAS
PubMed
Google Scholar
Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA. Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci. 2019;13:282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nikolakopoulou AM, Montagne A, Kisler K, Dai Z, Wang Y, Huuskonen MT, Sagare AP, Lazic D, Sweeney MD, Kong P, et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat Neurosci. 2019;22(7):1089–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coucha M, Barrett AC, Elgebaly M, Ergul A, Abdelsaid M. Inhibition of Ephrin-B2 in brain pericytes decreases cerebral pathological neovascularization in diabetic rats. PLoS ONE. 2019;14(1):e0210523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malinverno M, Maderna C, Abu Taha A, Corada M, Orsenigo F, Valentino M, Pisati F, Fusco C, Graziano P, Giannotta M, et al. Endothelial cell clonal expansion in the development of cerebral cavernous malformations. Nat Commun. 2019;10(1):2761.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma F, Zhang X, Yin KJ. MicroRNAs in central nervous system diseases: a prospective role in regulating blood–brain barrier integrity. Exp Neurol. 2019;323:113094.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF, Andjelkovic AV. Involvement of epigenetic mechanisms and non-coding rnas in blood–brain barrier and neurovascular unit injury and recovery after stroke. Front Neurosci. 2019;13:864.
Article
PubMed
PubMed Central
Google Scholar
Ruan W, Li J, Xu Y, Wang Y, Zhao F, Yang X, Jiang H, Zhang L, Saavedra JM, Shi L, et al. MALAT1 Up-regulator polydatin protects brain microvascular integrity and ameliorates stroke through C/EBPbeta/MALAT1/CREB/PGC-1alpha/PPARgamma pathway. Cell Mol Neurobiol. 2019;39(2):265–86.
Article
CAS
PubMed
Google Scholar
Zhang J, Dong B, Hao J, Yi S, Cai W, Luo Z. LncRNA Snhg3 contributes to dysfunction of cerebral microvascular cells in intracerebral hemorrhage rats by activating the TWEAK/Fn14/STAT3 pathway. Life Sci. 2019;237:116929.
Article
PubMed
CAS
Google Scholar
Alishahi M, Ghaedrahmati F, Kolagar TA, Winlow W, Nikkar N, Farzaneh M, Khoshnam SE. Long non-coding RNAs and cell death following ischemic stroke. Metab Brain Dis. 2019;34(5):1243–51.
Article
CAS
PubMed
Google Scholar
Xia X, Wang Y, Huang Y, Zhang H, Lu H, Zheng JC. Exosomal miRNAs in central nervous system diseases: biomarkers, pathological mediators, protective factors and therapeutic agents. Prog Neurobiol. 2019;183:101694.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yuan X, Wu Q, Wang P, Jing Y, Yao H, Tang Y, Li Z, Zhang H, Xiu R. Exosomes derived from pericytes improve microcirculation and protect blood-spinal cord barrier after spinal cord injury in mice. Front Neurosci. 2019;13:319.
Article
PubMed
PubMed Central
Google Scholar
Kuroda H, Tachikawa M, Yagi Y, Umetsu M, Nurdin A, Miyauchi E, Watanabe M, Uchida Y, Terasaki T. Cluster of differentiation 46 Is the major receptor in human blood–brain barrier endothelial cells for uptake of exosomes derived from brain-metastatic melanoma cells (SK-Mel-28). Mol Pharm. 2019;16(1):292–304.
Article
CAS
PubMed
Google Scholar
You D, Wen X, Gorczyca L, Morris A, Richardson JR, Aleksunes LM. Increased MDR1 transporter expression in human brain endothelial cells through enhanced histone acetylation and activation of aryl hydrocarbon receptor signaling. Mol Neurobiol. 2019;56(10):6986–7002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Q, Yu Z, Zhang F, Huang L, Xing C, Liu N, Xu Y, Wang X. HDAC3 inhibition prevents oxygen glucose deprivation/reoxygenation-induced transendothelial permeability by elevating PPARgamma activity in vitro. J Neurochem. 2019;149(2):298–310.
Article
CAS
PubMed
Google Scholar
Liberale L, Gaul DS, Akhmedov A, Bonetti NR, Nageswaran V, Costantino S, Pahla J, Weber J, Fehr V, Vdovenko D, et al. Endothelial SIRT6 blunts stroke size and neurological deficit by preserving blood–brain barrier integrity: a translational study. Eur Heart J. 2019;11:11.
Google Scholar
Stamatovic SM, Martinez-Revollar G, Hu A, Choi J, Keep RF, Andjelkovic AV. Decline in sirtuin-1 expression and activity plays a critical role in blood–brain barrier permeability in aging. Neurobiol Dis. 2019;126:105–16.
Article
CAS
PubMed
Google Scholar
Senatorov VV Jr, Friedman AR, Milikovsky DZ, Ofer J, Saar-Ashkenazy R, Charbash A, Jahan N, Chin G, Mihaly E, Lin JM, et al. blood–brain barrier dysfunction in aging induces hyperactivation of TGFbeta signaling and chronic yet reversible neural dysfunction. Sci Translational Med. 2019;11(521):04.
Article
CAS
Google Scholar
Yousef H, Czupalla CJ, Lee D, Chen MB, Burke AN, Zera KA, Zandstra J, Berber E, Lehallier B, Mathur V, et al. Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nat Med. 2019;25(6):988–1000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto M, Guo D-H, Hernandez CM, Stranahan AM. Endothelial Adora2a activation promotes blood–brain barrier breakdown and cognitive impairment in mice with diet-induced insulin resistance. J Neurosci. 2019;39(21):4179–92.
