Agnati LF, Cortelli P, Biagini G, Bjelke B, Fuxe K: Different classes of volume transmission signals exist in the central nervous system and are affected by metabolic signals, temperature gradients and pressure waves. Neuroreport. 1994, 6: 9-12.
Article
PubMed
CAS
Google Scholar
Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K: Understanding wiring and volume transmission. Brain Res Rev. 2010, 64: 137-159.
Article
PubMed
Google Scholar
Fuxe K, Dahlstrom AB, Jonsson G, Marcellino D, Guescini M, Dam M, Manger P, Agnati L: The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol. 2010, 90: 82-100.
Article
PubMed
CAS
Google Scholar
Veening JG, de Jong T, Barendregt HP: Oxytocin-messages via the cerebrospinal fluid: behavioral effects; a review. Physiol Behav. 2010, 101: 193-210.
Article
PubMed
CAS
Google Scholar
Frederickson RC, Geary LE: Endogenous opioid peptides: review of physiological, pharmacological and clinical aspects. Prog Neurobiol. 1982, 19: 19-69.
Article
PubMed
CAS
Google Scholar
Sapolsky RM: Why zebra's don't get ulcers. 2004, Henry Holt & Company, New York, 3
Google Scholar
Guillemin R, Ling N, Burgus R, Bloom F, Segal D: Characterization of the endorphins, novel hypothalamic and neurohypophysial peptides with opiate-like activity: evidence that they induce profound behavioral changes. Psychoneuroendocrinology. 1977, 2: 59-62.
Article
PubMed
CAS
Google Scholar
Guillemin R, Ling N, Lazarus L, Burgus R, Minick S, Bloom F, Nicoll R, Siggins G, Segal D: The endorphins, novel peptides of brain and hypophysial origin, with opiate-like activity: biochemical and biologic studies. Ann N Y Acad Sci. 1977, 297: 131-157.
Article
PubMed
CAS
Google Scholar
Bugnon C, Bloch B, Lenys D, Fellmann D: Infundibular neurons of the human hypothalamus simultaneously reactive with antisera against endorphins, ACTH, MSH and beta-LPH. Cell Tissue Res. 1979, 199: 177-196.
Article
PubMed
CAS
Google Scholar
Bloch B, Bugnon C, Fellmann D, Lenys D, Gouget A: Neurons of the rat hypothalamus reactive with antisera against endorphins, ACTH, MSH and beta-LPH. Cell Tissue Res. 1979, 204: 1-15.
Article
PubMed
CAS
Google Scholar
Nieuwenhuys R: Chemoarchitecture of the Brain. 1985, Springer, Berlin
Book
Google Scholar
Akil H, Watson SJ, Berger PA, Barchas JD: Endorphins, beta-LPH, and ACTH: biochemical, pharmacological and anatomical studies. Adv Biochem Psychopharmacol. 1978, 18: 125-139.
PubMed
CAS
Google Scholar
Akil H, Watson SJ, Young E, Lewis ME, Khachaturian H, Walker JM: Endogenous opioids: biology and function. Annu Rev Neurosci. 1984, 7: 223-255.
Article
PubMed
CAS
Google Scholar
Bloom F, Segal D, Ling N, Guillemin R: Endorphins: profound behavioral effects in rats suggest new etiological factors in mental illness. Science. 1976, 194: 630-632.
Article
PubMed
CAS
Google Scholar
Davis BA, Fitzgerald ME, Brown JL, Amstalden KA, Coolen LM: Activation of POMC neurons during general arousal but not sexual behavior in male rats. Behav Neurosci. 2007, 121: 1012-1022.
Article
PubMed
Google Scholar
Margules DL, Moisset B, Lewis MJ, Shibuya H, Pert CB: beta-Endorphin is associated with overeating in genetically obese mice (ob/ob) and rats (fa/fa). Science. 1978, 202: 988-991.
Article
PubMed
CAS
Google Scholar
King MG, Kastin AJ, Olson RD, Coy DH: Systemic administration of Met-enkephalin, (D-Ala2)-Met-enkephalin, beta-endorphin, and (D-Ala2)-beta-endorphin: effects on eating, drinking and activity measures in rats. Pharmacol Biochem Behav. 1979, 11: 407-411.
Article
PubMed
CAS
Google Scholar
Sanger DJ, McCarthy PS: Differential effects of morphine on food and water intake in food deprived and freely-feeding rats. Psychopharmacology (Berl). 1980, 72: 103-106.
Article
CAS
Google Scholar
Ieiri T, Chen HT, Meites J: Effects of morphine and naloxone on serum levels of luteinizing hormone and prolactin in prepubertal male and female rats. Neuroendocrinology. 1979, 29: 288-292.
Article
PubMed
CAS
Google Scholar
Baizman ER, Cox BM: Endorphin in rat pituitary glands: its distribution within the gland, and age related changes in gland content in male and female rats. Life Sci. 1978, 22: 519-526.
Article
PubMed
CAS
Google Scholar
Olson GA, Olson RD, Kastin AJ, Green MT, Roig-Smith R, Hill CW, Coy DH: Effects of an enkephalin analog on complex learning in the rhesus monkey. Pharmacol Biochem Behav. 1979, 11: 341-345.
Article
PubMed
CAS
Google Scholar
Sandman CA, Kastin AJ: The influence of fragments of the LPH chains on learning, memory and attention in animals and man. Pharmacol Ther. 1981, 13: 39-60.
Article
PubMed
CAS
Google Scholar
Stein L: Brain endorphins: possible mediators of pleasure and reward. Neurosci Res Program Bull. 1978, 16: 556-563.
PubMed
CAS
Google Scholar
Stein L, Belluzzi JD: Brain endorphins: possible role in reward and memory formation. Fed Proc. 1979, 38: 2468-2472.
PubMed
CAS
Google Scholar
Grevert P, Goldstein A: Effects of naloxone on experimentally induced ischemic pain and on mood in human subjects. Proc Natl Acad Sci U S A. 1977, 74: 1291-1294.
Article
PubMed
CAS
PubMed Central
Google Scholar
Henderson RS: Endogenous opiates-a progress report. Anaesth Intensive Care. 1977, 5: 140-145.
PubMed
CAS
Google Scholar
Ray CD: On opiates, pain, and the nervous system. Neurosurgery. 1977, 1: 188-189.
Article
PubMed
CAS
Google Scholar
Basbaum AI, Fields HL: Endogenous pain control mechanisms: review and hypothesis. Ann Neurol. 1978, 4: 451-462.
Article
PubMed
CAS
Google Scholar
Fields HL, Basbaum AI: Brainstem control of spinal pain-transmission neurons. Annu Rev Physiol. 1978, 40: 217-248.
Article
PubMed
CAS
Google Scholar
Almay BG, Johansson F, Von Knorring L, Terenius L, Wahlstrom A: Endorphins in chronic pain. I. Differences in CSF endorphin levels between organic and psychogenic pain syndromes. Pain. 1978, 5: 153-162.
Article
PubMed
CAS
Google Scholar
Terenius L: Significance of endorphins in endogenous antinociception. Adv Biochem Psychopharmacol. 1978, 18: 321-332.
PubMed
CAS
Google Scholar
Laubie M, Schmitt H, Vincent M, Remond G: Central cardiovascular effects of morphinomimetic peptides in dogs. Eur J Pharmacol. 1977, 46: 67-71.
Article
PubMed
CAS
Google Scholar
Bolme P, Fuxe K, Agnati LF, Bradley R, Smythies J: Cardiovascular effects of morphine and opioid peptides following intracisternal administration in chloralose-anesthetized rats. Eur J Pharmacol. 1978, 48: 319-324.
Article
PubMed
CAS
Google Scholar
Panksepp J, Vilberg T, Bean NJ, Coy DH, Kastin AJ: Reduction of distress vocalization in chicks by opiate-like peptides. Brain Res Bull. 1978, 3: 663-667.
Article
PubMed
CAS
Google Scholar
Rossier J, French ED, Rivier C, Ling N, Guillemin R, Bloom FE: Foot-shock induced stress increases beta-endorphin levels in blood but not brain. Nature. 1977, 270: 618-620.
Article
PubMed
CAS
Google Scholar
Guillemin R, Vargo T, Rossier J, Minick S, Ling N, Rivier C, Vale W, Bloom F: beta-Endorphin and adrenocorticotropin are selected concomitantly by the pituitary gland. Science. 1977, 197: 1367-1369.
Article
PubMed
CAS
Google Scholar
Rossier J, Guillemin R, Bloom F: Foot shock induced stress decreases leu5-enkephalin immunoreactivity in rat hypothalamus. Eur J Pharmacol. 1978, 48: 465-466.
Article
PubMed
CAS
Google Scholar
Abbruscato TJ, Thomas SA, Hruby VJ, Davis TP: Brain and spinal cord distribution of biphalin: correlation with opioid receptor density and mechanism of CNS entry. J Neurochem. 1997, 69: 1236-1245.
