Milhorat TH: The third circulation revisited. J Neurosurg. 1975, 42: 628-645. 10.3171/jns.1975.42.6.0628.
CAS
PubMed
Google Scholar
McComb JG: Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg. 1983, 59: 369-383. 10.3171/jns.1983.59.3.0369.
CAS
PubMed
Google Scholar
Davson H: Formation and drainage of the cerebrospinal fluid. Sci Basis Med Annu Rev. 1966, 238-259.
Google Scholar
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008, 5: 10-10.1186/1743-8454-5-10.
PubMed Central
PubMed
Google Scholar
Pardridge WM: Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS. 2011, 8: 7-10.1186/2045-8118-8-7.
PubMed Central
PubMed
Google Scholar
Hassin GB: The cerebrospinal fluid pathways (a critical note). J Neuropathol Exp Neurol. 1947, 6: 172-176. 10.1097/00005072-194704000-00006.
CAS
PubMed
Google Scholar
Bateman GA, Brown KM: The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go?. Child’s Nerv Syst. 2012, 28: 55-63. 10.1007/s00381-011-1617-4.
Google Scholar
Greitz D: Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1993, 386: 1-23.
CAS
PubMed
Google Scholar
Bulat M, Klarica M: Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev. 2011, 65: 99-112. 10.1016/j.brainresrev.2010.08.002.
PubMed
Google Scholar
Oreskovic D, Klarica M: The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev. 2010, 64: 241-262. 10.1016/j.brainresrev.2010.04.006.
CAS
PubMed
Google Scholar
Cserr HF: Physiology of the choroid plexus. Physiol Rev. 1971, 51: 273-311.
CAS
PubMed
Google Scholar
Becker NH, Novikoff AB, Zimmerman HM: Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem. 1967, 15: 160-165. 10.1177/15.3.160.
CAS
PubMed
Google Scholar
Dandy WE, Blackfan KD: An experimental and clinical study of internal hydrocephalus. JAMA. 1913, 61: 2216-2217. 10.1001/jama.1913.04350260014006.
Google Scholar
Dandy WE: Experimental hydrocephalus. Ann Surg. 1919, 70: 129-142. 10.1097/00000658-191908000-00001.
PubMed Central
CAS
PubMed
Google Scholar
Hassin GB, Oldberg E, Tinsley M: Changes in the brain in plexectomized dogs with commentson the cerebrospinal fluid. Arch Neurol Psychiatry. 1937, 38: 1224-1239. 10.1001/archneurpsyc.1937.02260240104008.
Google Scholar
Oreskovic D, Klarica M, Vukic M: The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion?. Neurosci Lett. 2002, 327: 103-106. 10.1016/S0304-3940(02)00395-6.
CAS
PubMed
Google Scholar
Milhorat TH: Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet. 1974, 139: 505-508.
CAS
PubMed
Google Scholar
Welch K: Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Physiol. 1963, 205: 617-624.
CAS
PubMed
Google Scholar
Pollay M: Formation of cerebrospinal fluid. Relation of studies of isolated choroid plexus to the standing gradient hypothesis. J Neurosurg. 1975, 42: 665-673. 10.3171/jns.1975.42.6.0665.
CAS
PubMed
Google Scholar
Pollay M, Stevens A, Estrada E, Kaplan R: Extracorporeal perfusion of choroid plexus. J Appl Physiol. 1972, 32: 612-617.
CAS
PubMed
Google Scholar
Ames A, Sakanoue M, Endo S: Na, K, Ca, Mg, and C1 concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J Neurophysiol. 1964, 27: 672-681.
PubMed
Google Scholar
de Rougemont , Ames A, Nesbett FB, Hofmann HF: Fluid formed by choroid plexus; a technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J Neurophysiol. 1960, 23: 485-495.
CAS
PubMed
Google Scholar
Bering EA: Cerebrospinal fluid production and its relationship to cerebral metabolism and cerebral blood flow. Am J Physiol. 1959, 197: 825-828.
PubMed
Google Scholar
Bering EA, Sato O: Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg. 1963, 20: 1050-1063. 10.3171/jns.1963.20.12.1050.
PubMed
Google Scholar
Weed LH: The development of the cerebrospinal spaces in pig and in man. Contrib Embryol Carnegie Inst. 1917, 5: 1-116.