Article
PubMed
PubMed Central
Google Scholar
Alam C, Aufreiter S, Georgiou CJ, Hoque MT, Finnell RH, O’Connor DL, Goldman ID, Bendayan R. Upregulation of reduced folate carrier by vitamin D enhances brain folate uptake in mice lacking folate receptor alpha. Proc Natl Acad Sci USA. 2019;116(35):17531–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang SH, Liu DX, Wang L, Li YH, Wang YH, Zhang H, Su ZK, Fang WG, Qin XX, Shang DS, et al. A CASPR1-ATP1B3 protein interaction modulates plasma membrane localization of Na + K +-ATPase in brain microvascular endothelial cells. J Biol Chem. 2019;294(16):6375–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoshi Y, Uchida Y, Kuroda T, Tachikawa M, Couraud PO, Suzuki T, Terasaki T. Distinct roles of ezrin, radixin and moesin in maintaining the plasma membrane localizations and functions of human blood–brain barrier transporters. J Cereb Blood Flow Metab. 2019;14:19868880.
Google Scholar
Banks WA. The blood–brain barrier as an endocrine tissue. Nat Rev Endocrinol. 2019;15(8):444–55.
Article
CAS
PubMed
Google Scholar
Reed MJ, Damodarasamy M, Banks WA. The extracellular matrix of the blood–brain barrier: structural and functional roles in health, aging, and Alzheimer’s disease. Tissue Barriers. 2019;7(4):1651157.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hempel C, Sporring J, Kurtzhals JAL. Experimental cerebral malaria is associated with profound loss of both glycan and protein components of the endothelial glycocalyx. FASEB J. 2019;33(2):2058–71.
Article
CAS
PubMed
Google Scholar
Delsing L, Kallur T, Zetterberg H, Hicks R, Synnergren J. Enhanced xeno-free differentiation of hiPSC-derived astroglia applied in a blood–brain barrier model. Fluids Barriers CNS. 2019;16(1):27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yao Y. Basement membrane and stroke. J Cereb Blood Flow Metab. 2019;39(1):3–19.
Article
CAS
PubMed
Google Scholar
Greene C, Hanley N, Campbell M. Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS. 2019;16(1):3.
Article
PubMed
PubMed Central
Google Scholar
Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, Rausch V, Blasig R, Richter M, Sporbert A, et al. Tight junction proteins at the blood–brain barrier: far more than claudin-5. Cell Mol Life Sci. 2019;76(10):1987–2002.
Article
CAS
PubMed
Google Scholar
Uchida Y, Sumiya T, Tachikawa M, Yamakawa T, Murata S, Yagi Y, Sato K, Stephan A, Ito K, Ohtsuki S, et al. Involvement of claudin-11 in disruption of blood–brain, -spinal cord, and -arachnoid barriers in multiple sclerosis. Mol Neurobiol. 2019;56(3):2039–56.
Article
CAS
PubMed
Google Scholar
Dias MC, Coisne C, Baden P, Enzmann G, Garrett L, Becker L, Hölter SM, de Angelis MH, Deutsch U, Engelhardt B, German Mouse Clinic Consortium. Claudin is not required for blood–brain barrier tight junction function. Fluids Barriers CNS. 2019;16(1):30.
Article
CAS
Google Scholar
Castro Dias M, Coisne C, Lazarevic I, Baden P, Hata M, Iwamoto N, Francisco DMF, Vanlandewijck M, He L, Baier FA, et al. Claudin-3-deficient C57BL/6 J mice display intact brain barriers. Sci Rep. 2019;9(1):203.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sladojevic N, Stamatovic SM, Johnson AM, Choi J, Hu A, Dithmer S, Blasig IE, Keep RF, Andjelkovic AV. Claudin-1-dependent destabilization of the blood–brain barrier in chronic stroke. J Neurosci. 2019;39(4):743–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greene C, Kealy J, Humphries MM, Gong Y, Hou J, Hudson N, Cassidy LM, Martiniano R, Shashi V, Hooper SR, et al. Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol Psychiatry. 2018;23(11):2156–66.
Article
CAS
PubMed
Google Scholar
Guo Y, Singh LN, Zhu Y, Gur RE, Resnick A, Anderson SA, Alvarez JI. Association of a functional Claudin-5 variant with schizophrenia in female patients with the 22q112 deletion syndrome. Schizophrenia Res. 2019;23:23.
Google Scholar
Mottahedin A, Joakim Ek C, Truve K, Hagberg H, Mallard C. Choroid plexus transcriptome and ultrastructure analysis reveals a TLR2-specific chemotaxis signature and cytoskeleton remodeling in leukocyte trafficking. Brain Behav Immun. 2019;79:216–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin C, Ackermann S, Ma Z, Mohanta SK, Zhang C, Li Y, Nietzsche S, Westermann M, Peng L, Hu D, et al. ApoE attenuates unresolvable inflammation by complex formation with activated C1q. Nat Med. 2019;25(3):496–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kierdorf K, Masuda T, Jordao MJC, Prinz M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat Rev Neurosci. 2019;20(9):547–62.
Article
CAS
PubMed
Google Scholar
Gu C, Hao X, Li J, Hua Y, Keep RF, Xi G. Effects of minocycline on epiplexus macrophage activation, choroid plexus injury and hydrocephalus development in spontaneous hypertensive rats. J Cereb Blood Flow Metab. 2019;39(10):1936–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan Y, Hua Y, Garton HJL, Novakovic N, Keep RF, Xi G. Activation of epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. CNS Neurosci Ther. 2019;25(10):1134–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castaneyra-Ruiz L, Hernandez-Abad LG, Carmona-Calero EM, Castaneyra-Perdomo A, Gonzalez-Marrero I. AQP1 overexpression in the CSF of obstructive hydrocephalus and inversion of its polarity in the choroid plexus of a chiari malformation type II case. J Neuropathol Exp Neurol. 2019;78(7):641–7.