Article
PubMed
CAS
Google Scholar
Skipor J, Thiery JC: The choroid plexus–cerebrospinal fluid system: undervaluated pathway of neuroendocrine signaling into the brain. Acta Neurobiol Exp (Wars). 2008, 68: 414-428.
Google Scholar
Reiber H: Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci. 2003, 21: 79-96.
PubMed
CAS
Google Scholar
Stoodley MA, Jones NR, Brown CJ: Evidence for rapid fluid flow from the subarachnoid space into the spinal cord central canal in the rat. Brain Res. 1996, 707: 155-164.
Article
PubMed
CAS
Google Scholar
Stoodley MA, Brown SA, Brown CJ, Jones NR: Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord. J Neurosurg. 1997, 86: 686-693.
Article
PubMed
CAS
Google Scholar
Cifuentes M, Fernandez LP, Perez J, Perez-Figares JM, Rodriguez EM: Distribution of intraventricularly injected horseradish peroxidase in cerebrospinal fluid compartments of the rat spinal cord. Cell Tissue Res. 1992, 270: 485-494.
Article
PubMed
CAS
Google Scholar
Banks WA, Kastin AJ: Saturable transport of peptides across the blood–brain barrier. Life Sci. 1987, 41: 1319-1338.
Article
PubMed
CAS
Google Scholar
Banks WA, Kastin AJ, Ehrensing CA: Endogenous peptide Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1) is transported from the brain to the blood by peptide transport system-1. J Neurosci Res. 1993, 35: 690-695.
Article
PubMed
CAS
Google Scholar
King M, Su W, Chang A, Zuckerman A, Pasternak GW: Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci. 2001, 4: 268-274.
Article
PubMed
CAS
Google Scholar
Nicholson C: Signals that go with the flow. Trends Neurosci. 1999, 22: 143-145.
Article
PubMed
CAS
Google Scholar
Sewards TV, Sewards MA: Representations of motivational drives in mesial cortex, medial thalamus, hypothalamus and midbrain. Brain Res Bull. 2003, 61: 25-49.
Article
PubMed
Google Scholar
Sewards TV, Sewards MA: Fear and power-dominance motivation: proposed contributions of peptide hormones present in cerebrospinal fluid and plasma. Neurosci Biobehav Rev. 2003, 27: 247-267.
Article
PubMed
CAS
Google Scholar
Fuxe K, Rivera A, Jacobsen KX, Hoistad M, Leo G, Horvath TL, Staines W, De la Calle A, Agnati LF: Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J Neural Transm. 2005, 112: 65-76.
Article
PubMed
CAS
Google Scholar
Fuxe K, Li XM, Bjelke B, Hedlund PB, Biagini G, Agnati LF: Possible mechanisms for the powerful actions of neuropeptides. Ann N Y Acad Sci. 1994, 739: 42-59.
Article
PubMed
CAS
Google Scholar
Fuxe K, Dahlstrom A, Hoistad M, Marcellino D, Jansson A, Rivera A, Diaz-Cabiale Z, Jacobsen K, Tinner-Staines B, Hagman B, et al: From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res Rev. 2007, 55: 17-54.
Article
PubMed
CAS
Google Scholar
Bjelke B, Stromberg I, O'Connor WT, Andbjer B, Agnati LF, Fuxe K: Evidence for volume transmission in the dopamine denervated neostriatum of the rat after a unilateral nigral 6-OHDA microinjection. Studies with systemic D-amphetamine treatment. Brain Res. 1994, 662: 11-24.
Article
PubMed
CAS
Google Scholar
Agnati LF, Leo G, Zanardi A, Genedani S, Rivera A, Fuxe K, Guidolin D: Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives. Acta Physiol (Oxf). 2006, 187: 329-344.
Article
CAS
Google Scholar
Agnati LF, Fuxe K: Volume transmission as a key feature of information handling in the central nervous system possible new interpretative value of the Turing's B-type machine. Prog Brain Res. 2000, 125: 3-19.
Article
PubMed
CAS
Google Scholar
Agnati LF, Bjelke B, Fuxe K: Volume versus wiring transmission in the brain: a new theoretical frame for neuropsychopharmacology. Med Res Rev. 1995, 15: 33-45.
Article
PubMed
CAS
Google Scholar
Caraty A, Skinner DC: Gonadotropin-releasing hormone in third ventricular cerebrospinal fluid: endogenous distribution and exogenous uptake. Endocrinology. 2008, 149: 5227-5234.
Article
PubMed
CAS
PubMed Central
Google Scholar
Faulconbridge LF, Grill HJ, Kaplan JM: Distinct forebrain and caudal brainstem contributions to the neuropeptide Y mediation of ghrelin hyperphagia. Diabetes. 2005, 54: 1985-1993.
Article
PubMed
CAS
Google Scholar
Flynn FW: Fourth ventricle bombesin injection suppresses ingestive behaviors in rats. Am J Physiol. 1989, 256: R590-R596.
PubMed
CAS
Google Scholar
Grill HJ, Carmody JS, Amanda Sadacca L, Williams DL, Kaplan JM: Attenuation of lipopolysaccharide anorexia by antagonism of caudal brain stem but not forebrain GLP-1-R. Am J Physiol. 2004, 287: R1190-R1193.
CAS
Google Scholar
Ritter RC, Slusser PG, Stone S: Glucoreceptors controlling feeding and blood glucose: location in the hindbrain. Science. 1981, 213: 451-452.
Article
PubMed
CAS
Google Scholar
Skinner DC, Malpaux B: High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology. 1999, 140: 4399-4405.
PubMed
CAS
Google Scholar
Skinner DC, Malpaux B, Delaleu B, Caraty A: Luteinizing hormone (LH)-releasing hormone in third ventricular cerebrospinal fluid of the ewe: correlation with LH pulses and the LH surge. Endocrinology. 1995, 136: 3230-3237.
PubMed
CAS
Google Scholar
Tricoire H, Locatelli A, Chemineau P, Malpaux B: Melatonin enters the cerebrospinal fluid through the pineal recess. Endocrinology. 2002, 143: 84-90.
Article
PubMed
CAS
Google Scholar
Tricoire H, Moller M, Chemineau P, Malpaux B: Origin of cerebrospinal fluid melatonin and possible function in the integration of photoperiod. Reprod Suppl. 2003, 61: 311-321.
PubMed
CAS
Google Scholar
Malpaux B, Daveau A, Maurice-Mandon F, Duarte G, Chemineau P: Evidence that melatonin acts in the premammillary hypothalamic area to control reproduction in the ewe: presence of binding sites and stimulation of luteinizing hormone secretion by in situ microimplant delivery. Endocrinology. 1998, 139: 1508-1516.
PubMed
CAS
Google Scholar
Knigge KM, Joseph SA: Anatomy of the opioid-systems of the brain. Can J Neurol Sci. 1984, 11: 14-23.
PubMed
CAS
Google Scholar
Bloom F, Battenberg E, Rossier J, Ling N, Guillemin R: Neurons containing beta-endorphin in rat brain exist separately from those containing enkephalin: immunocytochemical studies. Proc Natl Acad Sci U S A. 1978, 75: 1591-1595.
Article
PubMed
CAS
PubMed Central
Google Scholar
Watson SJ, Akil H: alpha-MSH in rat brain: occurrence within and outside of beta-endorphin neurons. Brain Res. 1980, 182: 217-223.
Article
PubMed
CAS
Google Scholar
Mezey E, Kiss JZ, Mueller GP, Eskay R, O'Donohue TL, Palkovits M: Distribution of the pro-opiomelanocortin derived peptides, adrenocorticotrope hormone, alpha-melanocyte-stimulating hormone and beta-endorphin (ACTH, alpha-MSH, beta-END) in the rat hypothalamus. Brain Res. 1985, 328: 341-347.
Article
PubMed
CAS
Google Scholar
Tranchand-Bunel D, Delbende C, Guy J, Jegou S, Jenks BJ, Mocaer E, Pelletier G, Vaudry H: Pro-opiomelanocortin neuronal systems. Rev Neurol (Paris). 1987, 143: 471-489.
CAS
Google Scholar
McGinty JF, Bloom FE: Double immunostaining reveals distinctions among opioid peptidergic neurons in the medial basal hypothalamus. Brain Res. 1983, 278: 145-153.
Article
PubMed
CAS
Google Scholar
Ibata Y, Kawakami F, Okamura H, Obata-Tsuto HL, Morimoto N, Zimmerman EA: Light and electron microscopic immunocytochemistry of beta-endorphin/beta-LPH-like immunoreactive neurons in the arcuate nucleus and surrounding areas of the rat hypothalamus. Brain Res. 1985, 341: 233-242.