Google Scholar
Pollay M, Curl F: Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol. 1967, 213: 1031-1038.
CAS
PubMed
Google Scholar
Sonnenberg H, Solomon S, Frazier DT: Sodium and chloride movement into the central canal of cat spinal cord. Proc Soc Exp Biol Med. 1967, 124: 1316-1320. 10.3181/00379727-124-31996.
CAS
PubMed
Google Scholar
Bradbury MW: Physiopathology of the blood–brain barrier. Adv Exp Med Biol. 1976, 69: 507-516.
CAS
PubMed
Google Scholar
Abbott NJ: Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004, 45: 545-552. 10.1016/j.neuint.2003.11.006.
CAS
PubMed
Google Scholar
Cserr HF: Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Ann NY Acad Sci. 1988, 529: 9-20. 10.1111/j.1749-6632.1988.tb51415.x.
CAS
PubMed
Google Scholar
Davson H, Domer FR, Hollingsworth JR: The mechanism of drainage of the cerebrospinal fluid. Brain. 1973, 96: 329-336. 10.1093/brain/96.2.329.
CAS
PubMed
Google Scholar
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD: Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res. 2008, 5: 10-10.1186/1743-8454-5-10.
PubMed Central
PubMed
Google Scholar
Davson H, Welch K, Segal MB: Physiology and pathophysiology of the cerebrospinal fluid. 1987, Edinburgh London Melbourne and New York: Churchill Livingstone
Google Scholar
Key EAH, Retzius MG: Studien in der Anatomie des Nervensystems und des Bindegewebes. 1875, Stockholm: Samson and Wallin
Google Scholar
Weed LH: Studies on cerebro-spinal fluid. No. II : the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J Med Res. 1914, 31: 21-49.
PubMed Central
CAS
PubMed
Google Scholar
Weed LH: Studies on cerebro-spinal fluid. No. III : the pathways of escape from the subarachnoid spaces with particular reference to the Arachnoid Villi. J Med Res. 1914, 31: 51-91.
PubMed Central
CAS
PubMed
Google Scholar
Weed LH: Studies on cerebro-spinal fluid. No. IV : the dual source of cerebro-spinal fluid. J Med Res. 1914, 31: 93-118. 111
PubMed Central
CAS
PubMed
Google Scholar
Tripathi RC: The functional morphology of the outflow systems of ocular and cerebrospinal fluids. Exp Eye Res. 1977, 25 (Suppl): 65-116.
PubMed
Google Scholar
Levine JE, Povlishock JT, Becker DP: The morphological correlates of primate cerebrospinal fluid absorption. Brain Res. 1982, 241: 31-41. 10.1016/0006-8993(82)91225-2.
CAS
PubMed
Google Scholar
Welch K, Pollay M: Perfusion of particles through arachnoid villi of the monkey. Am J Physiol. 1961, 201: 651-654.
CAS
PubMed
Google Scholar
Courtice FC, Simmonds WJ: The removal of protein from the subarachnoid space. Aust J Exp Biol Med Sci. 1951, 29: 255-263. 10.1038/icb.1951.30.
CAS
PubMed
Google Scholar
Boulton M, Flessner M, Armstrong D, Hay J, Johnston M: Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol. 1998, 274: R88-R96.
CAS
PubMed
Google Scholar
Bradbury MW, Cserr HF, Westrop RJ: Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol. 1981, 240: F329-F336.
CAS
PubMed
Google Scholar
Brinker T, Ludemann W, Berens V, Samii M: Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol(Berl). 1997, 94: 493-498. 10.1007/s004010050738.
CAS
Google Scholar
Weller RO, Galea I, Carare RO, Minagar A: Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology. 2010, 17: 295-306. 10.1016/j.pathophys.2009.10.007.
CAS
PubMed
Google Scholar
Klarica M, Mise B, Vladic A, Rados M, Oreskovic D: "Compensated hyperosmolarity" of cerebrospinal fluid and the development of hydrocephalus. Neuroscience. 2013, 248C: 278-289.
Google Scholar
Welch K: The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. Adv Neurol. 1975, 13: 247-332.
