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Abstract 

Background:  Altered cerebrovascular function and accumulation of amyloid-β (Aβ) after traumatic brain injury 
(TBI) can contribute to chronic neuropathology and increase the risk for Alzheimer’s disease (AD). TBI due to a 
blast-induced shock wave (bTBI) adversely affects the neurovascular unit (NVU) during the acute period after injury. 
However, the chronic effects of bTBI and Aβ on cellular components of the NVU and capillary network are not well 
understood.

Methods:  We exposed young adult (age range: 76–106 days) female transgenic (Tg) APP/PS1 mice, a model of 
AD-like Aβ amyloidosis, and wild type (Wt) mice to a single bTBI (~ 138 kPa or ~ 20 psi) or to a Sham procedure. At 
3-months or 12-months survival after exposure, we quantified neocortical Aβ load in Tg mice, and percent contact 
area between aquaporin-4 (AQP4)-immunoreactive astrocytic end-feet and brain capillaries, numbers of PDGFRβ-
immunoreactive pericytes, and capillary densities in both genotypes.

Results:  The astroglia AQP4-capillary contact area in the Tg-bTBI group was significantly lower than in the Tg-Sham 
group at 3-months survival. No significant changes in the AQP4-capillary contact area were observed in the Tg-bTBI 
group at 12-months survival or in the Wt groups. Capillary density in the Tg-bTBI group at 12-months survival was 
significantly higher compared to the Tg-Sham control and to the Tg-bTBI 3-months survival group. The Wt-bTBI group 
had significantly lower capillary density and pericyte numbers at 12-months survival compared to 3-months survival. 
When pericytes were quantified relative to capillary density, no significant differences were detected among the 
experimental groups, for both genotypes.

Conclusion:  In conditions of high brain concentrations of human Aβ, bTBI exposure results in reduced AQP4 expres-
sion at the astroglia-microvascular interface, and in chronic capillary proliferation like what has been reported in AD. 
Long term microvascular changes after bTBI may contribute to the risk for developing chronic neurodegenerative 
disease later in life.
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Background
Traumatic brain injury (TBI) is considered a risk fac-
tor for chronic neurodegenerative disorders including 
Alzheimer’s disease (AD), Parkinson disease (PD), and 
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chronic traumatic encephalopathy (CTE) [37, 75, 77, 
86]. The pathobiological changes underlying this phe-
nomenon are not well-understood. One hypothesis is 
that TBI induces or accelerates accumulation of aggrega-
tion-prone molecules such as amyloid-β (Aβ) peptides, 
hyper-phosphorylated tau protein, alpha-synuclein, and 
transactive response DNA-binding protein 43 (TDP-43) 
[55, 60, 130]. Pertaining to the risk for AD following TBI, 
an injury-induced imbalance between Aβ production and 
clearance can promote accumulation of Aβ in the brain 
[20, 58, 109] which can contribute to, and be enhanced 
by, vascular changes involving impaired blood–brain bar-
rier (BBB) function and dysregulation of cerebral blood 
flow [3, 53, 54, 57, 67, 118, 136]. Because Aβ- and vascu-
lar changes could contribute to poor recovery after a TBI 
and, according to the two-hit vascular hypothesis, pro-
mote chronic neurodegeneration in AD [92, 136], they 
are attractive targets for development of therapy inter-
ventions and biomarkers in both conditions [23, 34, 54, 
66, 104, 120, 122].

Cerebrovascular homeostasis is regulated by the com-
bined actions of endothelial cells, mural cells (capillary 
pericytes and smooth muscle cells), glial cells, and neu-
ronal activity [54, 74, 123]. Pericytes have multiple roles 
in microvascular function [132] including modulation of 
capillary diameter and cerebral microcirculation [41, 45, 
68, 69, 91, 99] and maintenance of endothelial junctional 
proteins that form the BBB [16, 123]. The barrier func-
tion of endothelial cells and pericytes is influenced by 
astrocytes which secrete (and uptake) cytokines, growth 
factors, and neurotransmitters [1, 54, 123], and interact 
with pericytes in regulating neurovascular coupling [54, 
88]. In the aftermath of a brain injury, both pericytes 
and astrocytes are involved in reparatory processes [9, 
21, 23] and are capable of clearing Aβ by an apolipopro-
tein E/low-density lipoprotein receptor-related protein 
1 (LRP-1) mediated mechanism [6, 76, 82, 124, 126] and 
secretion of Aβ-degrading enzymes [108]. Thus, brain 
injury-induced dysfunction or loss of either cell type 
could impair these mechanisms and contribute to brain 
Aβ accumulation in conjunction with microvascular 
dysregulation.