Article
PubMed
CAS
Google Scholar
Buma P, Veening J, Hafmans T, Joosten H, Nieuwenhuys R: Ultrastructure of the periaqueductal grey matter of the rat: an electron microscopical and horseradish peroxidase study. J Comp Neurol. 1992, 319: 519-535.
Article
PubMed
CAS
Google Scholar
Buma P, Veening J, Nieuwenhuys R: Ultrastructural Characterization of Adrenocorticotrope Hormone (ACTH) Immunoreactive Fibres in the Mesencephalic Central Grey Substance of the Rat. Eur J Neurosci. 1989, 1: 659-672.
Article
PubMed
Google Scholar
Finley JC, Lindstrom P, Petrusz P: Immunocytochemical localization of beta-endorphin-containing neurons in the rat brain. Neuroendocrinology. 1981, 33: 28-42.
Article
PubMed
Google Scholar
Calle M: Integrative Physiology and Communication in the Amphibian brain. 2006, Radboud University, Nijmegen, Depts of Cellular animal Physiology/Computational Sciences.
Google Scholar
Calle M, Claassen IE, Veening JG, Kozicz T, Roubos EW, Barendregt HP: Opioid peptides, CRF, and urocortin in cerebrospinal fluid-contacting neurons in Xenopus laevis. Ann N Y Acad Sci. 2005, 1040: 249-252.
Article
PubMed
CAS
Google Scholar
Rodriguez EM, Blazquez JL, Guerra M: The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: the former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides. 2010, 31: 757-776.
Article
PubMed
CAS
Google Scholar
Chen YY, Pelletier G: Demonstration of contacts between proopiomelanocortin neurons in the rat hypothalamus. Neurosci Lett. 1983, 43: 271-276.
Article
PubMed
CAS
Google Scholar
Pelletier G, Leclerc R, Saavedra JM, Brownstein MJ, Vaudry H, Ferland L, Labrie F: Distribution of beta-lipotropin (beta-LPH), adrenocorticotropin (ACTH) and alpha-melanocyte-stimulating hormone (alpha-MSH) in the rat brain. I. Origin of the extrahypothalamic fibers. Brain Res. 1980, 192: 433-440.
Article
PubMed
CAS
Google Scholar
Barnea A, Cho G, Pilotte NS, Porter JC: Regional differences in the molecular weight profiles of corticotropin and alpha-melanotropin the hypothalamus. Endocrinology. 1981, 108: 150-156.
Article
PubMed
CAS
Google Scholar
Dores RM, Khachaturian H, Watson SJ, Akil H: Localization of neurons containing pro-opiomelanocortin-related peptides in the hypothalamus and midbrain of the lizard, Anolis carolinensis: evidence for region-specific processing of beta-endorphin. Brain Res. 1984, 324: 384-389.
Article
PubMed
CAS
Google Scholar
Swanson LW: Biochemical switching in hypothalamic circuits mediating responses to stress. Prog Brain Res. 1991, 87: 181-200.
Article
PubMed
CAS
Google Scholar
Swanson LW, Sawchenko PE, Lind RW: Regulation of multiple peptides in CRF parvocellular neurosecretory neurons: implications for the stress response. Prog Brain Res. 1986, 68: 169-190.
Article
PubMed
CAS
Google Scholar
Swanson LW, Simmons DM: Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat. J Comp Neurol. 1989, 285: 413-435.
Article
PubMed
CAS
Google Scholar
Mulders WH, Meek J, Hafmans TG, Cools AR: Plasticity in the stress-regulating circuit: decreased input from the bed nucleus of the stria terminalis to the hypothalamic paraventricular nucleus in Wistar rats following adrenalectomy. Eur J Neurosci. 1997, 9: 2462-2471.
Article
PubMed
CAS
Google Scholar
Van der Horst VG, Holstege G: Sensory and motor components of reproductive behavior: pathways and plasticity. Behav Brain Res. 1998, 92: 157-167.
Article
PubMed
CAS
Google Scholar
Douglas AJ, Bicknell RJ, Leng G, Russell JA, Meddle SL: Beta-endorphin cells in the arcuate nucleus: projections to the supraoptic nucleus and changes in expression during pregnancy and parturition. J Neuroendocrinol. 2002, 14: 768-777.
Article
PubMed
CAS
Google Scholar
Watson SJ, Richard CW, Barchas JD: Adrenocorticotropin in rat brain: immunocytochemical localization in cells and axons. Science. 1978, 200: 1180-1182.
Article
PubMed
CAS
Google Scholar
Watson SJ, Barchas JD, Li CH: beta-Lipotropin: localization of cells and axons in rat brain by immunocytochemistry. Proc Natl Acad Sci U S A. 1977, 74: 5155-5158.
Article
PubMed
CAS
PubMed Central
Google Scholar
Knigge KM, Joseph SA, Nocton J: Topography of the ACTH-immunoreactive neurons in the basal hypothalamus of the rat brain. Brain Res. 1981, 216: 333-341.
Article
PubMed
CAS
Google Scholar
Romagnano MA, Joseph SA: Immunocytochemical localization of ACTH1-39 in the brainstem of the rat. Brain Res. 1983, 276: 1-16.
Article
PubMed
CAS
Google Scholar
Sawchenko PE, Swanson LW, Joseph SA: The distribution and cells of origin of ACTH(1–39)-stained varicosities in the paraventricular and supraoptic nuclei. Brain Res. 1982, 232: 365-374.
Article
PubMed
CAS
Google Scholar
Joseph SA: Immunoreactive adrenocorticotropin in rat brain: a neuroanatomical study using antiserum generated against synthetic ACTH. Am J Anat. 1980, 158: 533-548.
Article
PubMed
CAS
Google Scholar
Yoshida M, Taniguchi Y: Projection of pro-opiomelanocortin neurons from the rat arcuate nucleus to the midbrain central gray as demonstrated by double staining with retrograde labeling and immunohistochemistry. Arch Histol Cytol. 1988, 51: 175-183.
Article
PubMed
CAS
Google Scholar
Pretel S, Piekut DT: ACTH and enkephalin axonal input to paraventricular neurons containing c-fos-like immunoreactivity. Synapse. 1991, 8: 100-106.
Article
PubMed
CAS
Google Scholar
Hornby PJ, Piekut DT: Anatomical evidence for interaction of ACTH1-39 immunostained fibers and hypothalamic paraventricular neurons that project to the dorsal vagal complex. Histochemistry. 1988, 90: 201-206.
Article
PubMed
CAS
Google Scholar
Piekut DT: Interactions of immunostained ACTH1-39 fibers and CRF neurons in the paraventricular nucleus of rat hypothalamus: application of avidin-glucose oxidase to dual immunostaining procedures. J Histochem Cytochem. 1987, 35: 261-265.
Article
PubMed
CAS
Google Scholar
Piekut DT: Relationship of ACTH1-39-immunostained fibers and magnocellular neurons in the paraventricular nucleus of rat hypothalamus. Peptides. 1985, 6: 883-890.
Article
PubMed
CAS
Google Scholar
Kawano H, Masuko S: beta-endorphin-, adrenocorticotrophic hormone- and neuropeptide Y-containing projection fibers from the arcuate hypothalamic nucleus make synaptic contacts on to nucleus preopticus medianus neurons projecting to the paraventricular hypothalamic nucleus in the rat. Neuroscience. 2000, 98: 555-565.
Article
PubMed
CAS
Google Scholar
Joseph SA, Pilcher WH, Knigge KM: Anatomy of the corticotropin-releasing factor and opiomelanocortin systems of the brain. Fed Proc. 1985, 44: 100-107.
PubMed
CAS
Google Scholar
Wilcox JN, Roberts JL, Chronwall BM, Bishop JF, Odonohue T: Localization of Proopiomelanocortin Messenger-Rna in Functional Subsets of Neurons Defined by Their Axonal Projections. J Neurosci Res. 1986, 16: 89-96.
Article
PubMed
CAS
Google Scholar
Veening JG, Buma P, ter Horst GJ, Roeling TAP, Luiten PGM, Nieuwenhuys R: Hypothalamic projections to the PAG in the rat: topographical, immunoelectronmicroscopical and functional aspects. The Midbrain Periaqueductal Gray Matter. Edited by: Depaulis A, Bandler R. 1991, Plenum Press, New York, 387-415.
Chapter
Google Scholar
Joseph SA, Pilcher WH, Bennett-Clarke C: Immunocytochemical localization of ACTH perikarya in nucleus tractus solitarius: evidence for a second opiocortin neuronal system. Neurosci Lett. 1983, 38: 221-225.
Article
PubMed
CAS
Google Scholar
Joseph SA, Michael GJ: Efferent ACTH-IR opiocortin projections from nucleus tractus solitarius: a hypothalamic deafferentation study. Peptides. 1988, 9: 193-201.
Article
PubMed
CAS
Google Scholar
Tsou K, Khachaturian H, Akil H, Watson SJ: Immunocytochemical localization of pro-opiomelanocortin-derived peptides in the adult rat spinal cord. Brain Res. 1986, 378: 28-35.
