Skip to main content

Volume 12 Supplement 1

Abstracts from Hydrocephalus 2015

  • Poster presentation
  • Open access
  • Published:

Calcium antagonism effects on cerebral blood flow in rats with acute hydrocephalus


Calcium ion antagonism shows some benefit in experimental hydrocephalus, but the interrelationship between the cerebral vasculature, cerebral blood flow (CBF), and ventriculomegaly remains unclear.


Rats were injected with kaolin at 35 days and were studied after 12-15 days. CBF was measured with and without nimodipine or magnesium sulfate using magnetic resonance and fluorescent microspheres. Arterial blood and intracranial pressure (ICP), acid-base, oxygen/hemoglobin, and electrolytes status was measured. Intraparenchymal vascular remodeling was also determined in brains of hydrocephalic rats treated with calcium antagonists for 2 weeks.


Increased ICP did not significantly affect cerebral perfusion pressure within the range of normal autoregulation. CBF significantly decreased in acutely hydrocephalic rats. Nimodipine and magnesium sulfate decreased systemic arterial blood pressure, cerebral perfusion and intracerebral pulse pressure; however, there was no change in cerebral blood flow. There was no change in white matter vascular density after 2 weeks treatment.


Cerebral hypoperfusion occurs in acute experimental hydrocephalus, however the calcium channel antagonists nimodipine and magnesium sulfate, do not increase the CBF. Reduced intracranial pulse pressure possibly mitigates development of acute hydrocephalus.


  1. Alfasi AM, Shulyakov AV, Del Bigio MR: Intracranial biomechanics following cortical contusion in live rats. J Neurosurg. 2013, 119 (5): 1255-62. 10.3171/2013.7.JNS121973. doi: 10.3171/2013.7.JNS121973. Epub 2013 Sep 13

    Article  PubMed  Google Scholar 

  2. Shulyakov AV, Del Bigio MR: Neurosurgery. 2013, 72 (5): E877-8. 10.1227/NEU.0b013e31828ab43c. doi: 10.1227/NEU.0b013e31828ab43c

    Article  PubMed  Google Scholar 

  3. Shulyakov AV, Buist RJ, Del Bigio MR: Intracranial biomechanics of acute experimental hydrocephalus in live rats. Neurosurgery. 2012, 71 (5): 1032-40. 10.1227/NEU.0b013e3182690a0c. doi: 10.1227/NEU.0b013e3182690a0c

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alexander Victor Shulyakov.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shulyakov, A.V., Buist, R.J., DiCurzio, D.L. et al. Calcium antagonism effects on cerebral blood flow in rats with acute hydrocephalus. Fluids Barriers CNS 12 (Suppl 1), P49 (2015).

Download citation

  • Published:

  • DOI: