
Martinez‑Tejada et al. 
Fluids and Barriers of the CNS           (2022) 19:12  
https://doi.org/10.1186/s12987-022-00311-5

RESEARCH

k‑Shape clustering for extracting 
macro‑patterns in intracranial pressure signals
Isabel Martinez‑Tejada1,2*  , Casper Schwartz Riedel1, Marianne Juhler1, Morten Andresen1 and 
Jens E. Wilhjelm2 

Abstract 

Background:  Intracranial pressure (ICP) monitoring is a core component of neurosurgical diagnostics. With the 
introduction of telemetric monitoring devices in the last years, ICP monitoring has become feasible in a broader 
clinical setting including monitoring during full mobilization and at home, where a greater diversity of ICP waveforms 
are present. The need for identification of these variations, the so-called macro-patterns lasting seconds to minutes—
emerges as a potential tool for better understanding the physiological underpinnings of patient symptoms.

Methods:  We introduce a new methodology that serves as a foundation for future automatic macro-pattern iden‑
tification in the ICP signal to comprehensively understand the appearance and distribution of these macro-patterns 
in the ICP signal and their clinical significance. Specifically, we describe an algorithm based on k-Shape clustering to 
build a standard library of such macro-patterns.

Results:  In total, seven macro-patterns were extracted from the ICP signals. This macro-pattern library may be used 
as a basis for the classification of new ICP variation distributions based on clinical disease entities.

Conclusions:  We provide the starting point for future researchers to use a computational approach to characterize 
ICP recordings from a wide cohort of disorders.
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Introduction
Intracranial pressure (ICP) monitoring is a mainstay of 
neurosurgical diagnostics both for intensive care man-
agement in acute neurosurgical conditions [1] and for 
aiding diagnosis in conditions outside the intensive care 
unit (ICU) for milder degrees of disease such as hydro-
cephalus, normal pressure hydrocephalus (NPH), or idi-
opathic intracranial hypertension (IIH).

In the clinical setting, ICP is often interpreted purely 
as a number within a certain range. Yet, ICP signals are 
complex time series with wave patterns that go beyond 
just a simple number. Analysis of ICP waveforms on 

either a subsecond beat-to-beat basis or in patterns over 
longer durations, the so-called macro-patterns, gives 
further insight into brain function [2]. Machine learning 
tools have the potential to identify these patterns faster 
and—more importantly—objectively, helping to charac-
terize their appearance and distribution in a standardized 
fashion compared to the current primary visual inspec-
tion by clinicians. Until now, most studies have employed 
these techniques to analyze the ICP in acute conditions. 
Mariak et  al. used artificial neural networks (ANN) to 
extract global properties of the entire ICP time series to 
assess the severity of the clinical state in intensive care 
patients [3]. Hornero et al. analyzed the complexity of the 
ICP signal estimated by approximate entropy (ApEn) to 
determine the presence of patterns in periods of acute 
elevations in ICP of pediatric patients in intensive care 
[4].
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In the last decade, new telemetric ICP monitoring 
devices have become available, allowing easier access to 
perform ICP recordings that are representative of daily 
life conditions, compared to previous cable-based solu-
tions [1, 5]. Thus, ICP can now be monitored in patients 
with milder degrees of disease in disease categories such 
as hydrocephalus, normal pressure hydrocephalus, or 
idiopathic intracranial hypertension. The ICP signals 
recorded with these systems ensure sufficient clinical 
and technical quality to be analyzed as part of the ICP 
interpretation procedure carried out by neurosurgeons 
and other clinicians [6–8], but the increased monitoring 
period and signal diversity also means that the analysis of 
ICP data becomes more demanding.

In this study, we explore the use of machine learning 
tools to extract macro-patterns from the ICP signal in 
a diverse cohort of patients with different disease enti-
ties. We introduce a new methodology based on k-Shape 
clustering as a basic building block for future day-to-day 
ICP evaluation and update of models on stored patient 
data. Given that telemetric ICP monitoring has allowed 
us to evaluate the patient’s ICP out of hospital borders, 
our main context for considering new macro-patterns 
moves away from ICP monitoring exclusively in the neu-
rointensive care setting, where ICP variations are more 
accentuated. Specifically, our approach aims to permit a 
more adequate description of the longer timescale ICP 
variations seen in the broader clinical setting nowadays 
including disease types like NPH or IIH. Our approach 
created a universal library of representative macro-pat-
terns that can later be used to automatically segment 
each individual ICP signal into shorter sequences based 
on clinical input. Also, we developed a template match-
ing framework to classify these shorter sequences—
which we will refer to as ICP subsequences—into what 
we estimate to be clinically significant macro-patterns. 
Finally, we propose a possible visualization strategy to 
display the pattern-annotated ICP signal in a fashion that 
is clinically useful.

Methods
Our goal was to create a scalable library of a few macro-
pattern templates to use for ICP subsequence classi-
fication. We used k-Shape clustering as a method to 
efficiently group together subsequences characterized by 
their shape similarity despite differences in amplitude, 
duration and alignment. We first describe our data selec-
tion and processing approach for artifact removal. Next, 
we discuss our k-Shape based clustering approach to 
construct the templates. Finally, we show how the stored 
library can be used to characterize new incoming ICP 
signals by reproducible macro-patterns. The components 
of the entire approach are illustrated in Fig. 1.

Data selection
We used a collection of eight randomly selected 
anonymized overnight monitoring sessions that belong 
to different subjects from our database in the Depart-
ment of Neurosurgery, Rigshospitalet, Denmark. A 
commercially available cable ICP probe (Neurovent-P; 
Raumedic AG, Germany) was used for these measure-
ments. The length of the sessions spanned from nine to 
22 h, summing up to a total of 88 h. The sampling fre-
quency of the recordings was 100 Hz. The dataset was 
made up of five monitoring sessions (five patients) for a 
total of 88 h, and an additional set of three monitoring 
sessions (three patients) for a total of 55 h. By adding 
the latter dataset, template matching results can pro-
vide an indication of whether the algorithm is general 
enough to cover subjects with different disease entities.

Artifact Removal

Segmentation

z-normalization

88 hours of ICP data

k-Shape clustering

Cluster validation

Library of pattern templates

Template matching

Classification
visualization

Characterized ICP signal

new ICP data

Data preprocessing

Template library creation

ICP signal characterization

Input/Output

Fig. 1  Workflow of methodology developed in this paper for 88 h of 
ICP data, and an additional data set of 55 h purely for investigating 
how new incoming ICP data in the future can be labelled
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Data preprocessing
The ICP signal recorded is often contaminated by very 
high and sharp spikes, with unphysiologically high val-
ues. These artifacts mask the characteristic appearance 
of the signal, rendering accurate pattern recognition 
impossible. We used an Empirical Mode Decomposi-
tion (EMD) based method for spike removal [9].

EMD decomposes the signal into a set of intrinsic 
mode functions (IMFs, i.e., IMF1 , IMFn , ..., IMFN  ). 
The first function of this set corresponds to fast oscil-
lations, while the last one corresponds to the slowest 
ones. Therefore, the higher the IMF order, the lower 
will be its frequency content.The first IMFs, contain-
ing high-frequency oscillations, indicate the presence 
of artifacts. Because the spikes have band-limited 
waveforms, their dominant oscillations are found in a 
subset of consecutive IMFs. In our case, the location 
of unphysiologically high and rapid spikes aligned with 
the location of spike events in IMF1 to IMF4 , so sum-
ming these four IMFs enhances spike episodes. The 
summation result reveals the peaks with dominant 
amplitude at the temporal location of the spike, and 
attenuates the effect of non-spike events. The term gr 
will be used to refer to the partially reconstructed sig-
nal calculated as the sum of the first to fourth IMFs.

To identify the peak events in gr , an adaptive thresh-
olding approach was implemented. ICP values out-
side the bounded region between [ −ηs , ηs ] were 
identified as spikes. The threshold was calculated 
as ηs = σ

√

2 · log(L) , where σ and L are the standard 
deviation (noise level) and number of samples of gr , 
respectively. It is a universal threshold first proposed 
by Donoho and Johnstone [10] for determining a value 
above background noise. Identified spikes were then 
imputed with a moving average calculated over a slid-
ing window of 10s.