Article
PubMed
CAS
Google Scholar
Bloom F, Battenberg E, Rossier J, Ling N, Leppaluoto J, Vargo TM, Guillemin R: Endorphins are located in the intermediate and anterior lobes of the pituitary gland, not in the neurohypophysis. Life Sci. 1977, 20: 43-47.
Article
PubMed
CAS
Google Scholar
Khachaturian H, Lewis ME, Schafer MK, Watson SJ: Anatomy of the CNS opioid systems. Trends Neurosci. 1985, 8: 111-119.
Article
CAS
Google Scholar
Rossier J, Vargo TM, Minick S, Ling N, Bloom FE, Guillemin R: Regional dissociation of beta-endorphin and enkephalin contents in rat brain and pituitary. Proc Natl Acad Sci U S A. 1977, 74: 5162-5165.
Article
PubMed
CAS
PubMed Central
Google Scholar
de Kloet ER, Palkovits M, Mezey E: Opiocortin peptides: localization, source and avenues of transport. Pharmacol Ther. 1981, 12: 321-351.
Article
PubMed
CAS
Google Scholar
Howe A: The mammalian pars intermedia: a review of its structure and function. J Endocrinol. 1973, 59: 385-409.
Article
PubMed
CAS
Google Scholar
O'Donohue TL, Dorsa DM: The opiomelanotropinergic neuronal and endocrine systems. Peptides. 1982, 3: 353-395.
Article
PubMed
Google Scholar
Silman RE, Chard T, Landon J, Lowry PJ, Smith I, Young IM: ACTH and MSH peptides in the human adult and fetal pituitary gland. Front Horm Res. 1977, 4: 179-187.
Article
PubMed
CAS
Google Scholar
Houghten RA, Swann RW, Li CH: beta-Endorphin: stability, clearance behavior, and entry into the central nervous system after intravenous injection of the tritiated peptide in rats and rabbits. Proc Natl Acad Sci U S A. 1980, 77: 4588-4591.
Article
PubMed
CAS
PubMed Central
Google Scholar
Barna I, Sweep CG, Veldhuis HD, Wiegant VM, De Wied D: Effects of pituitary beta-endorphin secretagogues on the concentration of beta-endorphin in rat cerebrospinal fluid: evidence for a role of vasopressin in the regulation of brain beta-endorphin release. Neuroendocrinology. 1990, 51: 104-110.
Article
PubMed
CAS
Google Scholar
De Riu PL, Petruzzi V, Caria MA, Mameli O, Casu AR, Nuvoli S, Spanu A, Madeddu G: Beta-endorphin and cortisol levels in plasma and CSF following acute experimental spinal traumas. Physiol Behav. 1997, 62: 1-5.
Article
PubMed
CAS
Google Scholar
Guo ZM, Liu CT, Peters CJ: Possible involvement of endogenous beta-endorphin in the pathophysiological mechanisms of Pichinde virus-infected guinea pigs. Proc Soc Exp Biol Med. 1992, 200: 343-348.
Article
PubMed
CAS
Google Scholar
Yamamoto T, Sako N, Maeda S: Effects of taste stimulation on beta-endorphin levels in rat cerebrospinal fluid and plasma. Physiol Behav. 2000, 69: 345-350.
Article
PubMed
CAS
Google Scholar
Barna I, Sweep CG, Veldhuis HD, Wiegant VM: Differential effects of cisterna magna cannulation on beta-endorphin levels in rat plasma and cerebrospinal fluid. Acta Endocrinol (Copenh). 1988, 117: 517-524.
CAS
Google Scholar
Nakao K, Nakai Y, Oki S, Matsubara S, Konishi T, Nishitani H, Imura H: Immunoreactive beta-endorphin in human cerebrospinal fluid. J Clin Endocrinol Metab. 1980, 50: 230-233.
Article
PubMed
CAS
Google Scholar
Facchinetti F, Petraglia F, Nappi G, Martignoni E, Antoni G, Parrini D, Genazzani AR: Different patterns of central and peripheral beta EP, beta LPH and ACTH throughout life. Peptides. 1983, 4: 469-474.
Article
PubMed
CAS
Google Scholar
Nakao K, Nakai Y, Jingami H, Oki S, Fukata J, Imura H: Substantial rise of plasma beta-endorphin levels after insulin-induced hypoglycemia in human subjects. J Clin Endocrinol Metab. 1979, 49: 838-841.
Article
PubMed
CAS
Google Scholar
Nakao K, Nakai Y, Oki S, Horii K, Imura H: Presence of immunoreactive beta-endorphin in normal human plasma: a concomitant release of beta-endorphin with adrenocorticotropin after metyrapone administration. J Clin Invest. 1978, 62: 1395-1398.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nappi G, Facchinetti F, Bono G, Petraglia F, Sinforiani E, Genazzani AR: CSF and plasma levels of pro-opiomelanocortin-related peptides in reversible ischaemic attacks and strokes. J Neurol Neurosurg Psychiatry. 1986, 49: 17-21.
Article
PubMed
CAS
PubMed Central
Google Scholar
Brunani A, Invitti C, Dubini A, Piccoletti R, Bendinelli P, Maroni P, Pezzoli G, Ramella G, Calogero A, Cavagnini F: Cerebrospinal fluid and plasma concentrations of SRIH, beta-endorphin, CRH, NPY and GHRH in obese and normal weight subjects. Int J Obes Relat Metab Disord. 1995, 19: 17-21.
PubMed
CAS
Google Scholar
Oki S, Nakai Y, Nakao K, Imura H: Plasma beta-endorphin responses to somatostatin, thyrotropin-releasing hormone, or vasopressin in Nelson's syndrome. J Clin Endocrinol Metab. 1980, 50: 194-197.
Article
PubMed
CAS
Google Scholar
Steinbrook RA, Carr DB, Datta S, Naulty JS, Lee C, Fisher J: Dissociation of plasma and cerebrospinal fluid beta-endorphin-like immunoactivity levels during pregnancy and parturition. Anesth Analg. 1982, 61: 893-897.
Article
PubMed
CAS
Google Scholar
Radzikowska B, Szczudlik A, Lypka A: Beta-endorphin levels in the blood and cerebrospinal fluid in humans. Neurol Neurochir Pol. 1985, 19: 281-285.
PubMed
CAS
Google Scholar
Adams ML, Morris DL, Brase DA, Dewey WL: Stereoselective effect of morphine on antinociception and endogenous opioid peptide levels in plasma but not cerebrospinal fluid of dogs. Life Sci. 1991, 48: 917-924.
Article
PubMed
CAS
Google Scholar
Matejec R, Ruwoldt R, Bodeker RH, Hempelmann G, Teschemacher H: Release of beta-endorphin immunoreactive material under perioperative conditions into blood or cerebrospinal fluid: significance for postoperative pain?. Anesth Analg. 2003, 96: 481-486. table of contents
PubMed
Google Scholar
Spaziante R, Merola B, Colao A, Gargiulo G, Cafiero T, Irace C, Rossi E, Oliver C, Lombardi G, Mazzarella B, et al: Beta-endorphin concentrations both in plasma and in cerebrospinal fluid in response to acute painful stimuli. J Neurosurg Sci. 1990, 34: 99-106.
PubMed
CAS
Google Scholar
Spinazzola F, Barletta C, Demartino G, Martini F, Natili S, Noto P, Ferri F, Tossini G, Visco G: Beta-endorphins ACTH and cortisol in CSF and plasma of HIV infected patients. Riv Eur Sci Med Farmacol. 1995, 17: 161-165.
PubMed
CAS
Google Scholar
Barreca T, Siani C, Franceschini R, Francaviglia N, Messina V, Perria C, Rolandi E: Diurnal beta-endorphin changes in human cerebrospinal fluid. Life Sci. 1986, 38: 2263-2267.
Article
PubMed
CAS
Google Scholar
Hamel E: CSF-endorphines in acute and chronic brain lesions. Neurosurg Rev. 1988, 11: 193-199.
Article
PubMed
CAS
Google Scholar
Lopez JA, Peran F, Altuzarra A, Garrido F, Arjona V: Correlation between plasmatic and CSF beta-endorphin levels. Neurol Res. 1984, 6: 118-120.
PubMed
CAS
Google Scholar
Facchinetti F, Petraglia F, Sances G, Garuti C, Tosca P, Nappi G, Genazzani AR: Dissociation between CSF and plasma B-endorphin in major depressive disorders: evidence for a different regulation. J Endocrinol Invest. 1986, 9: 11-14.
Article
PubMed
CAS
Google Scholar
Facchinetti F, Sforza G, Amidei M, Cozza C, Petraglia F, Montanari C, Genazzani AR: Central and peripheral beta-endorphin response to transcutaneous electrical nerve stimulation. NIDA Res Monogr. 1986, 75: 555-558.
