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Abstract 

Adenylyl cyclases (ADCYs), by generating second messenger cAMP, play important roles in various cellular processes. 
Their expression, regulation and functions in the CNS, however, remain largely unknown. In this review, we first 
introduce the classification and structure of ADCYs, followed by a discussion of the regulation of mammalian ADCYs 
(ADCY1-10). Next, the expression and function of each mammalian ADCY isoform are summarized in a region/cell-
specific manner. Furthermore, the effects of GPCR-ADCY signaling on blood–brain barrier (BBB) integrity are reviewed. 
Last, current challenges and future directions are discussed. We aim to provide a succinct review on ADCYs to foster 
new research in the future.
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Background
One important mechanism that cells use to sense their 
environment is via receptor-mediated signaling. Spe-
cifically, environmental signals, such as chemokines and 
neurotransmitters, bind to receptors at plasma mem-
brane and activate key intracellular signaling molecules 
(e.g., second messengers), transferring information from 
outside to inside. One ubiquitous second messenger in 
various cell types is cyclic adenosine 3′,5′-monophos-
phate (cAMP), which can act via either a kinase-depend-
ent manner to induce protein phosphorylation or a 
kinase-independent manner to induce protein–protein 
interactions [1]. cAMP plays a pivotal role in a variety 
of fundamental cellular processes [2], and thus its level 
needs to be tightly regulated. Adenylyl cyclases (ADCYs) 
catalyze the production of cAMP from ATP, while phos-
phodiesterases (PDEs) degrade cAMP to 5′-AMP [3, 4]. 
This review summarizes the structure, regulation, expres-
sion and functions of ADCYs in the CNS.

Classification of ADCYs
ADCYs are grouped into six different classes (class I-VI) 
based on their structural and domain organizations [5]. 
Class I is the gamma-proteobacterial type found mainly 
in gram-negative bacteria, such as Escherichia coli [6, 7]. 
Class II exists in pathogens that secrete toxin proteins, 
including Bordetella pertussis and Bacillus anthracis 
[8]. Class III is the universal or ancestral class of ADCYs 
found in both bacteria and eukaryotes. Since many of the 
class III ADCYs have been identified in higher eukary-
otes and most thoroughly studied in mammals, they are 
also known as mammalian ADCYs. Class IV has been 
identified in Yersinia pestis and in ruminal bacteria Aero-
monas hydrophila [5]. Class V and class VI are found in 
anaerobic bacterium Prevotella ruminicola and nitrogen 
fixing bacterium Rhizobium etli, respectively [9, 10]. The 
last two classes of ADCYs have not yet been structurally 
characterized. In this review, we focus on class III/mam-
malian ADCYs.

Mammalian ADCYs
Mammalian ADCYs have ten isoforms: nine trans-
membrane ADCYs (ADCY1-9) and one soluble ADCY 
(sADCY/ADCY10). All transmembrane ADCYs have a 
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similar structure, but are different in their length and 
sequence at amino acids 1080–1353 [11] (Table 1). They 
consist of two discrete membrane-spanning (M1 and 
M2) domains with each containing six transmembrane 
alpha-helices, a single N-terminal cytosolic domain, 
and two cytoplasmic (C1 and C2) domains (Fig. 1). The 
C1 domain lies between two transmembrane domains, 
while the C2 domain is at the large C-terminus of the 
protein. These C1/C2 domains are subdivided into 
C1a/C2a and C1b/C2b subdomains (Fig.  1). The C1a 

and C2a subdomains are the catalytic site and highly 
conserved: they are structurally identical and homolo-
gous among all 9 transmembrane isoforms, while the 
C1b and C2b subdomains are the regulatory site [11, 
12]. Unlike ADCY1-9, ADCY10 does not have clearly 
defined transmembrane domains (Table 1) [13]. Its cat-
alytic domain is more related to bicarbonate-sensing 
ADCY from cyanobacteria than that of ADCY1-9.

Genetic studies have shown that ADCY genes are 
not clustered in the genome: each isoform is coded by 

Table 1  Chromosomal location, structure and length of mammalian ADCYs

Gene 
name

Chromosome 
(human)

Chromosome 
(mouse)

Structure Length 
(human)

Length 
(mouse)

ADCY1 7p12 11A2
 

1119 1118

ADCY2 5p15 13C1
 

1091 1090

ADCY3 2p22-24 12A-B
 

1144 1145

ADCY4 14q11.2 14D3
 

1077 1077

ADCY5 3q13.2-q21 16B5
 

1261 1262

ADCY6 12q12-13 15F
 

1168 1165

ADCY7 16q12-13 8C3-D
 

1080 1099

ADCY8 8q24 15
 

1251 1249

ADCY9 16p13.3 16B1
 

1353 1353

ADCY10 1q24.2 1  1610 1614

Fig. 1  Structural illustration of transmembrane ADCYs. M1/M2: membrane-spanning domains; Catalytic site: C1a and C2a (navy blue); Regulatory 
site: C1b and C2b (red). Created with BioRender.com
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a gene localized on a different chromosome [14, 15] 
(Table  1). This enables isoform-specific regulation of 
ADCYs.

Regulation of ADCYs
ADCY activity is mainly regulated by G protein-coupled 
receptors (GPCRs). G protein is a heterotrimer contain-
ing α, β and γ subunits. Based on its function, Gα subu-
nit is divided into four major categories: Gαs, Gαi/o, Gαq/11 
and Gα12/13 (Fig.  2). Currently, there are five β and 11 γ 
subunits, which through forming highly active βγ heter-
odimers participate in the regulation of various biological 

processes [16]. Upon ligand binding, GPCRs change 
their confirmation replace GDP with GTP on Gα subunit, 
leading to dissociation of Gβγ complex. Then Gα and Gβγ 
independently activate downstream signaling cascades. 
The system returns to the resting state when ligands are 
released from GPCRs, which causes hydrolysis of GTP to 
GDP on Gα subunit and subsequent reassociation of Gβγ 
with Gα to form heterotrimers.