Article
PubMed
Google Scholar
Simpson S, Preston D, Schwerk C, Schroten H, Blazer-Yost B. Cytokine and inflammatory mediator effects on TRPV4 function in choroid plexus epithelial cells. Am J Physiol Cell Physiol. 2019;317(5):C881–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ. Genetic and pharmacological inactivation of apical Na+-K+-2Cl- cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol. 2019;316(4):C525–44.
Article
PubMed
Google Scholar
Delpire E, Gagnon KB. Elusive role of the Na-K-2Cl cotransporter in the choroid plexus. Am J Physiol Cell Physiol. 2019;316(4):C522–4.
Article
PubMed
Google Scholar
Bothwell SW, Janigro D, Patabendige A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS. 2019;16(1):9.
Article
PubMed
PubMed Central
Google Scholar
Uchida Y, Goto R, Takeuchi H, Luczak M, Usui T, Tachikawa M, Terasaki T. Abundant expression of OCT2, MATE1, OAT1, OAT3, PEPT2, BCRP, MDR1 and xCT transporters in blood-arachnoid barrier of pig, and polarized localizations at CSF- and blood-facing plasma membranes. Drug Metab Dispos. 2019;26:26.
Google Scholar
Mastorakos P, McGavern D. The anatomy and immunology of vasculature in the central nervous system. Sci Immunol. 2019;4(37):eaav0492. https://doi.org/10.1126/scimmunol.aav0492.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rustenhoven J, Kipnis J. Bypassing the blood–brain barrier. Science. 2019;366(6472):1448–9.
Article
CAS
PubMed
Google Scholar
Iliff J, Simon M. CrossTalk proposal: the glymphatic system supports convective exchange of cerebrospinal fluid and brain interstitial fluid that is mediated by perivascular aquaporin-4. J Physiol. 2019;597(17):4417–9.
Article
CAS
PubMed
Google Scholar
Smith AJ, Verkman AS. Crosstalk opposing view: going against the flow: interstitial solute transport in brain is diffusive and aquaporin-4 independent. J Physiol. 2019;597(17):4421–4.
Article
CAS
PubMed
Google Scholar
Bakker E, Naessens DMP, VanBavel E. Paravascular spaces: entry to or exit from the brain? Exp Physiol. 2019;104(7):1013–7.
Article
PubMed
PubMed Central
Google Scholar
Baledent O, Czosnyka Z, Czosnyka M. “Bucket” cerebrospinal fluid bulk flow-is it a fact or a fiction? Acta Neurochir. 2019;161(2):257–8.
Article
PubMed
Google Scholar
Eide PK, Sorteberg A, Sorteberg W, Lindstrom EK, Mardal KA, Ringstad G. “Bucket” cerebrospinal fluid bulk flow: when the terrain disagrees with the map. Acta Neurochir. 2019;161(2):259–61.
Article
PubMed
Google Scholar
Croci M, Vinje V, Rognes ME. Uncertainty quantification of parenchymal tracer distribution using random diffusion and convective velocity fields. Fluids Barriers CNS. 2019;16(1):32.
Article
PubMed
PubMed Central
Google Scholar
Davoodi-Bojd E, Ding G, Zhang L, Li Q, Li L, Chopp M, Zhang Z, Jiang Q. Modeling glymphatic system of the brain using MRI. Neuroimage. 2019;188:616–27.
Article
PubMed
Google Scholar
Demiral SB, Tomasi D, Sarlls J, Lee H, Wiers CE, Zehra A, Srivastava T, Ke K, Shokri-Kojori E, Freeman CR, et al. Apparent diffusion coefficient changes in human brain during sleep—does it inform on the existence of a glymphatic system? Neuroimage. 2019;185:263–73.
Article
PubMed
Google Scholar
Eide PK, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J Cereb Blood Flow Metab. 2019;39(7):1355–68.
Article
PubMed
Google Scholar
Hasan-Olive MM, Enger R, Hansson HA, Nagelhus EA, Eide PK. Loss of perivascular aquaporin-4 in idiopathic normal pressure hydrocephalus. GLIA. 2019;67(1):91–100.
Article
PubMed
Google Scholar
Magdoom KN, Brown A, Rey J, Mareci TH, King MA, Sarntinoranont M. MRI of whole rat brain perivascular network reveals role for ventricles in brain waste clearance. Sci Rep. 2019;9(1):11480.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mortensen KN, Sanggaard S, Mestre H, Lee H, Kostrikov S, Xavier ALR, Gjedde A, Benveniste H, Nedergaard M. Impaired glymphatic transport in spontaneously hypertensive rats. J Neurosci. 2019;39(32):6365–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Veluw SJ, Hou SS, Calvo-Rodriguez M, Arbel-Ornath M, Snyder AC, Frosch MP, Greenberg SM, Bacskai BJ. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron. 2019;09:09.
Article
Google Scholar
Munk AS, Wang W, Bechet NB, Eltanahy AM, Cheng AX, Sigurdsson B, Benraiss A, Mae MA, Kress BT, Kelley DH, et al. PDGF-B is required for development of the glymphatic system. Cell Rep. 2019;26(11):2955–2969.e2953.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahn JH, Cho H, Kim JH, Kim SH, Ham JS, Park I, Suh SH, Hong SP, Song JH, Hong YK, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 2019;572(7767):62–6.
Article
CAS
PubMed
Google Scholar
Norwood JN, Zhang Q, Card D, Craine A, Ryan TM, Drew PJ. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. Life. 2019;8(05):07.
