Skip to main content
Fig. 4 | Fluids and Barriers of the CNS

Fig. 4

From: Arterial vasodilation drives convective fluid flow in the brain: a poroelastic model

Fig. 4

Functional hyperemia drives fluid penetration into the brain. a The initial position of particles used for particle tracking simulations. b The waveform of radial displacement of arteriolar displacement for symmetric and asymmetric dilation in the model. The asymmetric dilation waveform represents functional hyperemia. c The distribution of fluid position for 60 s of simulation with symmetric (left) and asymmetric (right) dilation waveform. Asymmetric dilation drives nearly three times (27%) PVS fluid movement into the brain compared to asymmetric dilation (9%). Both symmetric and asymmetric dilation drive similar PVS fluid movement into the SAS (5%). d The particle trajectories of fluid particles shown in (a). Asymmetric dilation moves PVS fluid deeper below the surface into the ECS and moves the fluid further into the brain

Back to article page