The effect of GPCRs on ADCY activity is dependent 
on the type of G protein (Fig. 2). Specifically, Gαs directly 
activates ADCYs, increasing cAMP production. Gαi/o 
directly activate or inhibit ADCY activity in an ADCY 

Fig. 2  Schematic illustration of GPCR-ADCY signaling pathways. Upon ligand binding to the GPCR, GDP on Gα subunit is replaced with GTP, 
triggering the dissociation of Gβγ from Gα. The dissociated Gα and Gβγ subunits interact with different effectors and signaling molecules. Gαs directly 
activates ADCY activity, converting ATP to cAMP, which activates PKA and EPAC. Gαi/o directly activates or inhibits ADCY activity depending on ADCY 
isoforms. In addition, Gαi/o can inhibit the stimulation of Gαs and Ca2+; and activate MAPK pathway and PLC. Gαq/11 indirectly participates in the 
regulation of ADCY via Ca2+ and PKC, which are generated via PLC-DAG/IP3 signaling pathway. PKC and Ca2+ can either activate or inhibit ADCY 
activity in an isoform-specific manner. Gα12/13 activates GEFs-RhoA signaling and does not seem to regulate ADCY activity. Gβγ activates or inhibits 
ADCY activity depending on its Gα partner and ADCY isoforms. Created with BioRender.com
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isoform-specific manner. Gαq/11 indirectly regulates 
ADCY activity via protein kinase C (PKC) and/or Ca2+, 
which can activate or inhibit ADCY activity. Gα12/13 does 
not seem to be involved in the regulation of ADCY activ-
ity. The dissociated Gβγ complex can either activate or 
inhibit ADCY activity depending on its Gα partner and 
ADCY isoforms. It should be noted that Gβγ can also be 
generated via modulatory protein GoLoco without acti-
vation of GPCRs. Similarly, Gβγ generated this way may 
have stimulatory or inhibitory effect on ADCY activity.

Based on their signaling properties, transmembrane 
ADCYs are further divided into four groups (Group I-IV). 
Group I is composed of ADCY1, ADCY3 and ADCY8; 
Group II includes ADCY2, ADCY4 and ADCY7; Group 
III consists of ADCY5 and ADCY6; and Group IV con-
tains ADCY9 only. The unique features of these four 
groups of transmembrane ADCYs and soluble ADCY are 
discussed below and summarized in Fig. 3.

Group I
Group I ADCYs are activated by Gαs and Ca2+/calmod-
ulin, and inhibited by Gαi/o and Gβγ. It should be noted 
that these ADCYs have different sensitivity to the stim-
uli. For example, ADCY3 and ADCY8 are five-fold less 
sensitive to Ca2+ than ADCY1 [17]. In addition, the 
activity of group I ADCYs can also be regulated by phos-
phorylation. For instance, PKCα activates ADCY1 and 
ADCY3; whereas calcium/calmodulin-dependent pro-
tein kinase  IV (CaMKIV) inactivates ADCY1, CaMKII 
and regulator of G protein signaling 2 (RGS2) inactivate 
ADCY3, and PKA inactivates ADCY8 [18].

Group II
Group II ADCYs are activated by both Gαs and Gβγ with a 
higher potency on Gαs, but insensitive to Ca2+/calmodu-
lin. Although group II ADCYs are not inhibited by Gαi/o, 
it is assumed that Gβγ released from Gαi/o stimulation can 
synergistically stimulate them [11, 15, 19]. In addition, 
PKC regulates group II ADCYs in an isoform-specific 
manner. Specifically, PKCα activates ADCY2 but inacti-
vates ADCY4, and PKCδ activates ADCY7 [18].

Group III
Group III ADCYs are activated by Gαs and Gβγ, but inhib-
ited by Gαi/o and free Ca2+. Although most ADCYs are 
inhibited by high (non-physiological) concentration of 
Ca2+, ADCY5 and ADCY6 are inhibited by Ca2+ at sub-
micromolar level [17], which may have important physio-
logical implications. In addition, ADCY5 is also activated 
by PKCα/δ and inhibited by RGS2, PKA and Rica8; 

whereas ADCY6 is inhibited by RGS2, PKA and PKCδ/ε 
[18].

Group IV
Group IV ADCY is activated solely by Gαs. Unlike other 
transmembrane ADCYs, ADCY9 is insensitive to forsko-
lin due to the lack of a key leucine residue in the catalytic 
cleft [20, 21]. Although ADCY9 is not regulated by Gαi/o 
or Gβγ, calcineurin and PKC are able to inhibit its activity 
[18].

sADCY/ADCY10
Unlike transmembrane ADCYs, ADCY10 is not associ-
ated with the membrane: it is diffusely distributed in the 
cytoplasm and nucleus [22]. Although ADCY10 is not 
regulated by G protein and insensitive to forskolin, it is 
activated by Ca2+ and bicarbonates [22, 23]. The nega-
tive regulators of ADCY10 have yet to be identified and 
the functions of ADCY10 remain largely unknown. It has 
been reported that nuclear ADCY10 is involved in gene 
regulation [24], while mitochondrial ADCY10 moderates 
oxidative phosphorylation in response to CO2/HCO3

− 
generated by citric acid cycle [25, 26].

Expression and functions of ADCYs in the CNS
ADCYs are found in almost all cells and different cell 
types express distinct ADCY isoforms. The expression 
patterns of ADCY isoforms are mainly obtained from 
RNA-sequencing analyses (at the mRNA level). Cur-
rently, ADCY expression profiles at the protein level 
are limited, possibly due to the lack of isoform-specific 
antibodies.

ADCYs play a variety of important functions in the 
CNS, ranging from learning/memory to movements. 
Abnormal ADCY expression is found in and associ-
ated with many neurological disorders, including Alz-
heimer’s disease and depressive disorders. For example, 
loss of ADCY1 leads to impaired synaptic plasticity and 
deficits in spatial learning [27], while overexpression 
of ADCY1 in the forebrain enhances recognition and 
memory [28]. ADCY8 exerts similar functions as ADCY1 
[29–35] and is associated with bipolar disorder [36] and 
post-traumatic stress disorder [37] in humans. ADCY3 
is involved in olfactory-dependent learning and associ-
ated with major depressive disorder in humans [38, 39]. 
Loss of ADCY5 results in Parkinson-like motor dysfunc-
tion and locomotor impairment [40]. ADCY7 is linked to 
familial major depression in both mice and humans [41, 
42]. It should be noted that not all ADCYs are well stud-
ied. The functions of ADCY2, ADCY4, ADCY6, ADCY9 
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Fig. 3  Diagram illustration of the regulation of mammalian ADCYs. Key regulators of mammalian ADCYs are summarized based on their groups. 
Unique regulators for each ADCY isoform are also illustrated. Created with BioRender.com
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and ADCY10 in the CNS remain largely unknown. Here, 
we discuss and summarize the expression (Table 2) and 
function (Table 3) of each ADCY isoform in the CNS.

ADCY1
Expression
ADCY1 mRNA is transiently expressed in trigeminal 
nerve nuclei, striatum, dorsal thalamus, hippocam-
pal interneurons, retinal ganglion cells and cerebellar 
Purkinje cells in early postnatal life [43]. In adulthood, 
however, its expression is confined to olfactory bulb, pin-
eal gland, cortex, dentate gyrus, various thalamic nuclei, 
CA1 region of hippocampus and granule cells of the cer-
ebellum [43, 44]. Bulk RNA-sequencing analysis showed 
that ADCY1 expression was high in neurons and moder-
ate in oligodendrocytes, microglia and astrocytes [45]. 
Single-cell RNA-sequencing study demonstrated high 
and low levels of ADCY1 in vascular fibroblast-like cells 
and endothelial cells, respectively [46].