Google Scholar
Hsu M, Rayasam A, Kijak JA, Choi YH, Harding JS, Marcus SA, Karpus WJ, Sandor M, Fabry Z. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat Commun. 2019;10(1):229.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma Q, Ries M, Decker Y, Muller A, Riner C, Bucker A, Fassbender K, Detmar M, Proulx ST. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol. 2019;137(1):151–65.
Article
PubMed
Google Scholar
Trillo-Contreras JL, Toledo-Aral JJ, Echevarria M, Villadiego J. AQP1 and AQP4 contribution to cerebrospinal fluid homeostasis. Cells. 2019;8(2):24.
Article
CAS
Google Scholar
Hladky SB, Barrand MA. Metabolite clearance during wakefulness and sleep. Handbook Exp Pharmacol. 2019;253:385–423.
Article
Google Scholar
Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, Mahan TE, Finn MB, Manis M, Geerling JC, Fuller PM, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science. 2019;363(6429):880–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hablitz LM, Vinitsky HS, Sun Q, Staeger FF, Sigurdsson B, Mortensen KN, Lilius TO, Nedergaard M. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv. 2019;5(2):eaav5447.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cuddapah VA, Zhang SL, Sehgal A. Regulation of the blood–brain barrier by circadian rhythms and sleep. Trends Neurosci. 2019;42(7):500–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hudson N, Celkova L, Hopkins A, Greene C, Storti F, Ozaki E, Fahey E, Theodoropoulou S, Kenna PF, Humphries MM, et al. Dysregulated claudin-5 cycling in the inner retina causes retinal pigment epithelial cell atrophy. JCI Insight. 2019;4(15):130273. https://doi.org/10.1172/jci.insight.130273.
Article
PubMed
Google Scholar
Myung J, Schmal C, Hong S, Tsukizawa Y, Rose P, Zhang Y, Holtzman MJ, De Schutter E, Herzel H, Bordyugov G, et al. The choroid plexus is an important circadian clock component. Nat Commun. 2018;9(1):1062.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Ombergen A, Jillings S, Jeurissen B, Tomilovskaya E, Rumshiskaya A, Litvinova L, Nosikova I, Pechenkova E, Rukavishnikov I, Manko O, et al. Brain ventricular volume changes induced by long-duration spaceflight. Proc Natl Acad Sci USA. 2019;116(21):10531–6.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kaiser K, Gyllborg D, Prochazka J, Salasova A, Kompanikova P, Molina FL, Laguna-Goya R, Radaszkiewicz T, Harnos J, Prochazkova M, et al. WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. Nat Commun. 2019;10(1):1498.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lepko T, Pusch M, Muller T, Schulte D, Ehses J, Kiebler M, Hasler J, Huttner HB, Vandenbroucke RE, Vandendriessche C, et al. Choroid plexus-derived miR-204 regulates the number of quiescent neural stem cells in the adult brain. EMBO J. 2019;38(17):e100481.
Article
PubMed
CAS
PubMed Central
Google Scholar
Planques A, Oliveira Moreira V, Dubreuil C, Prochiantz A, Di Nardo AA. OTX2 signals from the choroid plexus to regulate adult neurogenesis. Eneuro. 2019. https://doi.org/10.1523/ENEURO.0262-18.2019.
Article
PubMed
PubMed Central
Google Scholar
Esposito E, Ahn BJ, Shi J, Nakamura Y, Park JH, Mandeville ET, Yu Z, Chan SJ, Desai R, Hayakawa A, et al. Brain-to-cervical lymph node signaling after stroke. Nat Commun. 2019;10(1):5306.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE, Alvarez-Cermeno JC, Andreasson U, Axelsson M, Backstrom DC, et al. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: a systematic review and meta-analysis. JAMA Neurol. 2019;17:17.
Google Scholar
Mohn N, Luo Y, Skripuletz T, Schwenkenbecher P, Zerr I, Lange P, Stangel M. Tau-protein concentrations are not elevated in cerebrospinal fluid of patients with progressive multifocal leukoencephalopathy. Fluids Barriers CNS. 2019;16(1):28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sandelius A, Portelius E, Kallen A, Zetterberg H, Rot U, Olsson B, Toledo JB, Shaw LM, Lee VMY, Irwin DJ, et al. Elevated CSF GAP-43 is Alzheimer’s disease specific and associated with tau and amyloid pathology. Alzheimer’s Dementia. 2019;15(1):55–64.
Article
PubMed
Google Scholar
Simren J, Ashton NJ, Blennow K, Zetterberg H. An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol. 2019;61:29–39.
Article
PubMed
CAS
Google Scholar
Ewers M, Franzmeier N, Suarez-Calvet M, Morenas-Rodriguez E, Caballero MAA, Kleinberger G, Piccio L, Cruchaga C, Deming Y, Dichgans M, et al. Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer’s disease. Sci Translational Med. 2019;11(507):28.
Article
CAS
Google Scholar
Blennow K, Chen C, Cicognola C, Wildsmith KR, Manser PT, Bohorquez SMS, Zhang Z, Xie B, Peng J, Hansson O, et al. Cerebrospinal fluid tau fragment correlates with tau PET: a candidate biomarker for tangle pathology. Brain J Neurol. 2019;13:13.
Google Scholar
Kuiperij HB, Hondius DC, Kersten I, Versleijen AA, Rozemuller AJ, Greenberg SM, Schreuder FH, Klijn CJ, Verbeek MM. Apolipoprotein D: a potential biomarker for cerebral amyloid angiopathy. Neuropathol Appl Neurobiol. 2019;23:23.