CAS
PubMed
Google Scholar
Masserman JH: Cerebrospinal hydrodynamics: IV. Clinical experimental studies. Arch Neurol Psychiat. 1934, 32: 523-553. 10.1001/archneurpsyc.1934.02250090060006.
Google Scholar
Heisey SR, Held D, Pappenheimer JR: Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol. 1962, 203: 775-781.
CAS
PubMed
Google Scholar
Fishman RA: The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology. 2002, 58: 1866-author reply 1866
PubMed
Google Scholar
Ekstedt J: CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry. 1978, 41: 345-353. 10.1136/jnnp.41.4.345.
PubMed Central
CAS
PubMed
Google Scholar
Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP: The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg. 1966, 25: 430-436. 10.3171/jns.1966.25.4.0430.
CAS
PubMed
Google Scholar
Cutler RW, Page L, Galicich J, Watters GV: Formation and absorption of cerebrospinal fluid in man. Brain. 1968, 91: 707-720. 10.1093/brain/91.4.707.
CAS
PubMed
Google Scholar
Lorenzo AV, Page LK, Watters GV: Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain. 1970, 93: 679-692. 10.1093/brain/93.4.679.
CAS
PubMed
Google Scholar
Rottenberg DA, Deck MD, Allen JC: Metrizamide washout as a measure of CSF bulk flow. Neuroradiology. 1978, 16: 203-206. 10.1007/BF00395250.
CAS
PubMed
Google Scholar
Rottenberg DA, Howieson J, Deck MD: The rate of CSF formation in man: preliminary observations on metrizamide washout as a measure of CSF bulk flow. Ann Neurol. 1977, 2: 503-510. 10.1002/ana.410020610.
CAS
PubMed
Google Scholar
Cushing H: Studies in Intracranial physiology & surgery: the third circulation, the Hypophysis, the Gliomas : the Cameron prize lectures delivered at the University of Edinburgh, October 19–22, 1925. 1926, Oxford
Google Scholar
Black PM: Harvey cushing at the Peter Bent Brigham hospital. Neurosurgery. 1999, 45: 990-1001. 10.1097/00006123-199911000-00007.
CAS
PubMed
Google Scholar
Woollam DH, Millen JW: The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J Anat. 1955, 89: 193-200.
PubMed Central
CAS
PubMed
Google Scholar
Jones EG: On the mode of entry of blood vessels into the cerebral cortex. J Anat. 1970, 106: 507-520.
PubMed Central
CAS
PubMed
Google Scholar
Cserr HF, Depasquale M, Patlak CS, Pullen RG: Convection of cerebral interstitial fluid and its role in brain volume regulation. Ann NY Acad Sci. 1986, 481: 123-134. 10.1111/j.1749-6632.1986.tb27144.x.
CAS
PubMed
Google Scholar
Bechmann I, Kwidzinski E, Kovac AD, Simburger E, Horvath T, Gimsa U, Dirnagl U, Priller J, Nitsch R: Turnover of rat brain perivascular cells. Exp Neurol. 2001, 168: 242-249. 10.1006/exnr.2000.7618.
CAS
PubMed
Google Scholar
Bechmann I, Priller J, Kovac A, Bontert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R: Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci. 2001, 14: 1651-1658. 10.1046/j.0953-816x.2001.01793.x.
CAS
PubMed
Google Scholar
Krueger M, Bechmann I: CNS pericytes: concepts, misconceptions, and a way out. Glia. 2010, 58: 1-10. 10.1002/glia.20898.
PubMed
Google Scholar
Krahn V: The pia mater at the site of the entry of blood vessels into the central nervous system. Anat Embryol (Berl). 1982, 164: 257-263. 10.1007/BF00318509.
CAS
Google Scholar
Ge S, Song L, Pachter JS: Where is the blood–brain barrier … really?. J Neurosci Res. 2005, 79: 421-427. 10.1002/jnr.20313.
CAS
PubMed
Google Scholar
Bechmann I, Galea I, Perry VH: What is the blood–brain barrier (not)?. Trends Immunol. 2007, 28: 5-11. 10.1016/j.it.2006.11.007.
CAS
PubMed
Google Scholar
Zhang ET, Inman CB, Weller RO: Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990, 170: 111-123.
