Skip to main content
Fig. 5 | Fluids and Barriers of the CNS

Fig. 5

From: NIH workshop report on the trans-agency blood–brain interface workshop 2016: exploring key challenges and opportunities associated with the blood, brain and their interface

Fig. 5

Blood brain barrier delivery and targeting session. Drug delivery through the BBB to the brain can be enhanced utilizing nanoparticles that are designed to exhibit BBB targeting and/or penetrating capabilities. Evidence of these nanoparticles across the BBB can be accessed via in vivo imaging. a Dr. Julia Ljubimova presented a novel nanotechnology which can overcome the BBB for precise diagnosis, targeting and treatment of primary and metastatic brain tumors. Use of systemically administered novel nanobiopolymers based on a combination of a polymalic acid platform (Polycefin™ family of nano agents), nano drugs and imaging agents, dramatically reduced tumor size by 90% and normalized brain cancer vasculature. Image courtesy of Dr. Ljubimova. b Dr. Karathanasis’ group has developed a new class of multicomponent chain-like nanoparticles, termed nanochains. Due to enhanced site-specific targeting and radiofrequency-triggered drug release, the nanochains facilitate effective delivery of drugs across the BBB into hard-to-reach brain tumors (image reprinted with permission from [91]). c Dr. Alexander Stegh and his team developed RNAi-based Spherical Nucleic Acids (SNAs) for the treatment of Glioblastoma multiforme (GBM). Upon IV administration, SNAs cross the BBB and disseminate within intracranial patient-derived xenografts and genetically engineered mouse model tumors. Image courtesy of Dr. Stegh. d Dr. Edward Neuwelt emphasized that advances toward penetrating the BBB must consider both normal and abnormal function, as well as the entire neurovascular unit (illustrated here). Image courtesy of Dr. Neuwelt. e Dr. Justin Hanes presented a nanoparticle-based platform for drug delivery to the brain. Brain-penetrating DNA nanoparticles (red color) spread throughout the entire rat striatum, as compared to standard DNA nanoparticles (yellow color) that do not spread as well. Image courtesy of Dr. Panagiotis Mastorakos and the work is a collaboration between Dr. Hanes’ research group and that of Prof. Jung Soo Suk

Back to article page