Clinical studies, and experimental studies in animals 
and in vitro models, reported that exposure to explosive 
blasts can result in acute dysfunction or loss of pericytes 
and astrocytes as well as altered BBB permeability [2, 5, 
7, 13, 30, 35, 36, 38, 39, 47–52, 61, 63–65, 71–73, 78, 79, 
81, 83, 84, 105, 112, 116, 129, 134]. However, the effects 
of blast TBI on brain Aβ concentration and deposition 
have been assessed in only a few studies and at acute time 
points after injury exposure. In wild type rodents, endog-
enous murine Aβ was lower acutely in animals exposed 
to a single low-level blast TBI (bTBI) compared to sham 

animals [27], while transgenic AD mice exposed to repet-
itive low-level bTBI with 4  weeks survival had lower 
levels of soluble and insoluble Aβ but no change in Aβ 
plaque load compared to sham mice [100]. These findings 
were unexpected due to previous reports of increased Aβ 
concentration and deposition in brains of young adults 
within hours to days after severe TBI [29, 58], and higher 
Aβ concentrations at 3  weeks after controlled cortical 
impact injury in human Aβ knock-in mice compared 
to sham mice [3], suggesting that blast TBI and blunt 
force TBI may have differential effects on Aβ produc-
tion, accumulation and/or clearance. To gain insight into 
the unexplored chronic effects of blast TBI on Aβ accu-
mulation and microvascular changes, the current study 
exposed transgenic (Tg) APP/PS1 mice to bTBI at the age 
prior to their onset of Aβ deposits, and at 3 months and 
12 months after injury evaluated Aβ deposition, pericyte 
numbers, astrocytic end-foot/capillary interactions, and 
capillary densities. We hypothesized that bTBI would 
produce chronic alterations in the capillary network, 
pericytes, and perivascular astrocytes in both genotypes, 
with Tg mice showing exacerbated changes and enhanced 
burden of Aβ pathology.

Methods
Experimental animal groups, genetics, and interventions
The Iowa City Department of Veterans Affairs and the 
University of Pittsburgh Institutional Animal Care and 
Use Committees approved all investigative procedures. 
The study used adult female transgenic APPswe, PS1ΔE9 
(B6C3Tg(APPswe,PSEN1dE9)85Dbo/Mmjax, The Jack-
son Laboratory, MMRRC Stock No: 34829-JAX | APP/
PS1) double mutant mice (referred to as APP/PS1 or Tg 
mice in this report) and their littermate B6C3F1/J (Stock 
No: 100010, Jackson) wild-type controls (Wt). The APP/
PS1 mice harbor a ‘humanized’ APP gene driven by the 
prion promoter, with two mutations which are linked 
to familial AD [25, 90]. The Swedish mutation enhances 
β-secretase activity while the human presenilin gene 
with the 9th exon removed enhances gamma secretase 
processing of APP. These two mutations and constitutive 
APP overexpression result in enhanced amyloidogenic 
APP processing, overproduction of Aβ, and progressive 
Aβ deposition in brain parenchyma and vasculature. The 
APP/PS1 mice exhibit Aβ pathology at 4 to 6 months of 
age, and progressively develop more severe parenchy-
mal and vascular amyloid deposits at older ages [59]. 
This pathology appears to be driven by overall increases 
in Aβ peptides as well as a shift in the Aβ40:Aβ42 ratio 
due to larger increases in Aβ42 compared to Aβ40 
forms [59]. The Wt mice used in our study are the adult 
female founder mice of the APP/PS1 transgenics and 
harbor murine APP and PS1 genes that are driven by 
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their endogenous promoters; these Wt mice do not have 
human APP and do not exhibit Aβ accumulation and 
therefore serve as the amyloid-negative control.

Each genotype was randomly stratified into two expo-
sure groups: anesthesia plus blast exposure (referred to as 
bTBI) or anesthesia without bTBI exposure (referred to 
as Sham). Sham or bTBI exposure occurred at approxi-
mately 3 months of age (range: 76–106 days) for all mice 
included in the experiment. The mice were then sacri-
ficed after either 3-months survival (around 6 months of 
age; range: 165–189 days) or 12-months survival (around 
15 months of age; range: 442–455 days). We subsequently 
define age for each experimental group as the post-
exposure “survival age” for the remainder of the present 
study. Accordingly, there were 24 mice in the study, with 
3 mice analyzed in each of the 8 experimental groups (Tg 
bTBI and Tg Sham at 3-months and 12-months survival, 
and Wt bTBI and Wt Sham at 3-months and 12-months 
survival).