PubMed
CAS
Google Scholar
Morales AB, Vives F, Ros I, Mora F: Plasma and CSF levels of immunoreactive beta-endorphin in algic peaks of patients with herniated intervertebral discs. Rev Esp Fisiol. 1988, 44: 21-25.
PubMed
CAS
Google Scholar
Smith R, Owens PC, Lovelock M, Chan EC, Falconer J: Acute hemorrhagic stress in conscious sheep elevates immunoreactive beta-endorphin in plasma but not in cerebrospinal fluid. Endocrinology. 1986, 118: 2572-2576.
Article
PubMed
CAS
Google Scholar
Burbach JP, De Hoop MJ, Schmale H, Richter D, De Kloet ER, Ten Haaf JA, De Wied D: Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei. Neuroendocrinology. 1984, 39: 582-584.
Article
PubMed
CAS
Google Scholar
Burbach JP, Loeber JG, Verhoef J, de Kloet ER, van Ree JM, de Wied D: Schizophrenia and degradation of endorphins in cerebrospinal fluid. Lancet. 1979, 2: 480-481.
Article
PubMed
CAS
Google Scholar
Ambach G, Palkovits M, Szentagothai J: Blood supply of the rat hypothalamus. IV. Retrochiasmatic area, median eminence, arcuate nucleus. Acta Morphol Acad Sci Hung. 1976, 24: 93-119.
PubMed
CAS
Google Scholar
Oliver C, Mical RS, Porter JC: Hypothalamic-pituitary vasculature: evidence for retrograde blood flow in the pituitary stalk. Endocrinology. 1977, 101: 598-604.
Article
PubMed
CAS
Google Scholar
Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, Meier PJ: Organic anion-transporting polypeptides mediate transport of opioid peptides across blood–brain barrier. J Pharmacol Exp Ther. 2000, 294: 73-79.
PubMed
CAS
Google Scholar
Bach FW, Yaksh TL: Release into ventriculo-cisternal perfusate of beta-endorphin- and Met-enkephalin-immunoreactivity: effects of electrical stimulation in the arcuate nucleus and periaqueductal gray of the rat. Brain Res. 1995, 690: 167-176.
Article
PubMed
CAS
Google Scholar
Bach FW, Yaksh TL: Release of beta-endorphin immunoreactivity from brain by activation of a hypothalamic N-methyl-D-aspartate receptor. Neuroscience. 1995, 65: 775-783.
Article
PubMed
CAS
Google Scholar
MacMillan SJ, Mark MA, Duggan AW: The release of beta-endorphin and the neuropeptide-receptor mismatch in the brain. Brain Res. 1998, 794: 127-136.
Article
PubMed
CAS
Google Scholar
Dias RD, Perry ML, Carrasco MA, Izquierdo I: Effect of electroconvulsive shock on beta-endorphin immunoreactivity of rat brain, pituitary gland, and plasma. Behav Neural Biol. 1981, 32: 265-268.
Article
PubMed
CAS
Google Scholar
Kosten TR, Kreek MJ, Swift C, Carney MK, Ferdinands L: Beta endorphin levels in CSF during methadone maintenance. Life Sci. 1987, 41: 1071-1076.
Article
PubMed
CAS
Google Scholar
Izquierdo I, Netto CA: Role of beta-endorphin in behavioral regulation. Ann N Y Acad Sci. 1985, 444: 162-177.
Article
PubMed
CAS
Google Scholar
Wan RQ, Wiegant VM, de Jong W, de Wied D: Alterations of beta-endorphin-like immunoreactivity in CSF following behavioral training using a passive avoidance procedure. Psychoneuroendocrinology. 1996, 21: 503-513.
Article
PubMed
CAS
Google Scholar
Sweep CG, Boomkamp MD, Barna I, Logtenberg AW, Wiegant VM: Vasopressin enhances the clearance of beta-endorphin immunoreactivity from rat cerebrospinal fluid. Acta Endocrinol (Copenh). 1990, 122: 191-200.
CAS
Google Scholar
Sweep CGJ, Barna I, Wiegant VM: Dual effects of vasopressin on the concentration of beta-endorphin immunoreactivity in rat cerebrospinal fluid. Adv Biosci. 1989, 75: 371-374.
CAS
Google Scholar
Banks WA: The CNS as a target for peptides and peptide-based drugs. Expert Opin Drug Deliv. 2006, 3: 707-712.
Article
PubMed
CAS
Google Scholar
Banks WA: Are the extracellular [correction of extracelluar] pathways a conduit for the delivery of therapeutics to the brain?. Curr Pharm Des. 2004, 10: 1365-1370.
Article
PubMed
CAS
Google Scholar
Nieuwenhuys R, Veening JG, van Domburg P: Core and paracores; some new chemoarchitectural entities in the mammalian neuraxis. Acta Morphol Neer Sc. 1988, 26: 131-163.
Google Scholar
Veening JG, Barendregt HP: The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res. 2010, 7: 1-
Article
PubMed
PubMed Central
CAS
Google Scholar
Bjelke B, England R, Nicholson C, Rice ME, Lindberg J, Zoli M, Agnati LF, Fuxe K: Long distance pathways of diffusion for dextran along fibre bundles in brain. Relevance for volume transmission. Neuroreport. 1995, 6: 1005-1009.
Article
PubMed
CAS
Google Scholar
Agnati LF, Fuxe K, Zoli M, Ozini I, Toffano G, Ferraguti F: A correlation analysis of the regional distribution of central enkephalin and beta-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol Scand. 1986, 128: 201-207.
Article
PubMed
CAS
Google Scholar
Bjelke B, Fuxe K: Intraventricular beta-endorphin accumulates in DARPP-32 immunoreactive tanycytes. Neuroreport. 1993, 5: 265-268.
Article
PubMed
CAS
Google Scholar
Fuxe K, Tinner B, Bjelke B, Agnati LF, Verhofstad A, Steinbusch HG, Goldstein M, Hersh L, Kalia M: Monoaminergic and Peptidergic Innervation of the Intermedio-Lateral Horn of the Spinal Cord. Eur J Neurosci. 1990, 2: 451-460.
Article
PubMed
Google Scholar
Hoistad M, Samskog J, Jacobsen KX, Olsson A, Hansson HA, Brodin E, Fuxe K: Detection of beta-endorphin in the cerebrospinal fluid after intrastriatal microinjection into the rat brain. Brain Res. 2005, 1041: 167-180.
Article
PubMed
CAS
Google Scholar
Agnati LF, Fuxe K, Locatelli V, Benfenati F, Zini I, Panerai AE, El Etreby MF, Hokfelt T: Neuroanatomical methods for the quantitative evaluation of coexistence of transmitters in nerve cells. Analysis of the ACTH- and beta-endorphin immunoreactive nerve cell bodies of the mediobasal hypothalamus of the rat. J Neurosci Methods. 1982, 5: 203-214.
Article
PubMed
CAS
Google Scholar
Agnati LF, Zoli M, Stromberg I, Fuxe K: Intercellular communication in the brain: wiring versus volume transmission. Neuroscience. 1995, 69: 711-726.
Article
PubMed
CAS
Google Scholar
Fuxe K, Agnati LF, Zoli M, Bjelke B, Zini I: Some aspects of the communicational and computational organization of the brain. Acta Physiol Scand. 1989, 135: 203-216.
Article
PubMed
CAS
Google Scholar
Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, Amat P: Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol. 2005, 247: 89-164.
Article
PubMed
CAS
Google Scholar
Broadwell RD, Brightman MW: Entry of Peroxidase into Neurons of Central and Peripheral Nervous Systems from Extracerebral and Cerebral Blood. J Comp Neurol. 1976, 166: 257-283.
Article
PubMed
CAS
Google Scholar
Millhouse OE: A Golgi study of third ventricle tanycytes in the adult rodent brain. Z Zellforsch Mikrosk Anat. 1971, 121: 1-13.
Article
PubMed
CAS
Google Scholar
Peruzzo B, Pastor FE, Blazquez JL, Schobitz K, Pelaez B, Amat P, Rodriguez EM: A second look at the barriers of the medial basal hypothalamus. Exp Brain Res. 2000, 132: 10-26.
Article
PubMed
CAS
Google Scholar
Rethelyi M: Diffusional Barrier around the Hypothalamic Arcuate Nucleus in the Rat. Brain Res. 1984, 307: 355-358.
Article
PubMed
CAS
Google Scholar
Vandenpol AN, Cassidy JR: The Hypothalamic Arcuate Nucleus of Rat - a Quantitative Golgi Analysis. J Comp Neurol. 1982, 204: 65-98.
Article
CAS
Google Scholar
Leslie FM, Chen Y, Winzer-Serhan UH: Opioid receptor and peptide mRNA expression in proliferative zones of fetal rat central nervous system. Can J Physiol Pharmacol. 1998, 76: 284-293.