Google Scholar
Jeppsson A, Wikkelso C, Blennow K, Zetterberg H, Constantinescu R, Remes AM, Herukka SK, Rauramaa T, Nagga K, Leinonen V, et al. CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics. J Neurol Neurosurg Psychiatry. 2019;90(10):1117–23.
Article
PubMed
Google Scholar
Batllori M, Casado M, Sierra C, Salgado MDC, Marti-Sanchez L, Maynou J, Fernandez G, Garcia-Cazorla A, Ormazabal A, Molero-Luis M, et al. Effect of blood contamination of cerebrospinal fluid on amino acids, biogenic amines, pterins and vitamins. Fluids Barriers CNS. 2019;16(1):34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miller AM, Shah RH, Pentsova EI, Pourmaleki M, Briggs S, Distefano N, Zheng Y, Skakodub A, Mehta SA, Campos C, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565(7741):654–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Simonneau C, Kilker R, Oakley L, Byrne MD, Nichtova Z, Stefanescu I, Pardeep-Kumar F, Tripathi S, Londin E, et al. Murine MPDZ-linked hydrocephalus is caused by hyperpermeability of the choroid plexus. EMBO Mol Med. 2019;11(1):01.
Article
CAS
Google Scholar
Diets IJ, Prescott T, Champaigne NL, Mancini GMS, Krossnes B, Fric R, Kocsis K, Jongmans MCJ, Kleefstra T. A recurrent de novo missense pathogenic variant in SMARCB1 causes severe intellectual disability and choroid plexus hyperplasia with resultant hydrocephalus. Genet Med. 2019;21(3):572–9.
Article
CAS
PubMed
Google Scholar
Jin SC, Furey CG, Zeng X, Allocco A, Nelson-Williams C, Dong W, Karimy JK, Wang K, Ma S, Delpire E, et al. SLC12A ion transporter mutations in sporadic and familial human congenital hydrocephalus. Mol Genet Genomic Med. 2019;7(9):e892.
Article
PubMed
PubMed Central
Google Scholar
Valdez Sandoval P, Hernandez Rosales P, Quinones Hernandez DG, Chavana Naranjo EA, Garcia Navarro V. Intraventricular hemorrhage and posthemorrhagic hydrocephalus in preterm infants: diagnosis, classification, and treatment options. Child’s Nerv Syst. 2019;35(6):917–27.
Article
Google Scholar
Romantsik O, Agyemang AA, Sveinsdottir S, Rutardottir S, Holmqvist B, Cinthio M, Morgelin M, Gumus G, Karlsson H, Hansson SR, et al. The heme and radical scavenger alpha 1-microglobulin (A1M) confers early protection of the immature brain following preterm intraventricular hemorrhage. J Neuroinflam. 2019;16(1):122.
Article
CAS
Google Scholar
Ding Y, Zhang T, Wu G, McBride DW, Xu N, Klebe DW, Zhang Y, Li Q, Tang J, Zhang JH. Astrogliosis inhibition attenuates hydrocephalus by increasing cerebrospinal fluid reabsorption through the glymphatic system after germinal matrix hemorrhage. Exp Neurol. 2019;320:113003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isaacs AM, Smyser CD, Lean RE, Alexopoulos D, Han RH, Neil JJ, Zimbalist SA, Rogers CE, Yan Y, Shimony JS, et al. MR diffusion changes in the perimeter of the lateral ventricles demonstrate periventricular injury in post-hemorrhagic hydrocephalus of prematurity. NeuroImage Clin. 2019;24:102031.
Article
PubMed
PubMed Central
Google Scholar
Capone PM, Bertelson JA, Ajtai B. Neuroimaging of normal pressure hydrocephalus and hydrocephalus. Neurol Clin. 2020;38(1):171–83.
Article
PubMed
Google Scholar
Hudson M, Nowak C, Garling RJ, Harris C. Comorbidity of diabetes mellitus in idiopathic normal pressure hydrocephalus: a systematic literature review. Fluids Barriers CNS. 2019;16(1):5.
Article
PubMed
PubMed Central
Google Scholar
Nardone R, Golaszewski S, Schwenker K, Brigo F, Maccarrone M, Versace V, Sebastianelli L, Saltuari L, Holler Y. Cholinergic transmission is impaired in patients with idiopathic normal-pressure hydrocephalus: a TMS study. J Neural Transm (Vienna). 2019;126(8):1073–80.
Article
Google Scholar
Shi YH, He XW, Liu FD, Liu YS, Hu Y, Shu L, Cui GH, Zhao R, Zhao L, Su JJ, et al. Comprehensive analysis of differentially expressed profiles of long non-coding RNAs and messenger RNAs in kaolin-induced hydrocephalus. Gene. 2019;697:184–93.
Article
CAS
PubMed
Google Scholar
Yokota H, Vijayasarathi A, Cekic M, Hirata Y, Linetsky M, Ho M, Kim W, Salamon N. diagnostic performance of glymphatic system evaluation using diffusion tensor imaging in idiopathic normal pressure hydrocephalus and mimickers. Curr Gerontol Geriatr Res. 2019;2019:5675014.
Article
PubMed
PubMed Central
Google Scholar
Hasan-Olive MM, Enger R, Hansson HA, Nagelhus EA, Eide PK. Pathological mitochondria in neurons and perivascular astrocytic endfeet of idiopathic normal pressure hydrocephalus patients. Fluids Barriers CNS. 2019;16(1):39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas S, Boutaud L, Reilly ML, Benmerah A. Cilia in hereditary cerebral anomalies. Biol Cell. 2019;111(9):217–31.