Template library creation
We implemented the algorithm in MATLAB (R2020b; 
The MathWorks, Inc., Natick, MA.) using the platform: 
Intel®with core i7 processor and clock speed 2.6 GHz and 
16 GB RAM.

Segmentation
Time series segmentation plays an important role in data 
mining and refers to the tool for decomposing the signal 
into a discrete number of contiguous subsequences. The 
proposed algorithm for segmentation of the ICP signal 
can be broken down into four sequential steps, as seen in 
Fig. 2. The following section will cover the details regard-
ing each of the steps.

ICP segmentation was applied to divide the signal into 
subsequences of duration varying from seconds to min-
utes. This poses the challenge of deciding the time loca-
tion at which to anchor both the start and end points 
of each subsequence. To address this problem, we first 
smoothed the signal via a linear phase finite impulse 
response (FIR) lowpass filter. The filtered signal will only 
be used in the segmentation step. The cut-off frequency 
( Fpass ) was set to 0.05–0.1 Hz, depending on the degree 
of smoothing desired for the removal of cardiac and 
respiratory contributions in each subject. Other filter 
parameters were Fstop = 0.02–0.05 Hz, Apass = 0.001 dB, 
Astop = 60 dB, and minimum order.

From the smoothed ICP signal, the major extrema 
were extracted (maxima and minima). Only the minima 
were used as the start and endpoints for each of the ICP 
subsequences. Because some minima were located very 
close—both time and amplitude wise—to a neighboring 
maximum, we implemented the following rule to identify 
suitable minima for the segmentation. If we suppose that 
the discrete ICP signal at this stage can be written as gn , 
n = 1, 2, ...,N  and indexed in time order tn , t = 1, 2, ...,N  , 

Signal after 
spike removal Extrema Segmented Signal

Low-pass filtering Extrema detection Segment Division

Filtered Signal

Fig. 2  Workflow of the steps involved in the generation of the ICP subsequences, describing the segmentation step in Fig. 1
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we removed a minima gi from being a candidate as a 
boundary point if: 

1)	 the time difference between the minimum gi and 
its neighboring maximum gj was smaller than a 
predefined value ηdur , between 0.5 and 2 min, i.e. 
|tj − ti| < ηdur , or

2)	 the magnitude difference between a minimum gi 
and its neighboring maximum gj was smaller than 
a predefined value ηmag , between 0.5 and 1.5, i.e. 
|gj − gi| < ηmag.

We can then define the segmented window (i.e., ICP 
subsequence) as g[i,  j] with i and j corresponding to the 
discrete indices of the selected boundary points. An 
example of these steps is shown in Fig. 5A–C.

Z‑normalization
Z-normalization of the derived subsequences was 
required before clustering. As many recent studies [11, 
12] suggest, this procedure is necessary for data min-
ing algorithms to deal with scale and translation invari-
ance to prioritize shape features over amplitude ones. By 
z-normalizing each subsequence we ensured that they 
were linearly transformed to have zero mean and stand-
ard deviation close to one:

where µg[i,j] and σg[i,j] refer to the mean and standard 
deviation of the ICP subsequence g[i, j], respectively. For 
the sake of simplicity, we will refer to each z-normalized 
ICP subsequence z(g[i, j]) as zicp in the rest of the paper.

k‑Shape clustering
k-Shape was used to divide our extracted ICP subse-
quences into a number of characteristic-preserving 
groups, the so-called clusters, such that sequences in the 
same group were similar in shape. Each cluster is repre-
sented by a central vector, the centroid, which is not nec-
essarily part of the original dataset [13]. Each centroid in 
k-Shape is determined as a sequence that minimizes the 
sum of squared distances to the rest of the z-normalized 
ICP subsequences. This novel centroid-based cluster-
ing algorithm is fundamentally a variant of k-means with 
a distance measure derived from the cross-correlation 
coefficient [14]. As a result, one template is built for each 
centroid and subsequently stored together with a class 
label.

(1)z(g[i, j]) =
g[i, j] − µg[i,j]

σg[i,j]

Through an iterative procedure, k-Shape: 

1)	 assigned each z-normalized ICP subsequence to the 
centroid with the maximum shape similarity in the 
assignment step, and

2)	 updated the centroids based on the new members of 
each cluster, in the refinement step.