Article
PubMed
CAS
Google Scholar
Burbach JP: Action of proteolytic enzymes on lipotropins and endorphins: biosynthesis, biotransformation and fate. Pharmacol Ther. 1984, 24: 321-354.
Article
PubMed
CAS
Google Scholar
Yamamoto M, Kubota Y, Matsuura M, Homma JY: Antibody titers in the serum of patients vaccinated with the multicomponent vaccine consisting of toxoids of protease, elastase and a common protective antigen (OEP). Kansenshogaku Zasshi. 1986, 60: 1178-1183.
Article
PubMed
CAS
Google Scholar
Akil H, Richardson DE, Barchas JD, Li CH: Appearance of beta-endorphin-like immunoreactivity in human ventricular cerebrospinal fluid upon analgesic electrical stimulation. Proc Natl Acad Sci U S A. 1978, 75: 5170-5172.
Article
PubMed
CAS
PubMed Central
Google Scholar
Young RF, Bach FW, Van Norman AS, Yaksh TL: Release of beta-endorphin and methionine-enkephalin into cerebrospinal fluid during deep brain stimulation for chronic pain. Effects of stimulation locus and site of sampling. J Neurosurg. 1993, 79: 816-825.
Article
PubMed
CAS
Google Scholar
Izquierdo I, Netto CA, Carrasco MA, Dias RD, Volkmer N: The course of the decrease of hypothalamic beta-endorphin induced by training, and the development of the effect of beta-endorphin on the retrieval of inhibitory avoidance in rats. Braz J Med Biol Res. 1985, 18: 391-395.
PubMed
CAS
Google Scholar
Ableitner A, Schulz R: Neuroanatomical sites mediating the central actions of beta-endorphin as mapped by changes in glucose utilization: involvement of mu opioid receptors. J Pharmacol Exp Ther. 1992, 262: 415-423.
PubMed
CAS
Google Scholar
Sagen J, Wang H, Pappas GD: Adrenal medullary implants in the rat spinal cord reduce nociception in a chronic pain model. Pain. 1990, 42: 69-79.
Article
PubMed
CAS
Google Scholar
Siegan JB, Sagen J: Attenuation of formalin pain responses in the rat by adrenal medullary transplants in the spinal subarachnoid space. Pain. 1997, 70: 279-285.
Article
PubMed
CAS
Google Scholar
Yadid G, Zangen A, Herzberg U, Nakash R, Sagen J: Alterations in endogenous brain beta-endorphin release by adrenal medullary transplants in the spinal cord. Neuropsychopharmacology. 2000, 23: 709-716.
Article
PubMed
CAS
Google Scholar
Finegold AA, Mannes AJ, Iadarola MJ: A paracrine paradigm for in vivo gene therapy in the central nervous system: treatment of chronic pain. Hum Gene Ther. 1999, 10: 1251-1257.
Article
PubMed
CAS
Google Scholar
Leak RK, Moore RY: Innervation of ventricular and periventricular brain compartments. Brain Res. 2012, 1463: 51-62.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang LC, Zeng YM, Ting J, Cao JP, Wang MS: The distributions and signaling directions of the cerebrospinal fluid contacting neurons in the parenchyma of a rat brain. Brain Res. 2003, 989: 1-8.
Article
PubMed
CAS
Google Scholar
Vigh B, Silva MJ, Manzano E, Frank CL, Vincze C, Czirok SJ, Szabo A, Lukats A, Szel A: The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol Histopathol. 2004, 19: 607-628.
PubMed
CAS
Google Scholar
Sabatier N, Caquineau C, Dayanithi G, Bull P, Douglas AJ, Guan XMM, Jiang M, Van der Ploeg L, Leng G: alpha-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis. J Neurosci. 2003, 23: 10351-10358.
PubMed
CAS
Google Scholar
Sabatier N, Caquineau C, Douglas AJ, Leng G: Oxytocin released from magnocellular dendrites - A potential modulator of alpha-melanocyte-stimulating hormone behavioral actions?. Melanocortin System. 2003, 994: 218-224.
CAS
Google Scholar
Sabatier N, Leng G: Presynaptic actions of endocannabinoids mediate alpha-MSH-induced inhibition of oxytocin cells. Am J Physiol-Reg I. 2006, 290: R577-R584.
CAS
Google Scholar
Brunton PJ, Sabatier N, Leng G, Russell JA: Suppressed oxytocin neuron responses to immune challenge in late pregnant rats: a role for endogenous opioids. Eur J Neurosci. 2006, 23: 1241-1247.
Article
PubMed
Google Scholar
Landgraf R, Neumann ID: Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol. 2004, 25: 150-176.
Article
PubMed
CAS
Google Scholar
Leng G, Ludwig M: Jacques Benoit Lecture. Information processing in the hypothalamus: peptides and analogue computation. J Neuroendocrinol. 2006, 18: 379-392.
Article
PubMed
CAS
Google Scholar
Hentges ST: Synaptic regulation of proopiomelanocortin neurons can occur distal to the arcuate nucleus. J Neurophysiol. 2007, 97: 3298-3304.
Article
PubMed
CAS
Google Scholar
Bakkali-Kassemi L, El Ouezzani S, Magoul R, Merroun I, Lopez-Jurado M, Errami M: Effects of cannabinoids on neuropeptide Y and beta-endorphin expression in the rat hypothalamic arcuate nucleus. Br J Nutr. 2011, 105: 654-660.
Article
PubMed
CAS
Google Scholar
Krieger DT, Liotta AS, Hauser H, Brownstein MJ: Effect of stress, adrenocorticotropin or corticosteroid treatment, adrenalectomy, or hypophysectomy on hypothalamic immunoreactive adrenocorticotropin concentrations. Endocrinology. 1979, 105: 737-742.
Article
PubMed
CAS
Google Scholar
Berrettini WH, Nurnberger JI, Chan JS, Chrousos GP, Gaspar L, Gold PW, Seidah NG, Simmons-Alling S, Goldin LR, Chretien M, et al: Pro-opiomelanocortin-related peptides in cerebrospinal fluid: a study of manic-depressive disorder. Psychiatry Res. 1985, 16: 287-302.
Article
PubMed
CAS
Google Scholar
Tsigos C, Crosby SR, Gibson S, Young RJ, White A: Proopiomelanocortin is the predominant adrenocorticotropin-related peptide in human cerebrospinal fluid. J Clin Endocrinol Metab. 1993, 76: 620-624.
PubMed
CAS
Google Scholar
Pritchard LE, Oliver RL, McLoughlin JD, Birtles S, Lawrence CB, Turnbull AV, White A: Proopiomelanocortin-derived peptides in rat cerebrospinal fluid and hypothalamic extracts: evidence that secretion is regulated with respect to energy balance. Endocrinology. 2003, 144: 760-766.
Article
PubMed
CAS
Google Scholar
Pritchard LE, Turnbull AV, White A: Pro-opiomelanocortin processing in the hypothalamus: impact on melanocortin signalling and obesity. J Endocrinol. 2002, 172: 411-421.
Article
PubMed
CAS
Google Scholar
Pritchard LE, White A: Neuropeptide processing and its impact on melanocortin pathways. Endocrinology. 2007, 148: 4201-4207.
Article
PubMed
CAS
Google Scholar
Gessa GL, Fratta W, Melis M, Bertolini A, Ferrari W: Hypothalamic ACTH and MSH levels increase in morphine tolerance and decrease after morphine withdrawal. Eur J Pharmacol. 1983, 95: 143-144.
Article
PubMed
CAS
Google Scholar
Vergoni AV, Poggioli R, Facchinetti F, Bazzani C, Marrama D, Bertolini A: Tolerance develops to the behavioural effects of ACTH-(1–24) during continuous i.c.v. infusion in rats, and is associated with increased hypothalamic levels of beta-endorphin. Neuropeptides. 1989, 14: 93-98.
Article
PubMed
CAS
Google Scholar
Roberts AC, Martensz ND, Hastings MH, Herbert J: The effects of castration, testosterone replacement and photoperiod upon hypothalamic beta-endorphin levels in the male Syrian hamster. Neuroscience. 1987, 23: 1075-1082.
Article
PubMed
CAS
Google Scholar
Zhang X, Leng G, Feng J: Coherent peptide-mediated activity in a neuronal network controlled by subcellular signaling pathway: experiments and modeling. J Biotechnol. 2010, 149: 215-225.
Article
PubMed
CAS
Google Scholar
Chronwall BM: Anatomy and Physiology of the Neuro-Endocrine Arcuate Nucleus. Peptides. 1985, 6: 1-11.
Article
PubMed
CAS
Google Scholar
Jirikowski GF, Merchenthaler I, Rieger GE, Stumpf WE: Estradiol target sites immunoreactive for beta-endorphin in the arcuate nucleus of rat and mouse hypothalamus. Neurosci Lett. 1986, 65: 121-126.