Function
As a Ca2+/calmodulin-sensitive ADCY, ADCY1 exerts 
important functions in neuronal development, a pro-
cess that is critically regulated by calcium [47]. Corre-
lation studies showed that hippocampal expression of 
ADCY1 was reduced during aging and increased during 
the acquisition of spatial learning [48, 49], highlighting a 
possible role of ADCY1 in learning/memory. In addition, 
ADCY1-null mice exhibited reduced long-term poten-
tiation (LTP) in hippocampal mossy fibers, impaired cer-
ebellar LTP, and higher threshold to inflammatory and 
chronic pain [50–52]. Consistent with these findings, 
overexpression of ADCY1 in forebrain led to elevated 
LTP, improved memory and decreased social ability via 
increased extracellular signal-related kinase (ERK1/2) 
[28]. These results suggest that ADCY1 regulates learn-
ing/memory, LTP and nociception.

Interestingly, FMR1-null mice, a rodent model of frag-
ile X syndrome, exhibited increased ADCY1 expression 
and ADCY1-overexpression-like phenotype, including 

Table 2  Region/cell-specific expression of ADCYs in the CNS

# High expression, ^Medium expression, *Low expression

Isoforms Sites of expression Cell types

ADCY1 Piriform cortex#, CA1-CA2 of hippocampus#, dentate gyrus#, 
striatum#, amygdala^, thalamus#, and cerebellum#, cerebral cortex^, 
and olfactory bulb layers*

Neurons#, oligodendrocytes^, microglia^, astrocytes^, fibroblasts* and 
endothelial cells*

ADCY2 Piriform cortex#, CA1 of hippocampus#, dentate gyrus#, striatum#, 
CA2-CA3 of hippocampus^, thalamus^, hypothalamus^, olfactory 
bulb layers^, cerebral cortex^, amygdala*, and cerebellum*

Neurons#, astrocytes#, fibroblasts#, smooth muscle cells#, 
oligodendrocytes^, microglia*, endothelial cells*, pericytes*

ADCY3 CA1-CA3 of hippocampus#, dentate gyrus#, cerebral cortex^, 
striatum^, amygdala^, thalamus^, hypothalamus^, cerebellum^, 
olfactory bulb layers*, piriform cortex*, and choroid plexus

Neurons#, astrocytes#, fibroblasts#, pericytes#, oligodendrocytes^, 
smooth muscle cells*, microglia*, endothelial cells*, and choroid 
plexus epithelial cells

ADCY4 Hippocampus* and olfactory epithelium* Endothelial cells#, neurons*, astrocytes*, fibroblasts*, smooth muscle 
cells*, oligodendrocytes*, microglia*, and pericytes*

ADCY5 Striatum#, hypothalamus^, olfactory bulb layers^, cerebral cortex*, 
piriform cortex*, amygdala*, CA1-CA3 of hippocampus*, dentate 
gyrus*, and thalamus*

Neurons#, oligodendrocytes#, fibroblasts#, smooth muscle cells#, 
astrocytes*, microglia*, endothelial cells*, and pericytes*

ADCY6 Piriform cortex#, amygdala#, CA1-CA3 of hippocampus#, dentate 
gyrus#, hypothalamus#, cerebellum#, choroid plexus#, olfactory bulb 
layers^, cerebral cortex^, striatum^, and thalamus^

Neurons#, astrocytes#, fibroblasts#, smooth muscle cells#, 
oligodendrocytes#, endothelial cells#, pericytes#, and microglia*

ADCY7 Thalamus^, and hypothalamus^, cerebral cortex*, amygdala*, corpus 
callosum*, cerebellum*, and olfactory system*

Fibroblasts#, smooth muscle cells#, microglia#, neurons*, astrocytes*, 
oligodendrocytes*, endothelial cells*, and pericytes*

ADCY8 Piriform cortex#, CA1-CA2 of hippocampus#, dentate gyrus#, 
thalamus#, hypothalamus#, cerebellum#, olfactory bulb#, cerebral 
cortex*, and amygdala*

Neurons#, astrocytes#, fibroblasts*, smooth muscle cells*, 
oligodendrocytes*, microglia*, and endothelial cells*

ADCY9 Olfactory bulb#, cerebral cortex#, piriform cortex#, CA1-CA3 of 
hippocampus#, dentate gyrus#, cerebellum#, amygdala^, thalamus*, 
and hypothalamus*

Neurons#, astrocytes#, fibroblasts#, smooth muscle cells#, 
oligodendrocytes#, microglia#, endothelial cells#, and pericytes#

ADCY10 Visual cortex*, hippocampus*, and cerebellum*, and choroid plexus Neurons*, astrocytes*, fibroblasts*, smooth muscle cells*, 
oligodendrocytes*, microglia*, endothelial cells*, pericytes*, and 
choroid plexus epithelial cells
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enhanced autism-related behaviors and increased 
ERK1/2 activity [53]. Loss of ADCY1 in FMR1-null back-
ground, however, reversed these changes [53]. These 
findings suggest that FMR1 inhibits ADCY1 expression, 
and that loss of FMR1-dependent suppression of ADCY1 
is a cause for eccentric neuronal signaling in fragile X 
syndrome.

In humans, it has been reported that a nonsense muta-
tion in ADCY1 gene causes hearing impairment, deafness 
and loss of hair cell function [54, 55]. In addition, genome 
wide analysis studies (GWAS) showed that ADCY1 poly-
morphism was associated with sleep deprivation, schizo-
phrenia and bipolar disorder [56, 57].

ADCY2
Expression
ADCY2 mRNA is highly expressed in piriform cortex, 
hippocampus, dentate gyrus, striatum and thalamus 
[58]. Bulk RNA-sequencing study found that ADCY2 
was mainly expressed in astrocytes, neurons and oli-
godendrocytes precursor cells (OPCs); and to a lesser 
extent in oligodendrocytes and microglia [45]. Single-cell 

RNA-sequencing analysis showed that ADCY2 was 
expressed at high levels in astrocytes, vascular fibroblast-
like cells and smooth muscle cells, and at low levels in 
endothelial cells and pericytes [46]. At the protein level, 
ADCY2 expression has been found in mouse hippocam-
pus [59], indicating a possible role in synaptic plasticity.