PubMed Central
CAS
PubMed
Google Scholar
Krisch B: Ultrastructure of the meninges at the site of penetration of veins through the dura mater, with particular reference to Pacchionian granulations. Investigations in the rat and two species of new-world monkeys (Cebus apella, Callitrix jacchus). Cell Tissue Res. 1988, 251: 621-631. 10.1007/BF00214011.
CAS
PubMed
Google Scholar
Krisch B, Leonhardt H, Oksche A: Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res. 1984, 238: 459-474.
CAS
PubMed
Google Scholar
Ichimura T, Fraser PA, Cserr HF: Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 1991, 545: 103-113. 10.1016/0006-8993(91)91275-6.
CAS
PubMed
Google Scholar
Thal DR: The pre-capillary segment of the blood–brain barrier and its relation to perivascular drainage in Alzheimer’s disease and small vessel disease. Sci World J. 2009, 9: 557-563.
CAS
Google Scholar
Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA: Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985, 326: 47-63. 10.1016/0006-8993(85)91383-6.
CAS
PubMed
Google Scholar
Zhang ET, Richards HK, Kida S, Weller RO: Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol. 1992, 83: 233-239. 10.1007/BF00296784.
CAS
PubMed
Google Scholar
Barshes N, Demopoulos A, Engelhard HH: Anatomy and physiology of the leptomeninges and CSF space. Cancer Treat Res. 2005, 125: 1-16. 10.1007/0-387-24199-X_1.
PubMed
Google Scholar
Hutchings M, Weller RO: Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg. 1986, 65: 316-325. 10.3171/jns.1986.65.3.0316.
CAS
PubMed
Google Scholar
Alcolado R, Weller RO, Parrish EP, Garrod D: The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropath Appl Neurobiol. 1988, 14: 1-17. 10.1111/j.1365-2990.1988.tb00862.x.
CAS
Google Scholar
Brightman MW, Palay SL: The fine structure of Ependyma in the brain of the rat. J Cell Biol. 1963, 19: 415-439. 10.1083/jcb.19.2.415.
PubMed Central
CAS
PubMed
Google Scholar
Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn M, Noble C, Park J, Bankiewicz K: The "Perivascular Pump" driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006, 14: 69-78. 10.1016/j.ymthe.2006.02.018.
PubMed Central
CAS
PubMed
Google Scholar
Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF: Drainage of interstitial fluid from different regions of rat brain. Am J Physiol. 1984, 246: F835-F844.
CAS
PubMed
Google Scholar
Weller RO, Kida S, Zhang ET: Pathways of fluid drainage from the brain–morphological aspects and immunological significance in rat and man. Brain Pathol. 1992, 2: 277-284. 10.1111/j.1750-3639.1992.tb00704.x.
CAS
PubMed
Google Scholar
Weller RO, Djuanda E, Yow HY, Carare RO: Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009, 117: 1-14. 10.1007/s00401-008-0457-0.
CAS
PubMed
Google Scholar
Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO: Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008, 34: 131-144. 10.1111/j.1365-2990.2007.00926.x.
CAS
PubMed
Google Scholar
Preston SD, Steart PV, Wilkinson A, Nicoll JA, Weller RO: Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol. 2003, 29: 106-117. 10.1046/j.1365-2990.2003.00424.x.
CAS
PubMed
Google Scholar
Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO: Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol. 2013, 39: 593-611. 10.1111/nan.12042.
CAS
PubMed
Google Scholar
Carare RO, Hawkes CA, Weller RO: Afferent and efferent immunological pathways of the brain. Anatomy, function and failure. Brain. Behav Immun. 2014, 36: 9-14.
CAS
Google Scholar
Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO: Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 2011, 121: 431-443. 10.1007/s00401-011-0801-7.
PubMed
Google Scholar
Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H: Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013, 123: 1299-1309. 10.1172/JCI67677.
PubMed Central
CAS
PubMed
Google Scholar
Davson H, Kleeman CR, Levin E: The blood brain barrier. Drugs and Membranes, Volume 4. Edited by: Hoghen AM, Lindgren P. 1963, Oxford: Pergamon Press, 71-94.
Google Scholar
Patlak CS, Fenstermacher JD: Measurements of dog blood–brain transfer constants by ventriculocisternal perfusion. Am J Physiol. 1975, 229: 877-884.