Article
PubMed
CAS
Google Scholar
Miller MM, Tousignant P, Yang U, Pedvis S, Billiar RB: Effects of age and long-term ovariectomy on the estrogen-receptor containing subpopulations of beta-endorphin-immunoreactive neurons in the arcuate nucleus of female C57BL/6J mice. Neuroendocrinology. 1995, 61: 542-551.
Article
PubMed
CAS
Google Scholar
Morrell JI, McGinty JF, Pfaff DW: A subset of beta-endorphin- or dynorphin-containing neurons in the medial basal hypothalamus accumulates estradiol. Neuroendocrinology. 1985, 41: 417-426.
Article
PubMed
CAS
Google Scholar
Thornton JE, Loose MD, Kelly MJ, Ronnekleiv OK: Effects of estrogen on the number of neurons expressing beta-endorphin in the medial basal hypothalamus of the female guinea pig. J Comp Neurol. 1994, 341: 68-77.
Article
PubMed
CAS
Google Scholar
Simerly RB, Mccall LD, Watson SJ: Distribution of Opioid-Peptides in the Preoptic Region - Immunohistochemical Evidence for a Steroid-Sensitive Enkephalin Sexual Dimorphism. J Comp Neurol. 1988, 276: 442-459.
Article
PubMed
CAS
Google Scholar
Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ: Anatomy of CNS opioid receptors. Trends Neurosci. 1988, 11: 308-314.
Article
PubMed
CAS
Google Scholar
Lewis ME, Pert A, Pert CB, Herkenham M: Opiate receptor localization in rat cerebral cortex. J Comp Neurol. 1983, 216: 339-358.
Article
PubMed
CAS
Google Scholar
Lewis ME, Khachaturian H, Watson SJ: Comparative distribution of opiate receptors and three opioid peptide neuronal systems in rhesus monkey central nervous system. Life Sci. 1983, 33 (Suppl 1): 239-242.
Article
PubMed
CAS
Google Scholar
Zheng SX, Bosch MA, Ronnekleiv OK: mu-opioid receptor mRNA expression in identified hypothalamic neurons. J Comp Neurol. 2005, 487: 332-344.
Article
PubMed
CAS
Google Scholar
Atweh SF, Kuhar MJ: Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res. 1977, 134: 393-405.
Article
PubMed
CAS
Google Scholar
Atweh SF, Kuhar MJ: Autoradiographic localization of opiate receptors in rat brain. II. The brain stem. Brain Res. 1977, 129: 1-12.
Article
PubMed
CAS
Google Scholar
Atweh SF, Kuhar MJ: Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla. Brain Res. 1977, 124: 53-67.
Article
PubMed
CAS
Google Scholar
Desjardins GC, Brawer JR, Beaudet A: Distribution of mu, delta, and kappa opioid receptors in the hypothalamus of the rat. Brain Res. 1990, 536: 114-123.
Article
PubMed
CAS
Google Scholar
Ding YQ, Kaneko T, Nomura S, Mizuno N: Immunohistochemical localization of mu-opioid receptors in the central nervous system of the rat. J Comp Neurol. 1996, 367: 375-402.
Article
PubMed
CAS
Google Scholar
Goodman RR, Snyder SH, Kuhar MJ, Young WS: Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography. Proc Natl Acad Sci U S A. 1980, 77: 6239-6243.
Article
PubMed
CAS
PubMed Central
Google Scholar
McLean S, Rothman RB, Jacobson AE, Rice KC, Herkenham M: Distribution of opiate receptor subtypes and enkephalin and dynorphin immunoreactivity in the hippocampus of squirrel, guinea pig, rat, and hamster. J Comp Neurol. 1987, 255: 497-510.
Article
PubMed
CAS
Google Scholar
Jaferi A, Pickel VM: Mu-opioid and corticotropin-releasing-factor receptors show largely postsynaptic co-expression, and separate presynaptic distributions, in the mouse central amygdala and bed nucleus of the stria terminalis. Neuroscience. 2009, 159: 526-539.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gutstein HB, Mansour A, Watson SJ, Akil H, Fields HL: Mu and kappa opioid receptors in periaqueductal gray and rostral ventromedial medulla. Neuroreport. 1998, 9: 1777-1781.
Article
PubMed
CAS
Google Scholar
Wise SP, Herkenham M: Opiate receptor distribution in the cerebral cortex of the Rhesus monkey. Science. 1982, 218: 387-389.
Article
PubMed
CAS
Google Scholar
Herkenham M, Pert CB: Light microscopic localization of brain opiate receptors: a general autoradiographic method which preserves tissue quality. J Neurosci. 1982, 2: 1129-1149.
PubMed
CAS
Google Scholar
de Gortari P, Mengod G: Dopamine D1, D2 and mu-opioid receptors are co-expressed with adenylyl cyclase 5 and phosphodiesterase 7B mRNAs in striatal rat cells. Brain Res. 2010, 1310: 37-45.
Article
PubMed
CAS
Google Scholar
Jenck F, Quirion R, Wise RA: Opioid receptor subtypes associated with ventral tegmental facilitation and periaqueductal gray inhibition of feeding. Brain Res. 1987, 423: 39-44.
Article
PubMed
CAS
Google Scholar
Jenck F, Gratton A, Wise RA: Opioid receptor subtypes associated with ventral tegmental facilitation of lateral hypothalamic brain stimulation reward. Brain Res. 1987, 423: 34-38.
Article
PubMed
CAS
Google Scholar
Kuhar MJ, De Souza EB, Unnerstall JR: Neurotransmitter receptor mapping by autoradiography and other methods. Annu Rev Neurosci. 1986, 9: 27-59.
Article
PubMed
CAS
Google Scholar
Herkenham M: Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience. 1987, 23: 1-38.
Article
PubMed
CAS
Google Scholar
Bernstein HG, Henning H, Seliger N, Baumann B, Bogerts B: Remarkable beta-endorphinergic innervation of human cerebral cortex as revealed by immunohistochemistry. Neurosci Lett. 1996, 215: 33-36.
Article
PubMed
CAS
Google Scholar
McGregor A, Herbert J: The effects of beta-endorphin infusions into the amygdala on visual and olfactory sensory processing during sexual behaviour in the male rat. Neuroscience. 1992, 46: 173-179.
Article
PubMed
CAS
Google Scholar
McGregor A, Herbert J: Specific effects of beta-endorphin infused into the amygdala on sexual behaviour in the male rat. Neuroscience. 1992, 46: 165-172.
Article
PubMed
CAS
Google Scholar
Stavy M, Herbert J: Differential effects of beta-endorphin infused into the hypothalamic preoptic area at various phases of the male rat's sexual behaviour. Neuroscience. 1989, 30: 433-442.
Article
PubMed
CAS
Google Scholar
Hughes AM, Everitt BJ, Herbert J: Selective effects of beta-endorphin infused into the hypothalamus, preoptic area and bed nucleus of the stria terminalis on the sexual and ingestive behaviour of male rats. Neuroscience. 1987, 23: 1063-1073.
Article
PubMed
CAS
Google Scholar
Roth-Deri I, Green-Sadan T, Yadid G: Beta-endorphin and drug-induced reward and reinforcement. Prog Neurobiol. 2008, 86: 1-21.
Article
PubMed
CAS
Google Scholar
Monteleone P: New frontiers in endocrinology of eating disorders. Curr Top Behav Neurosci. 2011, 6: 189-208.
Article
PubMed
Google Scholar
Pecina S, Smith KS: Hedonic and motivational roles of opioids in food reward: implications for overeating disorders. Pharmacol Biochem Behav. 2010, 97: 34-46.
Article
PubMed
CAS
Google Scholar
Kringelbach ML, Berridge KC: The functional neuroanatomy of pleasure and happiness. Discov Med. 2010, 9: 579-587.
PubMed
PubMed Central
Google Scholar
Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG: The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010, 1350: 43-64.
Article
PubMed
CAS
PubMed Central
Google Scholar
Benton D: The plausibility of sugar addiction and its role in obesity and eating disorders. Clin Nutr. 2010, 29: 288-303.
Article
PubMed
CAS
Google Scholar
Fulton S: Appetite and reward. Front Neuroendocrinol. 2010, 31: 85-103.
Article
PubMed
Google Scholar
Gosnell BA, Levine AS: Reward systems and food intake: role of opioids. Int J Obes (Lond). 2009, 33 (Suppl 2): S54-S58.
Article
CAS
Google Scholar
Mahler SV, Berridge KC: Which cue to "want?" Central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. J Neurosci. 2009, 29: 6500-6513.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nathan PJ, Bullmore ET: From taste hedonics to motivational drive: central mu-opioid receptors and binge-eating behaviour. Int J Neuropsychopharmacol. 2009, 12: 1-14.
Article
CAS
Google Scholar
Berridge KC: 'Liking' and 'wanting' food rewards: brain substrates and roles in eating disorders. Physiol Behav. 2009, 97: 537-550.