Article
PubMed
Google Scholar
Morimoto Y, Yoshida S, Kinoshita A, Satoh C, Mishima H, Yamaguchi N, Matsuda K, Sakaguchi M, Tanaka T, Komohara Y, et al. Nonsense mutation in CFAP43 causes normal-pressure hydrocephalus with ciliary abnormalities. Neurology. 2019;92(20):e2364–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiani F, Orsini T, Gambadoro A, Pasquini M, Putti S, Cirilli M, Ermakova O, Tocchini-Valentini GP. Functional loss of Ccdc1 51 leads to hydrocephalus in a mouse model of primary ciliary dyskinesia. Dis Models Mech. 2019;12(8):02.
Article
CAS
Google Scholar
Hasan-Olive MM, Hansson HA, Enger R, Nagelhus EA, Eide PK. Blood–brain barrier dysfunction in idiopathic intracranial hypertension. J Neuropathol Exp Neurol. 2019;78(9):808–18.
Article
PubMed
Google Scholar
Onder H, Kisbet T. Neuroimaging findings in patients with idiopathic intracranial hypertension and cerebral venous thrombosis, and their association with clinical features. Neurol Res. 2020;42:141–7.
Article
PubMed
Google Scholar
O’Reilly MW, Westgate CS, Hornby C, Botfield H, Taylor AE, Markey K, Mitchell JL, Scotton WJ, Mollan SP, Yiangou A, et al. A unique androgen excess signature in idiopathic intracranial hypertension is linked to cerebrospinal fluid dynamics. Jci Insight. 2019;4(6):21.
Google Scholar
Lalou AD, Czosnyka M, Czosnyka ZH, Krishnakumar D, Pickard JD, Higgins NJ. Coupling of CSF and sagittal sinus pressure in adult patients with pseudotumour cerebri. Acta Neurochirurgica. 2019. https://doi.org/10.1007/s00701-019-04095-w.
Article
PubMed
PubMed Central
Google Scholar
Ma Z, Peng J, Yu D, Park JS, Lin H, Xu B, Lu C, Fan H, Waldor MK. A streptococcal Fic domain-containing protein disrupts blood–brain barrier integrity by activating moesin in endothelial cells. PLoS Pathog. 2019;15(5):e1007737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim BJ, McDonagh MA, Deng L, Gastfriend BD, Schubert-Unkmeir A, Doran KS, Shusta EV. Streptococcus agalactiae disrupts P-glycoprotein function in brain endothelial cells. Fluids Barriers CNS. 2019;16(1):26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mohanty T, Fisher J, Bakochi A, Neumann A, Cardoso JFP, Karlsson CAQ, Pavan C, Lundgaard I, Nilson B, Reinstrup P, et al. Neutrophil extracellular traps in the central nervous system hinder bacterial clearance during pneumococcal meningitis. Nat Commun. 2019;10(1):1667.
Article
PubMed
PubMed Central
CAS
Google Scholar
O’Keeffe E, Kelly E, Liu Y, Giordano C, Wallace E, Hynes M, Tiernan S, Meagher A, Greene C, Hughes S, et al. Dynamic blood–brain barrier regulation in mild traumatic brain injury. J Neurotrauma. 2019;08:08.
Google Scholar
Yoo RE, Choi SH, Oh BM, Do Shin S, Lee EJ, Shin DJ, Jo SW, Kang KM, Yun TJ, Kim JH, et al. Quantitative dynamic contrast-enhanced MR imaging shows widespread blood–brain barrier disruption in mild traumatic brain injury patients with post-concussion syndrome. Eur Radiol. 2019;29(3):1308–17.
Article
PubMed
Google Scholar
Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral microvascular injury: a potentially treatable endophenotype of traumatic brain injury-induced neurodegeneration. Neuron. 2019;103(3):367–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Investigators CC. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial. Lancet. 2019;394(10210):1713–23.
Article
Google Scholar
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood–brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):21–78.
Article
CAS
PubMed
Google Scholar
Sweeney MD, Montagne A, Sagare AP, Nation DA, Schneider LS, Chui HC, Harrington MG, Pa J, Law M, Wang DJJ, et al. Vascular dysfunction-the disregarded partner of Alzheimer’s disease. Alzheimer’s Dementia. 2019;15(1):158–67.
Article
PubMed
Google Scholar
Nation DA, Sweeney MD, Montagne A, Sagare AP, D’Orazio LM, Pachicano M, Sepehrband F, Nelson AR, Buennagel DP, Harrington MG, et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25(2):270–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milikovsky DZ, Ofer J, Senatorov VV Jr, Friedman AR, Prager O, Sheintuch L, Elazari N, Veksler R, Zelig D, Weissberg I, et al. Paroxysmal slow cortical activity in Alzheimer’s disease and epilepsy is associated with blood–brain barrier dysfunction. Sci Transl Med. 2019;11(521):8954. https://doi.org/10.1126/scitranslmed.aaw8954.
Article
Google Scholar
Debette S, Schilling S, Duperron MG, Larsson SC, Markus HS. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurology. 2019;76(1):81–94.
Article
PubMed
Google Scholar
Zille M, Ikhsan M, Jiang Y, Lampe J, Wenzel J, Schwaninger M. The impact of endothelial cell death in the brain and its role after stroke: a systematic review. Cell Stress. 2019;3(11):330–47.
Article
PubMed
PubMed Central
Google Scholar
Albekairi TH, Vaidya B, Patel R, Nozohouri S, Villalba H, Zhang Y, Lee YS, Al-Ahmad A, Abbruscato TJ. Brain delivery of a potent opioid receptor agonist, biphalin during ischemic stroke: role of organic anion transporting polypeptide (OATP). Pharmaceutics. 2019;11(9):10.