Function
The function of ADCY2 remains largely unknown. A cor-
relation study found that ADCY2 was down-regulated 
throughout the hippocampus during the acquisition of 
spatial learning in mice [49], suggesting that ADCY2 may 
be involved in spatial learning and memory. In addition, 
it has been reported that P19 cells (embryonic carcinoma 
cells) up-regulate ADCY2 during neuronal [60] and mes-
odermal [61] differentiation, highlighting a possible role 
of ADCY2 in cell differentiation during development.

A recent GWAS study revealed that ADCY2 polymor-
phism was associated with neuropsychiatric disorders, 
including bipolar disorder [62, 63], anxiety and stress-like 
disorders [64], Lesch-Nyhan disease and schizophrenia 
[65, 66].

Table 3  ADCY functions and their associated diseases

a Global knockout, bConditional knockout, cKnockdown

Isoforms Knockout/
knockdown

Overexpression Potential functions Associated diseases References

ADCY1 Yesa Yes Learning, memory, LTP, synaptic 
plasticity, drug dependency, 
nociception, and pain

Anxiety-like behavior, hearing 
impairment, sleep deprivation, 
schizophrenia, bipolar disorder, and 
autism

[28, 50, 53, 55–57]

ADCY2 – – Synaptic plasticity and neuropsy-
chiatric functions

Bipolar disorder, anxiety, stress-like 
disorders, Lesch-Nyhan disease, and 
schizophrenia

[63–66]

ADCY3 Yesa,b – Odorant signaling, learning, and 
memory

Obesity, depression, and inflamma-
tory bowel disease

[19, 38, 68, 70–72, 74–79, 190]

ADCY4 Yesb – – – [81]

ADCY5 Yesa,c Yes Learning, memory, synaptic plas-
ticity, and extrapyramidal motor 
functions

Familial dyskinesia and facial 
myokymia, anxiety, depressive-like 
disorder, and movement disorders

[83–85, 89, 92–95]

ADCY6 Yesa Yes Metabolic functions and fluid 
homeostasis in kidney

Axoglial diseases and lethal con-
genital contracture syndrome

[97, 98, 100, 101]

ADCY7 Yesc Yes Alcohol dependency Depression-like disorder, inflamma-
tory bowel disease, Crohn’s disease, 
ulcerative colitis, and autoimmune 
diseases

[42, 108, 109]

ADCY8 Yesa Yes Learning, memory, LTP, synaptic 
plasticity, nociception, and pain

Dissociative amnesia, post-trau-
matic stress disorder, depression, 
and bipolar disorder

[29, 33, 37, 52, 112, 113]

ADCY9 Yesa Yes Learning and memory, immuno-
logical functions, and cardiopro-
tective

Asthma, mood disorders, and bipo-
lar disorder

[116, 119–121]

ADCY10 Yesa – Synaptic plasticity, learning and 
memory, ocular dominance 
plasticity, and fertilization

Infertility and absorptive hypercal-
ciuria

[126, 132, 133]
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ADCY3
Expression
ADCY3 mRNA is highly expressed in olfactory sensory 
neurons (OSN), neuronal primary cilia, and dorsal root 
ganglion [67, 68]. Bulk and single-cell RNA-sequencing 
studies showed that ADCY3 was highly expressed in neu-
rons, OPCs, astrocytes, pericytes and vascular fibroblast-
like cells; and moderately expressed in oligodendrocytes, 
microglia, endothelial cells and smooth muscle cells [45, 
46]. At the protein level, ADCY3 is mainly found in pri-
mary cilia on choroid plexus cells and astrocytes [69].

Function
The high expression of ADCY3 in olfactory sensory 
neurons suggests that it may regulate odor/pheromone 
detection [67, 68]. Consistent with these results, abla-
tion of ADCY3 leads to defective olfactory sensory 
neuron maturation and abnormal olfactory-based behav-
ioral responses, including lack of preference for the test 
odorants in both sand-buried food task and odor-asso-
ciated passive avoidance learning paradigm, absence 
of inter-male aggressiveness and male sexual behavior, 
and defective maternal behaviors [19, 70–72]. In addi-
tion, ADCY3-null mice also exhibit impaired learning/
memory and short-term memory loss [38], highlighting 
an essential role of ADCY3 in learning/memory. Fur-
thermore, dysregulation of ADCY3-mediated cAMP 
signaling in choroid plexus epithelial cells has also been 
suggested to contribute to the onset of hydrocephalus 
[73].

GWAS studies demonstrated that ADCY3 polymor-
phism was associated with obesity [74–76], depression 
[77], and inflammatory bowel disease [78, 79].

ADCY4
Expression
ADCY4 mRNA is expressed at extremely low levels in 
various brain regions, including olfactory bulbs, cerebral 
cortex, hippocampus, amygdala, basal ganglia, thala-
mus, hypothalamus, pons, medulla and cerebellum [58, 
80]. Bulk and single-cell RNA-sequencing analyses dem-
onstrated that ADCY4 expression was predominantly 
detected in endothelial cells [45, 46]. One study reported 
ADCY4 expression in dentate gyrus and hippocampal 
CA1/CA3 regions at the protein level [59].

Function
The expression of ADCY4 in hippocampus and dentate 
gyrus suggests a possible role in synaptic plasticity [59]. 

Although ADCY4 is also detected in olfactory cilia [19], it 
does not seem to play a role in olfactory perception since 
it cannot rescue anosmia in ADCY3-null mice [19].

Outside the CNS, ADCY4 is mainly expressed in the 
kidney. However, loss of ADCY4 in kidney collecting 
duct principal cells fails to affect vasopressin-stimulated 
cAMP generation or sodium/water reabsorption [81], 
highlighting a dispensable role of ADCY4 in these cells.

ADCY5
Expression
ADCY5 mRNA is highly expressed in the olfactory sys-
tem, piriform cortex and striatum; and weakly expressed 
in thalamus and hippocampus [58, 80]. Bulk and single-
cell RNA-sequencing analyses revealed high levels of 
ADCY5 in neurons, vascular fibroblast-like cells, smooth 
muscle cells, OPCs and oligodendrocytes; and low lev-
els of ADCY5 in microglia, astrocytes, pericytes and 
endothelial cells [45, 46]. Consistent with these findings, 
ADCY5 mRNA is detected in cholinergic interneurons 
and GABAergic medium spiny neurons in the striatum 
[82, 83].

Function
In vitro study showed that P19 cells up-regulated ADCY5 
during neuronal differentiation [60], highlighting an 
important role of ADCY5 in neuronal maturation/func-
tion. Echoed with this result, knockdown of ADCY5 in 
nucleus accumbens decreases cAMP, leading to blood–
brain barrier (BBB) disruption, social stress and depres-
sion-like behaviors [84]. Similarly, ADCY5-null mice 
exhibit poor stress-coping responses [85], indicating a 
critical role of ADCY5 in the regulation of anxiety and 
stress. In addition, loss of ADCY5 also impairs striatum-
dependent learning, corticostriatal plasticity, dopamine 
signaling and motor activity [83, 86].