Article
PubMed
CAS
PubMed Central
Google Scholar
Reece AS: Hypothalamic opioid-melanocortin appetitive balance and addictive craving. Med Hypoth. 2011, 76: 132-137.
Article
CAS
Google Scholar
Bandelow B, Schmahl C, Falkai P, Wedekind D: Borderline personality disorder: a dysregulation of the endogenous opioid system?. Psychol Rev. 2010, 117: 623-636.
Article
PubMed
Google Scholar
Riters LV: Evidence for opioid involvement in the motivation to sing. J Chem Neuroanat. 2010, 39: 141-150.
Article
PubMed
CAS
PubMed Central
Google Scholar
Camacho FJ, Portillo W, Quintero-Enriquez O, Paredes RG: Reward value of intromissions and morphine in male rats evaluated by conditioned place preference. Physiol Behav. 2009, 98: 602-607.
Article
PubMed
CAS
Google Scholar
Pfaus JG: Pathways of sexual desire. J Sex Med. 2009, 6: 1506-1533.
Article
PubMed
CAS
Google Scholar
Paredes RG: Evaluating the neurobiology of sexual reward. ILAR journal / National Research Council, Institute of Laboratory Animal Resources. 2009, 50: 15-27.
Article
PubMed
CAS
Google Scholar
Nocjar C, Panksepp J: Prior morphine experience induces long-term increases in social interest and in appetitive behavior for natural reward. Behav Brain Res. 2007, 181: 191-199.
Article
PubMed
CAS
Google Scholar
Kippin TE, van der Kooy D: Excitotoxic lesions of the tegmental pedunculopontine nucleus impair copulation in naive male rats and block the rewarding effects of copulation in experienced male rats. Eur J Neurosci. 2003, 18: 2581-2591.
Article
PubMed
Google Scholar
Pitchers KK, Balfour ME, Lehman MN, Richtand NM, Yu L, Coolen LM: Neuroplasticity in the mesolimbic system induced by natural reward and subsequent reward abstinence. Biol Psychiatr. 2010, 67: 872-879.
Article
CAS
Google Scholar
Tenk CM, Wilson H, Zhang Q, Pitchers KK, Coolen LM: Sexual reward in male rats: effects of sexual experience on conditioned place preferences associated with ejaculation and intromissions. Horm Behav. 2009, 55: 93-97.
Article
PubMed
PubMed Central
Google Scholar
Olivier JD, de Jong TR, Jos Dederen P, van Oorschot R, Heeren D, Pattij T, Waldinger MD, Coolen LM, Cools AR, Olivier B, Veening JG: Effects of acute and chronic apomorphine on sex behavior and copulation-induced neural activation in the male rat. Eur J Pharmacol. 2007, 576: 61-76.
Article
PubMed
CAS
Google Scholar
Coolen LM, Fitzgerald ME, Yu L, Lehman MN: Activation of mu opioid receptors in the medial preoptic area following copulation in male rats. Neuroscience. 2004, 124: 11-21.
Article
PubMed
CAS
Google Scholar
Balfour ME, Yu L, Coolen LM: Sexual behavior and sex-associated environmental cues activate the mesolimbic system in male rats. Neuropsychopharmacology. 2004, 29: 718-730.
Article
PubMed
CAS
Google Scholar
Nestler EJ: The neurobiology of cocaine addiction. Sci Pract Perspect. 2005, 3: 4-10.
Article
PubMed
PubMed Central
Google Scholar
Nestler EJ: Is there a common molecular pathway for addiction?. Nat Neurosci. 2005, 8: 1445-1449.
Article
PubMed
CAS
Google Scholar
Di Chiara G, Imperato A: Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988, 85: 5274-5278.
Article
PubMed
CAS
PubMed Central
Google Scholar
Spanagel R, Herz A, Shippenberg TS: Identification of the opioid receptor types mediating beta-endorphin-induced alterations in dopamine release in the nucleus accumbens. Eur J Pharmacol. 1990, 190: 177-184.
Article
PubMed
CAS
Google Scholar
Spanagel R, Herz A, Shippenberg TS: The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J Neurochem. 1990, 55: 1734-1740.
Article
PubMed
CAS
Google Scholar
Spanagel R, Weiss F: The dopamine hypothesis of reward: past and current status. Trends Neurosci. 1999, 22: 521-527.
Article
PubMed
CAS
Google Scholar
Wilson CA, Hunter AJ: Progesterone stimulates sexual behaviour in female rats by increasing 5-HT activity on 5-HT2 receptors. Brain Res. 1985, 333: 223-229.
Article
PubMed
CAS
Google Scholar
Schulze HG, Gorzalka BB: Low concentrations of oxytocin suppress lordosis when infused into the lateral ventricle of female rats. Endocr Regul. 1992, 26: 23-27.
PubMed
CAS
Google Scholar
Gorzalka BB, Heddema GM, Lester GL, Hanson LA: beta-endorphin inhibits and facilitates lordosis behaviour in rats depending on ventricular site of administration. Neuropeptides. 1997, 31: 517-521.
Article
PubMed
CAS
Google Scholar
Gunther O, Kovacs GL, Szabo G, Telegdy G: Opposite effects of intraventricular and intracisternal administration of vasopressin on blood pressure in rats. Peptides. 1986, 7: 539-540.
Article
PubMed
CAS
Google Scholar
Gunther O, Szabo G, Kovacs GL, Telegdy G: The effect on brain 5-HT of central lysine-vasopressin administration into different cerebral ventricular compartments depends on the site of injection. Neuropeptides. 1986, 7: 241-245.
Article
PubMed
CAS
Google Scholar
O'Byrne KT, Eltringham L, Summerlee AJ: Central inhibitory effects of relaxin on the milk ejection reflex of the rat depends upon the site of injection into the cerebroventricular system. Brain Res. 1987, 405: 80-83.
Article
PubMed
Google Scholar
Mumford AD, Parry LJ, Summerlee AJ: Lesion of the subfornical organ affects the haemotensive response to centrally administered relaxin in anaesthetized rats. J Endocrinol. 1989, 122: 747-755.
Article
PubMed
CAS
Google Scholar
Skibicka KP, Grill HJ: Hypothalamic and hindbrain melanocortin receptors contribute to the feeding, thermogenic, and cardiovascular action of melanocortins. Endocrinology. 2009, 150: 5351-5361.
Article
PubMed
CAS
PubMed Central
Google Scholar
Skibicka KP, Grill HJ: Energetic responses are triggered by caudal brainstem melanocortin receptor stimulation and mediated by local sympathetic effector circuits. Endocrinology. 2008, 149: 3605-3616.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zheng H, Corkern M, Stoyanova I, Patterson LM, Tian R, Berthoud HR: Peptides that regulate food intake: appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons. Am J Physiol. 2003, 284: R1436-R1444.
CAS
Google Scholar
Zheng H, Patterson LM, Phifer CB, Berthoud HR: Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. Am J Physiol. 2005, 289: R247-R258.
CAS
Google Scholar
Zheng H, Patterson LM, Rhodes CJ, Louis GW, Skibicka KP, Grill HJ, Myers MG, Berthoud HR: A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake. Am J Physiol. 2010, 298: R720-R728.
CAS
Google Scholar
Berthoud HR: A new role for leptin as a direct satiety signal from the stomach. Am J Physiol Regul Integr Comp Physiol. 2005, 288: R796-R797.
Article
PubMed
CAS
Google Scholar
Berthoud HR, Sutton GM, Townsend RL, Patterson LM, Zheng H: Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size. Physiol Behav. 2006, 89: 517-524.
Article
PubMed
CAS
Google Scholar
Bach FW, Yaksh TL: Release of beta-endorphin immunoreactivity into ventriculo-cisternal perfusate by lumbar intrathecal capsaicin in the rat. Brain Res. 1995, 701: 192-200.
Article
PubMed
CAS
Google Scholar
Bach FW, Chaplan SR, Jang J, Yaksh TL: Cerebrospinal fluid beta-endorphin in models of hyperalgesia in the rat. Regul Pept. 1995, 59: 79-86.
Article
PubMed
CAS
Google Scholar
Strahlendorf JC, Strahlendorf HK, Barnes CD: Inhibition of periaqueductal gray neurons by the arcuate nucleus: partial mediation by an endorphin pathway. Exp Brain Res. 1982, 46: 462-466.
Article
PubMed
CAS
Google Scholar
Skinner DC, Caraty A: Measurement and possible function of GnRH in cerebrospinal fluid in ewes. Reproduction. 2002, 59: 25-39.
PubMed
CAS
Google Scholar
Skinner DC, Caraty A, Malpaux B, Evans NP: Simultaneous measurement of gonadotropin-releasing hormone in the third ventricular cerebrospinal fluid and hypophyseal portal blood of the ewe. Endocrinology. 1997, 138: 4699-4704.
Article
PubMed
CAS
Google Scholar