The previous two steps of the algorithm were repeated 
either until there was no change in cluster configura-
tion or until the maximum number of 100 iterations was 
reached [14].

Shape similarity was defined by the so-called Shape-
Based Distance (SBD):

where w is the position at which the cross-correlation 
CCw(

−→
x ,−→ck ) between the z-normalized ICP subse-

quence ( −→x = zicp ) and the centroid vector of each clus-
ter ( −→ck ) was maximized; and R0 the geometric mean of 
autocorrelation of each individual sequence −→x  or −→ck  
[14]. Cross-correlation measures the degree of similar-
ity between two time series, which in our case are −→x  and 
−→ck , calculated as a function of the displacement of −→x  over 
−→ck . Cross-correlation adds shift-invariance to the SBD 
measure and can be computed on sequences of different 
lengths.

Determining the optimal number of clusters, K, is a 
fundamental challenge within partitional clustering and 
unfortunately, there is not an ideal approach to identify 
K. Given that we had a large amount of data to be clus-
tered into a number of clusters, and this number was 
dependent on medical practical experience, the need 
for an initial estimate of clusters is clear. We relied on a 
direct method, the so-called silhouette index, as the met-
ric to evaluate the quality of the clustering structure. This 
metric evaluates the clustering quality based on the simi-
larity between subsequences within the same cluster and 
across different clusters [15]:

In Eq. 3, a(l) is the average distance between subsequence 
l and every subsequence within the same cluster and b(l) 
is the minimum average distance between subsequence 
l and every subsequence in different clusters [16]. The 
optimal estimate of K was the value that maximized the 
silhouette metric over a range of possible values for K. 

(2)

SBD(
−→
x ,−→ck ) = 1−maxw

(

CCw(
−→
x ,−→ck )

√

R0(
−→
x ,−→x ) · R0(

−→ck ,
−→ck )

)

(3)S(i) =
b(l)− a(i)

max{b(l), a(l)}
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The window of solutions for which the silhouette index 
was calculated ranged from 5 to 20.

Cluster validation
Visual inspection of the clustering results is crucial for 
verifying the accuracy of the partitioning. However, a 
visual approach is subject to the level of expertise and 
subjectivity of the investigator. Thus, visualization needs 
to be combined with standardized cluster validation indi-
ces (CVI) tailored to quantitatively evaluate clustering 
results. Quantitative evaluation of extracted clusters is 
not straightforward if there is a lack of annotated data. 
Thus, we need to rely on internal indices. Conclusions 
from previous studies have shown that there is no best 
single CVI in each context [17, 18]. Therefore, multiple 
validation indices will be used in the validation process: 
Silhouette Index, Davies–Bouldin index (DBI), and Cal-
inski–Harabasz index (CHI).

Silhouette index, introduced in the previous sec-
tion, is a common metric to measure how well an object 
lies within a cluster and our selected internal cluster-
ing validation index. DBI is the ratio between the aver-
age distance of all subsequences of each cluster to their 
respective centroids and the distance of the centroids 
of the two clusters, i.e., the ratio between within-cluster 
compactness and between-cluster separation [19, 20]:

where K is the number of clusters, a, b are cluster labels, 
da, db the average distance of all subsequences in clusters 
a and b to their respective centroids, and d(ca, cb) the 
distance between centroids. Smaller values indicate bet-
ter clustering results, as clusters are more separated from 
each other and less disperse within each cluster. To be in 
line with the rest of CVIs, we use 1− DBI for comparison 
of clustering results and thus higher values indicate bet-
ter clustering solutions.

CHI relates the sum between the cluster dispersion cal-
culated as the distance, SB , between each within-cluster 
subsequence and its centroid, to the inter-cluster disper-
sion calculated as the distance ( SW  ) between each cen-
troid to the global centroid ( c ) [21]:

where SB and SW  are the between and within cluster 
scatter matrices, respectively, tr the trace defined by the 
sum of the elements of the main diagonal of the scatter 
matrices, K the number of clusters and np the number of 

(4)DBI =
1

K

K
∑

a=1

max
{ da + db

d(ca, cb)

}

a �= b

(5)CHI =
tr(SB)

tr(SW )
·
np − 1

np − K

clustered subsequences. The higher the index value, the 
better the performance of the clustering.