CAS
PubMed
Google Scholar
Nicholson C, Phillips JM: Diffusion of anions and cations in the extracellular micro-environment of the brain [proceedings]. J Physiol. 1979, 296: 66P-
CAS
PubMed
Google Scholar
Sykova E, Nicholson C: Diffusion in brain extracellular space. Physiol Rev. 2008, 88: 1277-1340. 10.1152/physrev.00027.2007.
PubMed Central
CAS
PubMed
Google Scholar
Wolak DJ, Thorne RG: Diffusion of macromolecules in the brain: implications for drug delivery. Molec Pharmaceutics. 2013, 10: 1492-1504. 10.1021/mp300495e.
CAS
Google Scholar
Cserr HF, Harling-Berg CJ, Knopf PM: Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 1992, 2: 269-276. 10.1111/j.1750-3639.1992.tb00703.x.
CAS
PubMed
Google Scholar
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M: A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012, 4: 147ra111-
PubMed Central
PubMed
Google Scholar
MacAulay N, Zeuthen T: Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience. 2010, 168: 941-956. 10.1016/j.neuroscience.2009.09.016.
CAS
PubMed
Google Scholar
Papadopoulos MC, Verkman AS: Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013, 14: 265-277. 10.1038/nrn3468.
PubMed Central
CAS
PubMed
Google Scholar
Tait MJ, Saadoun S, Bell BA, Papadopoulos MC: Water movements in the brain: role of aquaporins. Trends Neurosci. 2008, 31: 37-43. 10.1016/j.tins.2007.11.003.
CAS
PubMed
Google Scholar
Bering EA: Water exchange of central nervous system and cerebrospinal fluid. J Neurosurg. 1952, 9: 275-287. 10.3171/jns.1952.9.3.0275.
PubMed
Google Scholar
Bateman GA: Extending the hydrodynamic hypothesis in chronic hydrocephalus. Neurosurg Rev. 2005, 28: 333-334. 10.1007/s10143-005-0405-6.
PubMed
Google Scholar
Mamonov AB, Coalson RD, Zeidel ML, Mathai JC: Water and deuterium oxide permeability through aquaporin 1: MD predictions and experimental verification. J Gen Physiol. 2007, 130: 111-116. 10.1085/jgp.200709810.
PubMed Central
CAS
PubMed
Google Scholar
Ibata K, Takimoto S, Morisaku T, Miyawaki A, Yasui M: Analysis of aquaporin-mediated diffusional water permeability by coherent anti-stokes Raman scattering microscopy. Biophysical J. 2011, 101: 2277-2283. 10.1016/j.bpj.2011.08.045.
CAS
Google Scholar
Johanson CE, Stopa EG, McMillan PN: The blood-cerebrospinal fluid barrier: structure and functional significance. Meth Molec Biol. 2011, 686: 101-131. 10.1007/978-1-60761-938-3_4.
CAS
Google Scholar
Praetorius J, Nielsen S: Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol. 2006, 291: C59-C67. 10.1152/ajpcell.00433.2005.
CAS
PubMed
Google Scholar
Brown PD, Davies SL, Speake T, Millar ID: Molecular mechanisms of cerebrospinal fluid production. Neuroscience. 2004, 129: 957-970.
PubMed Central
CAS
PubMed
Google Scholar
Owler BK, Pitham T, Wang D: Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res. 2010, 7: 15-10.1186/1743-8454-7-S1-S15.
PubMed Central
PubMed
Google Scholar
Bradbury MWB, Cserr H: Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. Experimental Biology of the lymphatic circulation. Edited by: Johnston MG. 1985, Amsterdam: Elsevier Science Publishers
Google Scholar
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood–brain barrier. Neurobiol Dis. 2010, 37: 13-25. 10.1016/j.nbd.2009.07.030.
CAS
PubMed
Google Scholar
Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O'Donnell ME, Povlishock JT, Saunders NR, Sharp F, Stanimirovic D, Watts RJ, Drewes LR: Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011, 12: 169-182. 10.1038/nrn2995.
PubMed Central
CAS
PubMed
Google Scholar
Abbott NJ: Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013, 36: 437-449. 10.1007/s10545-013-9608-0.