Outside the CNS, ADCY5 participates in the regula-
tion of heart function. In vitro study showed that ADCY5 
expression correlated with the appearance of beating car-
diomyocytes and transcription of MLC1A (myosin light 
chain 1 atrial isoform) during mesodermal differentiation 
of P19 cells, highlighting an important role of ADCY5 
in early cardiogenesis and cardiomyocyte differentiation 
[61]. In addition, deletion of ADCY5 improves basal left 
ventricular function [87, 88], protects the heart against 
chronic βAR stimulation [89] and age-related cardiomyo-
pathy [90, 91]. These results indicate a detrimental role of 
ADCY5 in heart function.

ADCY5 polymorphism has been linked to neuropsy-
chiatric disorders. For example, a missense mutation 
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(A726T) has been associated with familial dyskinesia with 
facial myokymia (FDFM) [92]. In addition, a homozygous 
missense or heterozygous de novo mutation (p.R418W) 
results in early onset of motor disability and movement 
disorder with severe intellectual disability [93–95].

ADCY6
Expression
ADCY6 has a similar but broader and higher expres-
sion pattern as ADCY5. In addition to the olfactory sys-
tem, piriform cortex and striatum, ADCY6 mRNA is also 
highly expressed in the limbic areas, including amygdala, 
hippocampus, dentate gyrus and hypothalamus [58, 80]. 
Bulk and single-cell RNA-sequencing analyses showed 
that ADCY6 was highly expressed in neurons, OPCs, 
oligodendrocytes, astrocytes, endothelial cells, pericytes 
and smooth muscle cells [45, 46].

Function
The function of ADCY6 in the CNS remains unknown. 
Outside the CNS, ADCY6 is involved in the pathogen-
esis of cardiac and renal disorders. In vitro study showed 
that P19 cells up-regulated ADCY6 during mesodermal 
differentiation [61]. Expression of ADCY6 in the left 
ventricle of pigs with congestive heart failure increases 
cardiac contractility and ameliorates cardiac failure [96]. 
Although loss of ADCY6 does not affect basal cAMP 
level, it greatly reduces βAR-stimulated cAMP produc-
tion [97, 98]. ADCY6-null mice display increased urine 
output, decreased urine osmolarity, reduced responsive-
ness to arginine vasopressin (AVP), and mild Bartter 
syndrome-like phenotype [99]. Together, these findings 
highlight important roles of ADCY6 in cardiac and renal 
functions. In addition, homozygous missense mutation 
(R1116C) in ADCY6 reduces myelination in peripheral 
nervous system, contributing to human axoglial diseases 
[100] and lethal congenital contracture syndrome [101]. 
ADCY6 has also been identified as a prognostic factor 
involved in DNA methylation-regulated immune pro-
cesses in luminal-like breast cancer [102].

ADCY7
Expression
ADCY7 mRNA expression is restricted to thalamus and 
hypothalamus, with lower expression in cerebral cortex, 
amygdala, corpus callosum, cerebellum and olfactory 
bulbs [41, 58, 80]. Bulk and single-cell RNA-sequencing 
analyses showed that ADCY7 was highly expressed in 
microglia and vascular fibroblast-like cells [45, 46]. At the 
protein level, ADCY7 expression is mainly found in hip-
pocampus, cerebellum, caudate-putamen, cerebral cortex 
and nucleus accumbens [103].

Function
Ethanol-induced GABAergic transmission in central 
amygdala neurons was ablated in ADCY7+/ brain slices 
[104], while mutant mice overexpressing human ADCY7 
in the brain displayed higher plasma adrenocorticotropin 
and corticosterone levels after ethanol injection   [105]. 
These findings suggest that ADCY7 plays an important 
role in ethanol modulation of presynaptic GABA release, 
which may underlie ethanol-related behaviors such as 
anxiety and dependence.

There is also evidence suggesting that ADCY7 is 
involved in mood regulation and major depressive disor-
der. It has been reported that overexpression of ADCY7 
in female mice increases depression-like behaviors, while 
ADCY7+/− mice display decreased depression-like symp-
toms [42]. Consistent with this finding, a tetranucleotide 
repeat [(AACA)7] polymorphism in ADCY7 is associated 
with depressive disorders in humans [42, 65]. Postmor-
tem study found increased ADCY7 expression in the 
amygdala and anterior cingulate cortex of patients with 
depression [41].

In addition, ADCY7 is a major contributor of cAMP 
in T and B lymphocytes. Loss of ADCY7 leads to fewer 
leukocytes and higher mortality upon bacterial infec-
tions [106, 107], indicating an essential role of ADCY7 
in immune responses. Consistent with these results, 
ADCY7 polymorphism is associated with inflamma-
tory bowel disease, Crohn’s disease, ulcerative colitis and 
autoimmune diseases [108, 109].

ADCY8
Expression
During early postnatal life, ADCY8 mRNA is expressed 
in hippocampal CA1 region, cortex, cerebellum, olfac-
tory bulb, hypothalamus, amygdala and basal ganglia. In 
adulthood, ADCY8 is found in olfactory bulb, cerebel-
lum, hypothalamus, thalamus, hippocampal CA1 region, 
habenula, cerebral and piriform cortices [43, 110]. Bulk 
and single-cell RNA-sequencing analyses showed that 
ADCY8 was predominantly expressed in neurons, OPCs 
and astrocytes [45, 46].

Function
In vitro study showed that P19 cells up-regulated ADCY8 
during neuronal differentiation [60], suggesting a possible 
role of ADCY8 in neuronal development. In  vivo study 
demonstrated that knockdown of ADCY8 ablated the 
midline-crossing of retinal neurons in zebrafish, result-
ing in mis-projections of exons to the ipsilateral tectum 
[111], highlighting an essential role of ADCY8 in axonal 
pathfinding. ADCY8-null mice showed defective short-
term plasticity, impaired presynaptic/postsynaptic LTP 
and abnormal anxiety-like behaviors under stress [29, 33, 
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51]. In addition, ADCY8-null mice exhibited no reduc-
tion in allodynia and slightly reduced behavioral noci-
ceptive responses to subcutaneous formalin injection 
or nerve injury [52]. ADCY1-null and ADCY1/ADCY8 
double knockout mice, on the other hand, displayed 
more dramatic changes in these tests [52]. These find-
ings indicate a relatively less important role of ADCY8 
in behavioral responses to inflammation or nerve injury 
compared to ADCY1.

GWAS studies showed that ADCY8 polymorphism 
was associated with various neuropsychiatric disorders, 
including dissociative amnesia, post-traumatic stress dis-
order, depression and bipolar disorder [37, 112, 113].