Characterization of ICP signals
Shape‑based template matching
The primary goal was to learn what the distinctive shapes 
for differentiating pattern clusters from each other were. 
Therefore, when an uncharacterized ICP subsequence 
entered into our system, we were able to automatically 
determine if it belonged to a template from the library 
of patterns or not. For labeling ICP subsequences based 
on the generated templates, new ICP subsequences from 
the additional dataset were retrieved and z-normalized 
to address scaling invariance. To deal with the hori-
zontal shifts and stretching of the subsequence on the 
templates, we rescaled the time dimension. Query sub-
sequences were then compared to each template for the 
closest match. For this comparison, we computed the 
SBD so that the shape similarity could be measured.

This template matching approach is done under the 
assumption that all queries must be classified to a tem-
plate, even if the closest match shows a high SBD. This 
is why apart from defining our template library, we 
also defined a rule to ensure that the correlation to the 
closest match is meaningful. Although this param-
eter can be specified by the user, a reasonable rule is: 
CC(zicp,

−→ck ) > 0.50.

Classification visualization
The amount of data in each ICP recording is very large. 
With our current template library, we are able to classify 
a subset of the ICP signal. Visualizing this information 
must be presented to a clinical end-user in a fashion that 
is operationally useful. For this purpose, we represented 
each ICP subsequence as colored boxes with varying 
dimensions according to their characteristics (Fig. 3). The 
height of the box was defined by the difference between 
the absolute maximum and minimum values of the non-
normalized sequence (of the raw unfiltered ICP signal), 
and the width by the duration of the sequence. The ver-
tical center of the box corresponded to the median ICP 
value of the non-z-normalized subsequence. Each box 
was colored after the label their corresponding subse-
quence had been matched to, being black if the matching 
correlation coefficient was below 0.50.

Results

Data demographics
Eight patients were selected for the study: two male and 
six female. The pooled median age was 55 years; range: 
20–74 years old. Subjects were fetched randomly from 
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a continuously updated clinical ICP database. The clini-
cal conditions were hydrocephalus, aneurysm and cra-
niotomy, but signal analysis was performed on the 
anonymized recordings without reference to clinical 
information.

Data pre‑processing
We decomposed the ICP signal via EMD into sixteen 
IMFs and a residual. Figure  4 shows an example of an 
ICP signal of one subject after EMD-based filtering, with 
unphysiologically high and rapid spikes removed.

Time
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Median

Time

Cluster color

Data  
Reduction

Time
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Fig. 3  Detailed description of data reduction for each labeled ICP subsequence

Fig. 4  Example of EMD-based filtering of an ICP signal for removal of high spikes
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On average, 18 spikes of less than one second dura-
tion are identified in each ICP monitoring. These spikes 
are found within a range that spans from two to 43 spikes 
per recording, that account on average for less that 
0.000087% of the total monitoring time. Thus, removing 
the few samples corresponding to these spikes should not 
have any major consequences on later processing steps, 
especially since we will be looking at longer variations of 
the ICP signal.

Template library creation
Segmentation and normalization
We now show how the ICP signal is segmented and illus-
trate the segmentation results for the five patients whose 
recordings made up the main dataset. Figure  5 displays 
the segmentation process described in Fig.  2. From the 
figure, we can see that some of the minima extracted, 
marked as black squares, are not minima that could 
potentially be considered boundary points. To keep only 
the minima of our interest, marked as squares, we speci-
fied ηdur and ηmag for each ICP signal. From the main 
dataset of 88 h, we were able to generate 5579 ICP sub-
sequences. The last Fig.  5(d) presents how the segmen-
tation results are z-normalized. Z-normalization of a 
subsequence was done with the mean and standard devi-
ation of that subsequence.

k‑Shape clustering
5579 ICP subsequences of varying length generated from 
the 88 h of the ICP main dataset were clustered with 
the k-Shape algorithm into seven clusters. The number 
of optimal clusters to generate the most distinct pat-
terns was calculated using the Silhouette index. We set 
K = 7 because it gave us the maximum silhouette value 
after performing k-Shape clustering for k = 5− 20 , as 

Fig. 5  Example of the Artifact removed (AR)-ICP signal segmentation of one subject. A After low-pass filtering the AR-ICP signal, with respiratory 
and pulse contributions to the signal removed to generate the AR-low-pass (ARLP)-ICP signal; B After extracted extrema from ARLP-ICP signal; C 
After segmentation using desired minima; and D After z-normalization of the segmented AR (ZNAR)-ICP signal

4 6 8 10 12 14 16 18 20

Number of clusters [k]

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

S
ilh

ou
et

te
 s

co
re

Fig. 6  Number of optimal K using Silhouette score on the main ICP 
subsequences
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seen in Fig. 6. Going beyond twenty will not contribute 
to generating distinctive clusters with sufficient informa-
tion about the ICP data and it will only make our clusters 
more complicated.

To better understand what shapes of centroids were 
generated, Fig.  7 visualizes the cluster centroids with 
their corresponding ICP subsequences. This means that 
the five ICP recordings can be represented by a combina-
tion of these seven patterns which can vary in duration 
and amplitude.

Cluster validation
Silhouette index was used to compare the clustering 
results of k-Shape applied to the main data with and with-
out the addition of the correlation rule. Figure  8 shows 
that for Silhouette index, k-Shape together with the cor-
relation rule shows better results over just k-Shape.

The value of the Silhouette index lies within the range 
− 1 to 1. The closer the index is to 1, the more dense and 
well-separated from other clusters it is. The addition of 

the correlation rule increases the silhouette average from 
0.024 to 0.056. Another aspect to look for is the thickness 
(in the vertical axis) of the silhouette plot representing 
each cluster, being more uniform between clusters when 
the correlation rule is considered. This idea is reinforced 
by the results seen in Table  1, with all CVIs increasing 
when the correlation rule is added.

Cluster validation indices highly depend on the com-
plexity of the cluster analysis and on the vague defini-
tion of what the nature of the cluster is. Such validation 
requires a visual approach [22]. We used the additional 
set to visually confirm that the patterns found in the main 
set can also be observed in this new data.

ICP signal characterization
To allow searching for the minimum distance between 
each new z-normalized ICP subsequence and each pat-
tern template, we used SBD. Results from the previous 
section showed the importance of the introduction of a 
correlation-based rule to ensure that the closest match 
was significant. We need to bear in mind that if clinicians 
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Fig. 7  Main extracted reproducible subsequences from the 88 h of ICP recordings (main dataset). These patterns are the foundation for identifying 
clinically relevant macro-patterns across a wide cohort of patients, moving away from Lundberg’s A and B waves. In contrast to the classical 
approach, our subsequences could be combined to generate a new macro-pattern. For instance, the ascending L6 subsequence could be followed 
by the descending L3 subsequence, generating a new macro-pattern
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are our end-users, the ICP template matching output 
should be clinically intelligible. Figure 9 shows an exam-
ple of our ICP signal characterization output described in 
the Methods section.

Using the pipeline solution we propose in this paper, 
we are able to characterize an average of 54% of the ICP 
signal. Figure 10 shows an exampled including unclassi-
fied ICP subsequences. Further classification details are 
presented in Table 2.

Figure 11 provides further visualization of the macro-
pattern amplitude and duration in each subject. The 
presence of specific patterns in unique subjects, in this 
case L5 in Subject 1, could suggest that the occurrence 

frequency of specific macro-patterns could potentially be 
used to describe the pathological state of each subject.

Discussion
Typical A and B waves are described and classified differ-
ently by various authors [23] and do no longer adequately 
address the waveforms encountered in clinical practice 
today, where patients are investigated also in non-acute 
scenarios. Therefore, building on top of these classical 
macro-patterns, a new workflow was developed for the 
characterization and visualization of long-term ICP vari-
ations. Our adaptable pipeline steps includes Empirical 
Mode Decomposition (EMD) for artifact removal, seg-
mentation into variable-duration subsequences, z-nor-
malization, k-Shape clustering to divide the extracted ICP 
subsequences into a number of characteristic preserving 
labels, template-matching to locate the labels in the seg-
mented ICP signal, and finally produces a box-based sub-
sequence labeling display.