CAS
PubMed
Google Scholar
Neuwelt EA: Mechanisms of disease: the blood–brain barrier. Neurosurgery. 2004, 54: 131-142. 10.1227/01.NEU.0000097715.11966.8E.
PubMed
Google Scholar
Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP: The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 2010, 58: 1094-1103. 10.1002/glia.20990.
PubMed
Google Scholar
Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S: Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A. 1998, 95: 11981-11986. 10.1073/pnas.95.20.11981.
PubMed Central
CAS
PubMed
Google Scholar
Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP: Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997, 17: 171-180.
CAS
PubMed
Google Scholar
Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, Gundersen GA, Skare O, Laake P, Klungland A, Thoren AE, Burkhardt JM, Ottersen OP, Nagelhus EA: Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood–brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci U S A. 2011, 108: 17815-17820. 10.1073/pnas.1110655108.
PubMed Central
CAS
PubMed
Google Scholar
Zelenina M: Regulation of brain aquaporins. Neurochem Int. 2010, 57: 468-488. 10.1016/j.neuint.2010.03.022.
CAS
PubMed
Google Scholar
Day RE, Kitchen P, Owen D, Bland C, Marshall L, Conner AC, Bill RM, Conner MT: Human aquaporins: regulators of transcellular water flow. Biochim Biophys Acta. 2014, 1840 (5): 1492-1506. 10.1016/j.bbagen.2013.09.033.
CAS
PubMed
Google Scholar
Badaut J, Lasbennes F, Magistretti PJ, Regli L: Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab. 2002, 22: 367-378.
CAS
PubMed
Google Scholar
Agre P: The aquaporin water channels. Proc Am Thorac Soc. 2006, 3: 5-13. 10.1513/pats.200510-109JH.
PubMed Central
CAS
PubMed
Google Scholar
Benfenati V, Ferroni S: Water transport between CNS compartments: functional and molecular interactions between aquaporins and ion channels. Neuroscience. 2010, 168: 926-940. 10.1016/j.neuroscience.2009.12.017.
CAS
PubMed
Google Scholar
Chai RC, Jiang JH, Kwan Wong AY, Jiang F, Gao K, Vatcher G, Hoi Yu AC: AQP5 is differentially regulated in astrocytes during metabolic and traumatic injuries. Glia. 2013, 61: 1748-1765. 10.1002/glia.22555.
PubMed
Google Scholar
Igarashi H, Tsujita M, Kwee IL, Nakada T: Water influx into cerebrospinal fluid is primarily controlled by aquaporin-4, not by aquaporin-1: 17O JJVCPE MRI study in knockout mice. Neuroreport. 2014, 25 (1): 39-43.
PubMed Central
CAS
PubMed
Google Scholar
Suzuki Y, Nakamura Y, Yamada K, Huber VJ, Tsujita M, Nakada T: Aquaporin-4 positron emission tomography imaging of the human brain: first report. J Neuroimaging. 2013, 23: 219-223. 10.1111/j.1552-6569.2012.00704.x.
PubMed
Google Scholar
Yukutake Y, Yasui M: Regulation of water permeability through aquaporin-4. Neuroscience. 2010, 168: 885-891. 10.1016/j.neuroscience.2009.10.029.
CAS
PubMed
Google Scholar
Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC: Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta. 2006, 1758: 1085-1093. 10.1016/j.bbamem.2006.02.018.
CAS
PubMed
Google Scholar
Oshio K, Binder DK, Bollen A, Verkman AS, Berger MS, Manley GT: Aquaporin-1 expression in human glial tumors suggests a potential novel therapeutic target for tumor-associated edema. Acta Neurochir Suppl. 2003, 86: 499-502.
CAS
PubMed
Google Scholar
Oshio K, Binder DK, Liang Y, Bollen A, Feuerstein B, Berger MS, Manley GT: Expression of the aquaporin-1 water channel in human glial tumors. Neurosurgery. 2005, 56: 375-381. 10.1227/01.NEU.0000148904.57841.6B. discussion 375–381
PubMed
Google Scholar
Igarashi H, Tsujita M, Kwee IL, Nakada T: Inhibition of aquaporin-4 significantly increases regional cerebral blood flow. Neuroreport. 2013, 24: 324-328. 10.1097/WNR.0b013e32835fc827.