ADCY9
Expression
ADCY9 mRNA is broadly expressed in the brain with 
high levels in olfactory system, neocortex, piriform 
cortex, hippocampus, dentate gyrus, thalamus, hypo-
thalamus and cerebellum [114, 115] Bulk and single-
cell RNA-sequencing analyses showed that ADCY9 was 
highly expressed in almost all cell types in the CNS, 
including neurons, OPC, oligodendrocytes, astrocytes, 
microglia, endothelial cells, pericytes, smooth muscle 
cells and vascular fibroblast-like cells [45, 46].

Function
Although ADCY9 is abundantly expressed in the brain, 
its function in the CNS remains largely unknown. Loss of 
ADCY9 leads to grade 1 ventricular diastolic dysfunction 
and embryonic lethality [116], preventing investigation of 
its function in adulthood. A study found reduced expres-
sion of ADCY9 in the hippocampus in aged mice [48]. 
More importantly, ADCY9 was significantly increased in 
mouse hippocampus after spatial learning and its expres-
sion correlated with animal performance in the Morris 
water maze test [48]. These findings suggest that ADCY9 
may regulate cognitive function and learning/memory.

In addition, there is also evidence showing that ADCY9 
modulates immune function. For example, it has been 
reported that ADCY9 regulates the chemotaxis of neu-
trophils and monocytes [117] as well as T cell function 
[11, 118].

GWAS studies found that ADCY9 polymorphism was 
associated with asthma [119, 120], mood disorders [121], 
and the efficacy of dalcetrapib, an antiatherogenic drug 
[122].

ADCY10
Expression
Bulk RNA-sequencings analysis showed minimal 
expression of ADCY10 in neurons, OPCs, oligodendro-
cytes, astrocytes, microglia and endothelial cells [45]. 

Single-cell RNA-sequencing study found relatively high 
expression of ADCY10 in endothelial cells and astrocytes 
[46]. At the protein level, ADCY10 is found in astrocytes 
[123], developing neurons [124], and neurons of visual 
cortex, hippocampus and cerebellum [125, 126]. In addi-
tion, ADCY10 expression has also been found in the cho-
roid plexus at both mRNA [127] and protein [128, 129] 
levels.

Function
ADCY10 activation in astrocytes increases cAMP level, 
induces glycogenolysis/glycolysis, and provides energy 
substrate for astrocytes and neurons [123], suggesting an 
important role in astrocyte-neuron metabolic coupling. 
Overexpression of ADCY10 in retinal ganglion and dor-
sal root ganglion cells promotes axonal outgrowth and 
growth cone elaboration, whereas inhibition of ADCY10 
reverses these changes [124, 125], strongly indicating an 
essential role of ADCY10 in axonal outgrowth. Based 
on that ADCY10 is expressed in the choroid plexus and 
CO2 metabolism is linked to cerebrospinal fluid secretion 
[130], it is hypothesized that ADCY10 regulates cerebro-
spinal fluid homeostasis. This is evidence showing that 
increased ADCY10 expression caused by chloral hydrate-
induced removal of cilia enhances transcytosis in cho-
roid plexus epithelial cells [131]. Two ADCY10 knockout 
mouse lines have been generated: C1KO and C2KO, 
which prevent the expression of C1 and C2 domains, 
respectively. Both display defective sperm motility due to 
decreased cAMP production in testis and spermatozoa 
[126, 132], highlighting a crucial role of ADCY10 in male 
infertility.

A clinical study revealed that ADCY10 polymorphism 
is associated with absorptive hypercalciuria and low spi-
nal bone density [133].

Effects of GPCR‑ADCY signaling in BBB integrity
The BBB is a unique feature of CNS blood vessels. It is 
mainly composed of brain endothelial cells, pericytes, 
astrocytes, microglia, neurons and a non-cellular compo-
nent—the basal lamina. By tightly regulating what enters/
exits the CNS, the BBB maintains brain homeostasis 
[134, 135].

The effects of GPCR-ADCY signaling in BBB mainte-
nance remain largely unclear, partially due to the com-
plexity of GPCR-ADCY system. There are 10 different 
ADCY isoforms, which are coupled to distinct GPCRs 
in different cell types. However, there is evidence sug-
gesting that certain GPCRs may regulate BBB integ-
rity via ADCY activity, although the specific ADCY 
isoforms involved in each case remain unknown. Below 
we briefly discuss a few such GPCRs, including sphin-
gosine 1-phosphate receptors (S1PRs), lysophosphatidic 
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acid receptors (LPARs), cannabinoid receptors (CBs), 
adenosine receptors (ARs), G protein-coupled estrogen 
receptor 1 (GPER-1), complement C5a receptor (C5aR), 
somatostatin receptors (SSTRs), glucagon-like peptide-1 
receptor (GLP1R), and hydrocarboxylic acid receptor 1 
(HCAR1). The expression, G protein subtypes, and func-
tions (in BBB integrity) of these GPCRs are summarized 
in Table 4.

S1PRs
S1PRs are the receptors for sphingosine 1-phosphate, 
a signaling sphingolipid with a diverse range of func-
tions. There are 5 subtypes of S1PRs (S1PR1-5), among 
which four (S1PR1-3 and S1PR5) have been shown to 
regulate BBB integrity. In the CNS, S1PR1 and S1PR3 
are mainly expressed in astrocytes and endothelial cells; 
S1PR2 is found in pericytes, glial cells, endothelial cells 
and fibroblasts [136]; and S1PR5 is mainly found in oli-
godendrocytes and endothelial cells [137, 138]. S1PR1 
is coupled to Gαi/o; S1PR2 and S1PR3 are coupled to 
Gαi/o, Gαq/11 and Gα12/13; and S1PR5 is coupled to Gαi/o 
and Gα12/13 [139, 140]. Functional studies suggest that 
S1PR1 regulates BBB integrity. It has been reported that 
S1PR1/5 agonist siponimod (BAF-312) enhances BBB 
integrity and increases tight junction protein expression 
in an in  vitro BBB model [141]. Consistent with this 
finding, S1PR1 functional antagonist (FTY720P) and 
endothelium-specific knockout of S1PR1 substantially 
increase BBB permeability to small tracers [142]. There 
is also evidence showing that S1PR1 can be targeted 

to facilitate CNS drug delivery. It has been shown that 
targeting S1PR with S1P and S1PR agonist fingolimod 
improves CNS drug delivery by reducing basal activ-
ity of P-glycoprotein (P-gp), an ATP-driven drug efflux 
pump, at the BBB and blood–spinal cord barrier, which 
significantly increases the uptake of radiolabeled P-gp 
substrates such as verapamil (three-fold), loperamide 
(five-fold) and paclitaxel (five-fold) [143, 144]. Simi-
larly, pharmacological studies suggest that S1PR2 
and S1PR3 function to decrease BBB integrity [145, 
146]. S1PR2 antagonist ameliorates oxidative stress-
induced cerebrovascular endothelial barrier impair-
ment and reduces BBB leakage after ischemic injury 
in mice [145]. S1PR3 antagonist CAY10444 attenuates 
BBB damage by up-regulating tight junction proteins, 
reduces brain edema, and improves animal behavior 
in acute intracerebral hemorrhage [146]. S1PR5, on 
the other hand, seems to promote BBB integrity. It has 
bene reported that S1PR5-selective agonist improves 
BBB integrity  in vitro and reduces trans-endothelial 
migration of monocytes. Echoed with these findings, 
knockdown of S1PR5 compromises BBB integrity and 
reduces the expression of tight junction proteins, P-gp 
and BCRP [138]. It should be noted, however, that the 
specific ADCY isoforms associated with S1PR1-3 and 
S1PR5 signaling remain unknown.