A previous study by Paparrizos and Gravano [14] 
carried out an extensive analysis on the performance 
of k-Shape against partitional, hierarchical and spec-
tral clustering methods combined with different 
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Fig. 8  Graphical silhouette values for each clusters when K = 7 of the main dataset (left), main dataset and correlation rule (right). The dashed 
vertical line indicates the average silhouette score across all clusters

Table 1  Three CVIs for k-Shape clustering without and with 
correlation rule for the main dataset

CVI k-Shape k-Shape with 
correlation 
rule

Sil 0.02 0.06

1-DBI − 9.96 − 8.19

CHI 115.91 123.15
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state-of-the-art distance measures. k-Shape outper-
formed traditional scalable and non-scalable clustering, 
such as k-means with Dynamic Time Warping (DTW) 
as distance metrics or k-medoids, in terms of both accu-
racy and/or efficiency [14, 24, 25]. Given that we are 
working with large ICP monitoring sessions, the pos-
sibility of scaling while still ensuring high accuracy and 
efficiency made k-Shape clustering our chosen clustering 
technique. Unfortunately, k-Shape also presents a limi-
tation: the number of clusters needs to be pre-specified 
by the user. If the assumed K value is above the opti-
mal, the algorithm will generate unnecessary additional 
groups; if below, we will be under-representing associa-
tions between subsequences. There is no perfect method 
to determine the optimal number, as there is no clear 
definition of a cluster. We tackled this issue by combining 
visual inspection with the Silhouette index. Initial visual 
exploration by clinicians suggested that the search for the 
optimal K should not go beyond k = 20 , as they do not 
believe in the existence of a number of clinically relevant 
macro-patterns beyond that value. Thus, the choice of 
search range was k = 5− 20 , with K = 7 as the optimal 
value for our data. We are aware that our methods for 
selecting K are heuristics, and subject to interpretation. 
A different choice of K could yield different results if our 
study is to be replicated with the same methodology by 
different research groups.

Besides using CVIs for estimating the quality of the 
clustering, it is important to visually inspect the results. 
Clusters L1, L2, and L5 could fall into the same category 
of clinically well-known waveforms since they highly 
relate to A and B waves. Previous studies classify B waves 
according to their shape into symmetrical (sinousoi-
dal) and asymmetrical (ramp-like) waveforms [26–29]. 

Fig. 9  Example of the ICP signal segmentation and classification into labels for one subject visualized in the raw signal (top) and in the data 
reduced signal representation (bottom)
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Fig. 10  Example of the ICP signal segmentation and classification 
into labels, including unclassified subsequences, for one subject 
visualized in the raw signal (top) and in the data reduced signal 
representation (bottom)

Table 2  Percentage duration of the classified subsequences 
in the ICP monitoring of each patient. The first five patients 
correspond to the main set, while the remaining three are part of 
the additional set

Patient Monitoring duration 
(hours)

Duration of 
classified 
subsequences (%)

1 8.8 90.4

2 20.1 54.4

3 22.1 52.8

4 17.9 48.6

5 19.3 47.4

6 18.6 50.1

7 18.4 33.0

8 17.7 56.3
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Cluster L1 in our template library resembles the so-called 
asymmetrical waves, since the duration of the ascend-
ing phase is longer than that of the descending. Clus-
ters L2 and L5 present more symmetry, with ascending 
and descending phases of closer duration. They differ in 
the presence (L2) or not (L5) of a plateau. For L2 wave-
forms, the pressure magnitude will determine its degree 
of similarity to either A or B waves. Remaining extracted 
clusters have not been described as such in the literature. 
Clusters L6 and L3 represent ascending and descending 
segments leading or ending a plateau segment, respec-
tively. This plateau can vary in duration and in some 
cases contain other clinically relevant macro-patterns. 
Cluster L7 is likely to represent subsequences contain-
ing artifacts, given the shape of the peak. Finally, cluster 
L4 appears as a new non-classified macro-pattern, whose 
clinical relevance needs to be further analyzed. It must be 
noted that the templates in our library are normalized in 
time, meaning that they can be stretched and compressed 
when matched to incoming ICP subsequences, but con-
strained by the correlation rule.