CAS
PubMed
Google Scholar
Cserr HF: Relationship between cerebrospinal fluid and interstitial fluid of brain. Fed Proc. 1974, 33: 2075-2078.
CAS
PubMed
Google Scholar
Yang M, Gao F, Liu H, Yu WH, He GQ, Zhuo F, Qiu GP, Sun SQ: Immunolocalization of aquaporins in rat brain. Anat Histol Embryol. 2011, 40: 299-306. 10.1111/j.1439-0264.2011.01070.x.
PubMed
Google Scholar
Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME: Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci U S A. 2001, 98: 14108-14113. 10.1073/pnas.241508198.
PubMed Central
CAS
PubMed
Google Scholar
Connors NC, Kofuji P: Potassium channel Kir4.1 macromolecular complex in retinal glial cells. Glia. 2006, 53: 124-131. 10.1002/glia.20271.
PubMed
Google Scholar
Amiry-Moghaddam M, Frydenlund DS, Ottersen OP: Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience. 2004, 129: 999-1010.
CAS
PubMed
Google Scholar
Vajda Z, Pedersen M, Fuchtbauer EM, Wertz K, Stodkilde-Jorgensen H, Sulyok E, Doczi T, Neely JD, Agre P, Frokiaer J, Nielsen S: Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice. Proc Natl Acad Sci U S A. 2002, 99: 13131-13136. 10.1073/pnas.192457099.
PubMed Central
CAS
PubMed
Google Scholar
Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielsen S, Kurachi Y, Ottersen OP: Immunogold evidence suggests that coupling of K + siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia. 1999, 26: 47-54. 10.1002/(SICI)1098-1136(199903)26:1<47::AID-GLIA5>3.0.CO;2-5.
CAS
PubMed
Google Scholar
Nagelhus EA, Mathiisen TM, Ottersen OP: Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience. 2004, 129: 905-913. 10.1016/j.neuroscience.2004.08.053.
CAS
PubMed
Google Scholar
Verkman AS: Knock-out models reveal new aquaporin functions. Handb Exp Pharmacol. 2009, 190: 359-381. 10.1007/978-3-540-79885-9_18.
CAS
PubMed
Google Scholar
Zador Z, Stiver S, Wang V, Manley GT: Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol. 2009, 190: 159-170. 10.1007/978-3-540-79885-9_7.
CAS
PubMed
Google Scholar
Bloch O, Auguste KI, Manley GT, Verkman AS: Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab. 2006, 26: 1527-1537. 10.1038/sj.jcbfm.9600306.
CAS
PubMed
Google Scholar
Solenov E, Watanabe H, Manley GT, Verkman AS: Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol. 2004, 286: C426-432. 10.1152/ajpcell.00298.2003.
CAS
PubMed
Google Scholar
Papadopoulos MC, Verkman AS: Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem. 2005, 280: 13906-13912. 10.1074/jbc.M413627200.
CAS
PubMed
Google Scholar
Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS: Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med. 2000, 6: 159-163. 10.1038/72256.
CAS
PubMed
Google Scholar
Saadoun S, Tait MJ, Reza A, Davies DC, Bell BA, Verkman AS, Papadopoulos MC: AQP4 gene deletion in mice does not alter blood–brain barrier integrity or brain morphology. Neuroscience. 2009, 161: 764-772. 10.1016/j.neuroscience.2009.03.069.
CAS
PubMed
Google Scholar
Li X, Kong H, Wu W, Xiao M, Sun X, Hu G: Aquaporin-4 maintains ependymal integrity in adult mice. Neuroscience. 2009, 162: 67-77. 10.1016/j.neuroscience.2009.04.044.
CAS
PubMed
Google Scholar
Bulat M, Lupret V, Oreskovic D, Klarica M: Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol. 2008, 32: 43-50.
PubMed
Google Scholar
O'Donnell M: NMR blood flow imaging using multiecho, phase contrast sequences. Med Phys. 1985, 12: 59-64. 10.1118/1.595736.
PubMed
Google Scholar
Bradley WG, Kortman KE, Burgoyne B: Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology. 1986, 159: 611-616.