LPARs
LPARs are the receptors for lysophosphatidic acid (LPA), 
a bioactive lipid with important functions in physiology 

Table 4  GPCR and ADCY expression and function on BBB integrity

GPCRs Types of G proteins BBB integrity Cell types References

S1PR1 Gαi/o Increase Astrocytes and endothelial cells [136, 138–140]

S1PR2 Gαi/o, Gαq/11, and Gα12/13 Decrease Pericytes, glia, fibroblasts, and endothelial cells

S1PR3 Gαi/o, Gαq/11, and Gα12/13 Decrease Astrocytes and endothelial cells

S1PR5 Gαi/o and Gα12/13 Increase Oligodendrocytes and endothelial cells

LAPR1 Gαi/o, Gαq/11, and Gα12/13 Decrease Microglia, oligodendrocytes, astrocytes, and endothelial cells [147–150, 153, 155]

LAPR2 Gαi/o, Gαq/11, and Gα12/13 Decrease Neuron, fetal astrocytes, and endothelial cells

LAPR3 Gαi/o and Gαq/11 Decrease Microglia, astrocytes, and endothelial cells

LAPR6 Gαs and Gα12/13 Decrease Microglia, oligodendrocytes, and endothelial cells

CB1 Gαs, Gαi/o, and Gαq Increase Microglia and neurons [156–160]

CB2 Gαs, Gαi/o, and Gαq Increase Microglia and neurons

AR-A1 Gαi/o Decrease Microglia, neurons, oligodendrocytes, astrocytes, and endothelial cells [139, 162, 163]

AR-A2A Gαs Decrease Microglia, neurons, and astrocytes

GPER-1 Gαs and Gβγ Increase Neurons [166–168]

C5aR Gαi/o Decrease Microglia, astrocytes, and neurons [169, 170]

SSTRs Gαi/o and Gβγ Increase Neurons [172–174]

GLP1R Gαs Increase Microglia, astrocytes, neurons, and endothelial cells [175–177]

HCAR1 Gαi/o Increase Astrocytes, neurons, and endothelial cells [178–180]
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and pathology. There are six subtypes of LPARs (LPAR1-
6), among which four (LPAR1-3 and LPAR6) have 
been shown to regulate BBB integrity. LPAR1 is mainly 
expressed in astrocytes, microglia, oligodendrocytes 
and endothelial cells; LPAR2 in endothelial cells, neu-
ron and fetal astrocytes; LPAR3 in microglia, astrocytes 
and endothelial cells; and LPAR6 in microglia, oligo-
dendrocytes, endothelial cells [147, 148]. LPAR1-3 sig-
nal through Gαi/o, Gαq/11 and Gα12/13 [147, 149], while 
LPAR6 signals through Gαs and Gα12/13 [149]. All of 
these LPARs (LPAR1-3 and LPAR6) function to decrease 
BBB integrity. It has been shown that LPA decreases 
tight junction protein expression and transendothelial 
electrical resistance via LPAR6 in rat brain endothelial 
cells [150]. Echoed with this finding, intravenous injec-
tion of LPA up-regulates LPAR1-3 expression and tran-
siently increases BBB permeability [151]. Additionally, 
LPA and amitriptyline have been shown to reduce basal 
P-gp activity through LPAR1 signaling without affecting 
the activity of MRP2 (multidrug resistance-associated 
protein 2) or BCRP (breast cancer resistance protein) in 
both rat brain capillaries and a rat model of amyotrophic 
lateral sclerosis [152]. Similarly, LPAR ligand gintonin 
increases tight junction spaces and decreases tight junc-
tion protein expression in human brain microvascular 
endothelial cells. Gintonin has been shown to enter the 
brain via LPAR1/LPAR3 and enhance BBB permeability 
to various tracers in  vivo [153]. Consistent with these 
findings, gintonin enhances CNS delivery of donepezil 
in a time-dependent manner via LPAR1/3 [154]. LPAR 
inhibitors (HA130, PF8380 and BrP-LPA), on the other 
hand, reverse BBB damage and enhance tight junction 
protein expression after ischemic stroke [155].

CBs
CBs have two subtypes (CB1 and CB2), both of which 
mediate BBB regulation in healthy and injured/dis-
eased conditions. In the CNS, CB1 and CB2 are mainly 
expressed in neurons and microglia [156, 157]. They can 
stimulate and/or inhibit various ADCY isoforms inde-
pendently. It has been shown that activation of CB1 and 
CB2 by cannabinoid agonists stimulates group II ADCYs 
(ADCY2, ADCY4 and ADCY7) through Gαs, but inhib-
its other transmembrane ADCYs (ADCY1, ADCY3, 
ADCY5, ADCY6, ADCY8 and ADCY9) through Gαi/o 
and Gαq [158, 159]. In vitro study showed that pharmaco-
logical activation of CB1 but not CB2 restored tight junc-
tion stability in HIV-1-induced BBB disruption model 
[160]. Consistent with this finding, CB1-specific can-
nabinoid agonists inhibited HIV-1 Gp120-mediated BBB 
damage and prevented down-regulation of tight junction 
proteins both in  vitro and in  vivo [160]. Interestingly, 

CB2-selective agonist O-1966 prevented LPS-induced 
loss of tight junction proteins in brain microvascular 
endothelial cells [157]. These findings suggest a protec-
tive role of CB1/2 in BBB integrity.