Article
Google Scholar
Medin T, Medin H, Hefte MB, Storm-Mathisen J, Bergersen LH. Upregulation of the lactate transporter monocarboxylate transporter 1 at the blood–brain barrier in a rat model of attention-deficit/hyperactivity disorder suggests hyperactivity could be a form of self-treatment. Behav Brain Res. 2019;360:279–85.
Article
CAS
PubMed
Google Scholar
Sekhar GN, Fleckney AL, Boyanova ST, Rupawala H, Lo R, Wang H, Farag DB, Rahman KM, Broadstock M, Reeves S, et al. Region-specific blood–brain barrier transporter changes leads to increased sensitivity to amisulpride in Alzheimer’s disease. Fluids Barriers CNS. 2019;16(1):38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krueger M, Mages B, Hobusch C, Michalski D. Endothelial edema precedes blood–brain barrier breakdown in early time points after experimental focal cerebral ischemia. Acta Neuropathol Commun. 2019;7(1):17.
Article
PubMed
PubMed Central
Google Scholar
Munji RN, Soung AL, Weiner GA, Sohet F, Semple BD, Trivedi A, Gimlin K, Kotoda M, Korai M, Aydin S, et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module. Nat Neurosci. 2019;22(11):1892–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo S, Deng W, Xing C, Zhou Y, Ning M, Lo EH. Effects of aging, hypertension and diabetes on the mouse brain and heart vasculomes. Neurobiol Dis. 2019;126:117–23.
Article
PubMed
Google Scholar
Vendel E, Rottschafer V, de Lange ECM. The need for mathematical modelling of spatial drug distribution within the brain. Fluids Barriers CNS. 2019;16(1):12.
Article
PubMed
PubMed Central
Google Scholar
Lochhead JJ, Davis TP. Perivascular and perineural pathways involved in brain delivery and distribution of drugs after intranasal administration. Pharmaceutics. 2019;11(11):12.
Article
Google Scholar
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol. 2019;181:101665.
Article
PubMed
CAS
Google Scholar
Belanger K, Iqbal U, Tanha J, MacKenzie R, Moreno M, Stanimirovic D. Single-domain antibodies as therapeutic and imaging agents for the treatment of cns diseases. Antibodies. 2019;8(2):05.
Article
CAS
Google Scholar
Thom G, Tian MM, Hatcher JP, Rodrigo N, Burrell M, Gurrell I, Vitalis TZ, Abraham T, Jefferies WA, Webster CI, et al. A peptide derived from melanotransferrin delivers a protein-based interleukin 1 receptor antagonist across the BBB and ameliorates neuropathic pain in a preclinical model. J Cereb Blood Flow Metab. 2019;39(10):2074–88.
Article
CAS
PubMed
Google Scholar
Wu LP, Ahmadvand D, Su J, Hall A, Tan X, Farhangrazi ZS, Moghimi SM. Crossing the blood–brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat Commun. 2019;10(1):4635.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hordeaux J, Yuan Y, Clark PM, Wang Q, Martino RA, Sims JJ, Bell P, Raymond A, Stanford WL, Wilson JM. The GPI-linked protein LY6A drives AAV-PHPB transport across the blood–brain barrier. Mol Ther. 2019;27(5):912–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baumann BH, Shu W, Song Y, Simpson EM, Lakhal-Littleton S, Dunaief JL. Ferroportin-mediated iron export from vascular endothelial cells in retina and brain. Exp Eye Res. 2019;187:107728.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janowicz PW, Leinenga G, Gotz J, Nisbet RM. Ultrasound-mediated blood–brain barrier opening enhances delivery of therapeutically relevant formats of a tau-specific antibody. Sci Rep. 2019;9(1):9255.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mainprize T, Lipsman N, Huang Y, Meng Y, Bethune A, Ironside S, Heyn C, Alkins R, Trudeau M, Sahgal A, et al. Blood–brain barrier opening in primary brain tumors with non-invasive mr-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep. 2019;9(1):321.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abrahao A, Meng Y, Llinas M, Huang Y, Hamani C, Mainprize T, Aubert I, Heyn C, Black SE, Hynynen K, et al. First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat Commun. 2019;10(1):4373.
Article
PubMed
PubMed Central
CAS
Google Scholar
Idbaih A, Canney M, Belin L, Desseaux C, Vignot A, Bouchoux G, Asquier N, Law-Ye B, Leclercq D, Bissery A, et al. Safety and feasibility of repeated and transient blood–brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma. Clin Cancer Res. 2019;25(13):3793–801.
Article
PubMed
Google Scholar
Meng Y, Abrahao A, Heyn CC, Bethune AJ, Huang Y, Pople CB, Aubert I, Hamani C, Zinman L, Hynynen K, et al. Glymphatics visualization after focused ultrasound-induced blood–brain barrier opening in humans. Ann Neurol. 2019;86(6):975–80.
Article
CAS
PubMed
Google Scholar
Dithmer S, Staat C, Muller C, Ku MC, Pohlmann A, Niendorf T, Gehne N, Fallier-Becker P, Kittel A, Walter FR, et al. Claudin peptidomimetics modulate tissue barriers for enhanced drug delivery. Ann N Y Acad Sci. 2017;1397(1):169–84.
Article
CAS
PubMed
Google Scholar
Yang S, Chen Y, Feng M, Rodriguez L, Wu JQ, Wang MZ. Improving eflornithine oral bioavailability and brain uptake by modulating intercellular junctions with an E-cadherin peptide. J Pharm Sci. 2019;108(12):3870–8.