With these templates, approximately half of the ICP 
recording ends up being labeled. This means that for the 
data considered in this paper, half of it can be represented 
by just seven shapes (properly scaled horizontally and 
vertically). This suggests that many ICP signals are often 
made up of the same patterns repeated again and again. 
As we have selected to look for one particular macro-
pattern type (B wave) to investigate the feasibility of our 
approach, and the occurrence of macro-pattern types is 
related to the clinical diagnosis, it is to be expected that 
the current macro-pattern library does not cover the 
entire curve length and that the percentage covered can 
vary between datasets, as we have included these ran-
domly. With this in mind, we have developed the building 
blocks of a methodology that—with additional retrospec-
tive data—could allow identification of previously unen-
countered macro-patterns in addition to the immediately 

useful potential of systematic quantitative multidimen-
sional analysis of ICP data. It would be interesting to 
investigate whether an increased number of templates, 
K, would increase the fraction of ICP recording being 
labeled, and especially whether such an increase in the 
fraction comes at the price of an exponential increase in 
K. Finally, in this context, one should bear in mind that 
if K increases to e.g., 100, then the clinical clarity with 
respect to visual classification might suffer seriously.

The universal scalable library produced so far is the 
result of combining clinical knowledge of how ICP 
changes in different clinical conditions, with an engineer-
ing approach that moves ICP signal analysis in a more 
robust quantitative direction with fewer subjective judg-
ments. The results of the present work may be considered 
benchmarks for the shape clustering method that will be 
used in our ongoing research. The evident next step is to 
relate the generated macro-pattern templates with clini-
cal data to ensure that macro-patterns are reproducible 
and identifiable across a wide cohort of patients with dif-
ferent disease entities. Subsequently, we aim to investi-
gate if it is possible to match disease categories with the 
occurrence frequency and distribution of the specific 
macro-patterns. Knowledge of some macro-patterns 
possibly being more indicative of particular pathological 
conditions opens opportunities to individualize manage-
ment and treatment of each patient and obtain a better 
prediction and understanding of the possible outcome. 
Furthermore, looking at each label together with addi-
tional monitoring of other physiological signals could 
help to elucidate the origin of each waveform.

The output of our labeling method must be displayed 
in a way that ensures readability and clarity for clini-
cians to easily interpret and to integrate it as a new tool 
in their daily clinical practice. Our visualization strategy 
is one of the many alternative ways of looking at the raw 
ICP signal that could be used to accentuate specific fea-
tures that might not be easily spotted during the visual 

Fig. 11  Variation between patients and labels for how often the seven types of patterns occur (left), pattern mean amplitude (middle) and pattern 
mean duration (right)
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interpretation of the ICP monitoring. It can be seen as a 
prototype, among all possibilities of graphical represen-
tations, for how the ICP data analysis workflow can be 
structured. The box approach highlights the presence of 
the seven identified labels, with many other visualization 
alternatives yet to be considered, some of them maybe 
aiming for a report of a certain clinical state. Internal dis-
tribution and clinical weighting of the boxes could reflect 
the pathological state of the patient.

Limitations
The selection of subjects for the creation of the template 
library is likely to affect the result, since some patients 
appear to have more distinguishable macro-patterns than 
others. Applying this approach to a larger group of sub-
jects is one of the future objectives.

Conclusions
In this paper, a flexible time series pattern recognition 
scheme customized to handle ICP time series patterns 
was introduced. In particular, a clustering algorithm 
k-Shape clustering was first applied to cluster ICP subse-
quences to generate a standard scalable library of macro-
patterns that can further be used for classification of 
new incoming ICP signals. We worked with 88 h of ICP 
recordings and showed the resulting seven clusters that 
best describe them. Our further research will investigate 
the clinical use of this technique and look at the prac-
ticality of its automatic use to quantitatively interpret 
ICP data, hoping to reveal a better understanding of the 
patients underlying physiological status.
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