ARs
ARs are the receptors for adenosine, a purine nucleo-
side released by neurons and glial cells. There are four 
subtypes of ARs (A1, A2A, A2B and A3), among which 
AR-A1 and AR-A2A are involved in BBB regulation. 
In the CNS, AR-A1 and AR-A2A are predominantly 
expressed in microglia, oligodendrocytes, astrocytes, 
neurons and endothelial cells [161]. AR-A1 inhibits 
ADCY activity through Gαi/o, whereas AR-A2A stimu-
lates ADCY activity via Gαs [139, 162]. Although coupled 
to different G proteins, both ARs function to compro-
mise BBB integrity. It has been shown that activation 
of AR-A1 and AR-A2A increases BBB permeability and 
reduces tight junction protein expression [163]. In addi-
tion, AR agonists have been used to facilitate the entry 
of intravenously administered molecules into the brain 
[164]. For example, AR-A2A agonist lexiscan has been 
reported to inhibit the expression of P-gp and BCRP and 
increase the accumulation of the epirubicin, a P-gp sub-
strate and chemotherapeutic drug, in mouse brain [165]. 
In addition, lexiscan has also been shown to increase 
paracellular leakage in cultured brain endothelial cells, 
enabling a wider therapeutic window for therapeutics to 
enter the brain [162].

GPER‑1
GPER-1, also known as GPR30, is a novel estrogen recep-
tor highly expressed in neurons [166]. Activation of 
GPER-1 stimulates ADCY activity via Gαs and Gβγ [167]. 
GPER-1 activation has been shown to reduce BBB leak-
age and increase tight junction proteins after ischemic 
injury [168], highlighting a protective role in BBB 
integrity.

C5aR
C5aR is the receptor for C5a, a potent proinflammatory 
peptide generated during complement system activation. 
In the CNS, C5aR is constitutively expressed in astro-
cytes, microglia and neurons. Activation of C5aR inhibits 
ADCY activity via Gαi/o [169, 170]. In vitro study showed 
that activation of C5aR increased BBB permeability and 
decreased tight junction protein expression [171], sug-
gesting a detrimental role of C5aR in BBB integrity.

SSTRs
SSTRs mediate the effect of somatostatin, a neuropep-
tide with important functions in modulating cortical 
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circuits and cognition. There are five subtypes of SSTRs 
(SSTR1-5), all of which are mainly expressed in neurons 
and inhibit ADCY activity via Gαi/o and Gβγ [172, 173]. 
In  vitro study showed that somatostatin and selective 
SSTR agonists maintained BBB integrity and restored 
ZO-1 organization in cytokine- and LPS-treated human 
brain endothelial cells [174], suggesting that SSTR activa-
tion protects BBB integrity.

GLP1R
GLP1R mediates the function of glucagon-like peptide-1, 
a short peptide hormone secreted by intestinal enteroen-
docrine L cells and certain neurons. In the CNS, GLP1R 
is mainly expressed in astrocytes, neurons, microglia 
and endothelial cells [175]. Activation of GLP1R stimu-
lates ADCY activity via Gαs [176]. In  vitro study showed 
that GLP-1 increased tight junction protein expression 
and decreased paracellular permeability in brain capillary 
endothelial cells via cAMP-PKA signaling pathway [177], 
indicating a protective role in BBB integrity.

HCAR1
HCAR1, also known as GPR81, is expressed in endothelial 
cells, astrocytes and neurons [178, 179]. It inhibits ADCY 
activity through Gαi/o [178, 179]. In vitro study showed that 
LPS reduced the expression of HCAR1 and tight junction 
proteins and increased BBB permeability in rat brain micro-
vascular endothelial cells [180]. In addition, activation of 
HCAR1 stimulates mitochondrial biogenesis and regulates 
monocarboxylate transporter expression in brain endothe-
lial cells, which are crucial for the metabolism and function 
of the neurovascular unit [181, 182]. These results suggest a 
possible role of HCAR1 in BBB maintenance.

Conclusions and future directions
Since the identification of cAMP as an important sec-
ond messenger, substantial progress has been made 
with respect to the structure, expression, regulation and 
functions of ADCYs. There are, however, still several key 
questions that need to be answered in future research.

First, the expression profiles of ADCYs at the protein 
level remain largely unknown, possibly due to the lack 
of isoform-specific antibodies. Current knowledge on 
ADCY expression is mainly at the mRNA level. Future 
research should focus on addressing this bottleneck by 
developing isoform-specific antibodies and innovative 
genetic tools (e.g., reporter mouse lines).

Second, there is a lack of genetic knockout/overexpres-
sion models for certain ADCY isoforms. For example, 
the phenotypes of ADCY2, ADCY4 and ADCY7 global 

knockout mice as well as ADCY2, ADCY3, ADCY4 
and ADCY10 overexpression mice remain unknown. 
In addition, the cell-specific conditional knockout mice 
for many ADCY isoforms are still lacking. Furthermore, 
there are currently few compound knockout mice avail-
able, which are useful in dissecting the roles of ADCYs 
with compensatory/overlapping functions. Generating 
these genetic tools will enable loss-of-function studies 
and substantially move the field forward.

Third, there is a lack of isoform-specific pharmaco-
logical reagents for ADCYs. Incomplete pharmacologi-
cal characterization of mammalian ADCYs has resulted 
in misconceptions/errors in the selectivity of certain 
compounds [183]. The lack of selectivity and potency of 
pharmacological reagents has often resulted in inaccu-
rate or even faulty conclusions in ADCY research. Future 
research should focus on screening and identifying iso-
form-specific ADCY activators and inhibitors.

Fourth, the association profiles between ADCYs and 
GPCRs in different cell types remain unknown. Estab-
lishing a cell-specific GPCR-ADCY association profile 
will significantly enrich our knowledge in GPCR-ADCY 
signaling. Together with the cell-specific expression pro-
files of GPCRs and ADCYs, this association profile makes 
it possible to determine the crosstalk between various 
signaling pathways, promoting more accurate and safer 
treatments.

Fifth, more efficient and specific detection approaches 
are needed for ADCY research. Although multiple 
methods exist to measure cAMP levels in cells, these 
approaches are mostly end-point assays and unable to 
reflect cAMP levels in real time or that generated by a 
specific ADCY isoform [184, 185]. Although fluores-
cence resonance energy transfer (FRET)-based cAMP 
biosensors allow the cAMP detection in living cells in 
real time [186, 187], they usually have low efficiency 
and sensitivity. More sensitive and rapid approaches 
are needed. In addition, biosensors that are able to tar-
get different subcellular compartments may help study 
localized cAMP dynamics [188, 189].

Last, the functions of ADCYs are not fully understood. 
For example, the roles of ADCYs in CNS barriers (e.g., 
BBB, blood-CSF barrier and brain-CSF barrier) and the 
underlying molecular mechanisms are only partially 
understood. In addition, the functions of ADCY iso-
forms in human diseases and the links between ADCY 
gene polymorphisms and human diseases remain largely 
unknown. With the generation of novel tools (isoform-
specific antibodies and genetic mouse lines), we expect to 
determine the functional significance of each ADCY iso-
form in a cell-specific manner.
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