PubMed
Google Scholar
Feinberg DA, Mark AS: Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology. 1987, 163: 793-799.
CAS
PubMed
Google Scholar
Nitz WR, Bradley WG, Watanabe AS, Lee RR, Burgoyne B, O'Sullivan RM, Herbst MD: Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology. 1992, 183: 395-405.
CAS
PubMed
Google Scholar
Bradley WG, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P: Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology. 1996, 198: 523-529.
PubMed
Google Scholar
Yoshida K, Takahashi H, Saijo M, Ueguchi T, Tanaka H, Fujita N, Murase K: Phase-contrast MR studies of CSF flow rate in the cerebral aqueduct and cervical subarachnoid space with correlation-based segmentation. Magn Reson Med Sci. 2009, 8: 91-100. 10.2463/mrms.8.91.
PubMed
Google Scholar
Penn RD, Basati S, Sweetman B, Guo X, Linninger A: Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg. 2011, 115: 159-164. 10.3171/2010.12.JNS10926.
PubMed
Google Scholar
Piechnik SK, Summers PE, Jezzard P, Byrne JV: Magnetic resonance measurement of blood and CSF flow rates with phase contrast–normal values, repeatability and CO2 reactivity. Acta Neurochir Suppl. 2008, 102: 263-270. 10.1007/978-3-211-85578-2_50.
PubMed
Google Scholar
Gideon P, Stahlberg F, Thomsen C, Gjerris F, Sorensen PS, Henriksen O: Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology. 1994, 36: 210-215. 10.1007/BF00588133.
CAS
PubMed
Google Scholar
Huang TY, Chung HW, Chen MY, Giiang LH, Chin SC, Lee CS, Chen CY, Liu YJ: Supratentorial cerebrospinal fluid production rate in healthy adults: quantification with two-dimensional cine phase-contrast MR imaging with high temporal and spatial resolution. Radiology. 2004, 233: 603-608. 10.1148/radiol.2332030884.
PubMed
Google Scholar
Kim DS, Choi JU, Huh R, Yun PH, Kim DI: Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Child’s Nerv Syst. 1999, 15: 461-467. 10.1007/s003810050440.
CAS
Google Scholar
Badaut J, Ashwal S, Adami A, Tone B, Recker R, Spagnoli D, Ternon B, Obenaus A: Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J Cereb Blood Flow Metab. 2011, 31: 819-831. 10.1038/jcbfm.2010.163.
PubMed Central
CAS
PubMed
Google Scholar
Chikly B, Quaghebeur J: Reassessing cerebrospinal fluid (CSF) hydrodynamics: a literature review presenting a novel hypothesis for CSF physiology. J Bodyw Mov Ther. 2013, 17: 344-354. 10.1016/j.jbmt.2013.02.002.
PubMed
Google Scholar
Greitz D, Greitz T, Hindmarsh T: We need a new understanding of the reabsorption of cerebrospinal fluid–II. Acta Paediatr. 1997, 86: 1148-
CAS
PubMed
Google Scholar
Klarica M, Oreskovic D, Bozic B, Vukic M, Butkovic V, Bulat M: New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience. 2009, 158: 1397-1405. 10.1016/j.neuroscience.2008.11.041.
CAS
PubMed
Google Scholar
Nedergaard M: Neuroscience. Garbage truck of the brain. Science. 2013, 340: 1529-1530. 10.1126/science.1240514.
PubMed Central
CAS
PubMed
Google Scholar
Foldi M, Csillik B, Zoltan OT: Lymphatic drainage of the brain. Experientia. 1968, 24: 1283-1287. 10.1007/BF02146675.
CAS
PubMed
Google Scholar
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M: Sleep drives metabolite clearance from the adult brain. Science. 2013, 342: 373-377. 10.1126/science.1241224.
CAS
PubMed
Google Scholar
Greitz D, Hannerz J: A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. AJNR. 1996, 17: 431-438.
CAS
PubMed
Google Scholar
Yang L, Kress BT, Weber HJ, Thiyagarajan M, Wang B, Deane R, Benveniste H, Iliff JJ, Nedergaard M: Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med. 2013, 11: 107-10.1186/1479-5876-11-107.
PubMed Central
PubMed
Google Scholar
Comments
View archived comments (2)