Article
PubMed
CAS
Google Scholar
Andjelkovic AV, Xiang J, Stamatovic SM, Hua Y, Xi G, Wang MM, Keep RF. Endothelial targets in stroke: translating animal models to human. Arterioscler Thromb Vasc Biol. 2019;39(11):2240–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyden P, Pryor KE, Coffey CS, Cudkowicz M, Conwit R, Jadhav A, Sawyer RN Jr, Claassen J, Adeoye O, Song S, et al. Final results of the RHAPSODY trial: a multi-center, phase 2 trial using a continual reassessment method to determine the safety and tolerability of 3K3A-APC, A recombinant variant of human activated protein c, in combination with tissue plasminogen activator, mechanical thrombectomy or both in moderate to severe acute ischemic stroke. Ann Neurol. 2019;85(1):125–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snow B, Mulroy E, Bok A, Simpson M, Smith A, Taylor K, Lockhart M, Lam BJ, Frampton C, Schweder P, et al. A phase IIb, randomised, double-blind, placebo-controlled, dose-ranging investigation of the safety and efficacy of NTCELL R [immunoprotected (alginate–encapsulated) porcine choroid plexus cells for xenotransplantation] in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2019;61:88–93.
Article
PubMed
Google Scholar
Pergakis M, Badjatia N, Chaturvedi S, Cronin CA, Kimberly WT, Sheth KN, Simard JM. BIIB093 (IV glibenclamide): an investigational compound for the prevention and treatment of severe cerebral edema. Expert Opin Investig Drugs. 2019;28(12):1031–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davson H, Hollingsworth G, Segal MB. The mechanism of drainage of the cerebrospinal fluid. Brain J Neurol. 1970;93(4):665–78.
Article
CAS
Google Scholar
Davson H, Segal MB. The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol. 1970;209(1):131–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deane R, Segal MB. The transport of sugars across the perfused choroid plexus of the sheep. J Physiol. 1985;362:245–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Preston JE, Segal MB. The uptake of anionic and cationic amino acids by the isolated perfused sheep choroid plexus. Brain Res. 1992;581(2):351–5.
Article
CAS
PubMed
Google Scholar
Schreiber G, Aldred AR, Jaworowski A, Nilsson C, Achen MG, Segal MB. Thyroxine transport from blood to brain via transthyretin synthesis in choroid plexus. Am J Physiol Regul Integr Comp Physiol. 1990;258(2 27-2):R338–45.
Article
CAS
Google Scholar
Segal MB, Preston JE, Collis CS, Zlokovic BV. Kinetics and Na independence of amino acid uptake by blood side of perfused sheep choroid plexus. Am J Physiol. 1990;258(5 Pt 2):F1288–94.
CAS
PubMed
Google Scholar
Chen RL, Kassem NA, Redzic ZB, Chen CP, Segal MB, Preston JE. Age-related changes in choroid plexus and blood-cerebrospinal fluid barrier function in the sheep. Exp Gerontol. 2009;44(4):289–96.
Article
CAS
PubMed
Google Scholar
Evans CAN, Reynolds JM, Reynolds ML, Saunders NR, Segal MB. The development of a blood–brain barrier mechanism in foetal sheep. J Physiol. 1974;238(2):371–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davson H, Welch K, Segal MB. The physiology and pathology of the cerebrospinal fluid. New York: Churchill Livingstone; 1987.
Google Scholar
Davson H, Segal MB. Physiology of the CSF and blood–brain barriers. Boca Raton: CRC Press; 1996.
Google Scholar
Chodobski A, Ghersi-Egea JF, Preston-Kennedy J, Redzic Z, Strazielle N, Szmydynger-Chodobska J, Thorne RG. The legacy of malcolm beverley segal (1937–2019) on the science and fields concerned with choroid plexus and cerebrospinal fluid physiology. Fluids Barriers CNS. 2019;16(1):41.
Article
PubMed
PubMed Central
Google Scholar
Donahue JE, Flaherty SL, Johanson CE, Duncan Iii JA, Silverberg GD, Miller MC, Tavares R, Yang W, Wu Q, Sabo E, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol. 2006;112(4):405–15.
Article
CAS
PubMed
Google Scholar
Stopa EG, Tanis KQ, Miller MC, Nikonova EV, Podtelezhnikov AA, Finney EM, Stone DJ, Camargo LM, Parker L, Verma A, et al. Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: implications for CSF homeostasis. Fluids Barriers CNS. 2018;15(1):18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA. 1994;91(11):4766–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, Vitek MP, Hovanesian V, Stopa EG. Microvascular injury and blood–brain barrier leakage in Alzheimer’s disease. Neurobiol Aging. 2007;28(7):977–86.
Article
CAS
PubMed
Google Scholar
Johanson CE, Szmydynger-Chodobska J, Chodobski A, Baird A, McMillan P, Stopa EG. Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. Am J Physiol. 1999;277(1):R263–71.
CAS
PubMed
Google Scholar
Silverberg GD, Miller MC, Pascale CL, Caralopoulos IN, Agca Y, Agca C, Stopa EG. Kaolin-induced chronic hydrocephalus accelerates amyloid deposition and vascular disease in transgenic rats expressing high levels of human APP. Fluids Barriers CNS. 2015;12(1):2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11(1):10. https://doi.org/10.1186/2045-8118-11-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5(1):10. https://doi.org/10.1186/1743-8454-5-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silverberg GD, Messier AA, Miller MC, Machan JT, Majmudar SS, Stopa EG, Donahue JE, Johanson CE. Amyloid efflux transporter expression at the blood–brain barrier declines in normal aging. J Neuropathol Exp Neurol. 2010;69(10):1034–43.
Article
CAS
PubMed
Google Scholar
de la Monte SM, Donahue JE, Aswad BI. Edward G. Stopa, MD, July 6, 1954-September 18, 2019. J Neuropathol Exp Neurol. 2019. https://doi.org/10.1093/jnen/nlz10.
Article
PubMed
Google Scholar