Blast injury induction
The blast pressure wave was generated in an enclosed 
blast chamber which was divided in two parts, with a 
13-cm diameter opening between the chamber halves, 
as described previously [43, 44, 89]. A Mylar membrane 
(Mylar A, 0.00142 gauge; Country Plastics, Ames, IA) 
was placed over the opening between the two parts of the 
blast chamber. One side of the tank remained unpressur-
ized and contained a padded polyvinyl chloride (PVC) 
protective restraint for positioning of an anesthetized 
mouse 30 cm from the Mylar membrane [43, 44, 89]. To 
create the blast wave, compressed room air was pumped 
into the pressurized side of the tank to 20 psi, the pres-
sure at which the membrane ruptures. Using this model, 
a complex blast wave without a negative pressure compo-
nent was produced as described [43] with the following 
characteristics: 137.8 ± 1.3 kPa (~ 20 psi) peak overpres-
sure at the point of exposure (i.e., the head, the body of 
the animal was shielded from the blast wind) and a 10- to 
15-ms blast duration [43, 89]. The pressure was calculated 
by using a sensor 1 cm in diameter placed directly below 
the head of the mouse [89]. Prior to blast wave induc-
tion, mice were anesthetized by an intraperitoneal (IP) 
injection of a combination of ketamine (0.03 mg/g body 
weight) and xylazine (0.005  mg/g body weight). Mice 
were positioned within the unpressurized half of the blast 
chamber with the left side of the head oriented toward 
the source of the blast wave. Only the head of the mouse 
was exposed to the blast wave, with the rest of the body 
shielded from the blast wind. The head of the mouse was 
unrestrained during the blast wave exposure, allowing 
for free rotation without contact with the cradle. Sham 
mice underwent the same anesthesia procedure and 

were placed in the blast chamber but did not receive a 
blast exposure. After bTBI exposure or Sham procedure, 
mice were placed on a heating pad to facilitate recovery 
from general anesthesia and to maintain a body tem-
perature of 37 ± 0.5 °C. Xylazine anesthesia was reversed 
with yohimbine chloride (0.001 mg/g, IP) to facilitate the 
recovery from anesthesia. Mice in the Sham and bTBI 
groups received analgesic via subcutaneous injection 
(0.1 mL/20 g body weight) of buprenorphine (0.003 mg/
mL) immediately after recovery from either procedure.

Tissue processing
At the end of the experiment, mice were anesthetized and 
killed by transcardial perfusion with 0.9% saline which 
also washed blood from the brain vasculature. After per-
fusion, the skull was opened to extract the brain, and the 
left hemisphere was placed into 4% paraformaldehyde 
fixative for 48 h at 4 °C after which it was infiltrated with 
graded sucrose solutions to allow for frozen sectioning. 
The brain hemisphere was then cut in the coronal plane 
using a freezing sledge microtome to create 40 µm-thick 
tissue sections. Sections were stored in a cryopreserva-
tion solution [131] at − 20 °C until use. Two coronal sec-
tions at the level of the dorsal hippocampus were selected 
randomly and included in the analysis of each mouse.

Immunohistochemistry and histology
Tissue sections were placed free-floating in 0.1  M 
potassium phosphate-buffered solution (KPBS), pH 7.4, 
for 24  h to wash off the cryoprotection solution. Sec-
tions were then washed in Tris-buffered saline solution 
(TBS) before incubation in 0.5% sodium borohydride 
made in TBS for 20  min. After again washing in TBS, 
the sections were incubated in 3% normal goat serum 
(NGS, Sigma, catalogue #G9023) in TBS at room tem-
perature for 30 min, followed by two rinses in 1% NGS 
in TBS at room temperature for 10 min each. The sec-
tions were then incubated with primary antibodies spe-
cific to the experimental arm. Sections being analyzed 
for pericytes were incubated at 4 °C for 24 h in mouse 
monoclonal IgG raised against PDGFRβ (clone D-6, 
Santa Cruz, catalogue #sc-374573, lot #B2118) diluted 
1:250 in 1% NGS made in TBS with Triton, and Lyco-
persicon Esculentum (Tomato) Lectin (LEL, Vector 
Laboratories, catalogue #DL-1177, lot #ZE0131) con-
jugated to a 594  nm-emitting fluorophore and diluted 
1:200 in 1% NGS TBS with Triton [10, 103, 110]. Sec-
tions included in the astrocytic end-feet analysis were 
processed under the same conditions as the pericyte 
marker, but used a mouse monoclonal IgG gener-
ated against AQP4 diluted 1:1000 in 1% NGS made in 
TBS with Triton (clone 4/18, Santa Cruz, catalogue 
#sc-32739, lot #D2318), and Solanum Tuberosum 
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(Potato) Lectin (STL, Vector, catalogue # B-1165-2, 
lot #ZC0519) conjugated to biotin and diluted 1:200 in 
1% NGS made in TBS with Triton [46, 93]. After pri-
mary antibody/lectin cocktail incubation, sections were 
rinsed in TBS and incubated in goat anti-mouse IgG 
secondary antibodies (to mark primary antibodies) and 
streptavidin conjugated to a 488  nm-emitting Alexa 
fluorophore (streptavidin-Alexa488, to mark STL; Life 
Technologies, Eugene, OR, catalogue #S323356, lot 
#1902487) diluted 1:250 in 1% NGS made in TBS with 
Triton for 90 min at room temperature. The secondary 
antibodies included goat anti-mouse IgG conjugated 
to Alexa488 (pericyte studies, Jackson ImmunoRe-
search, catalogue #115-545-146, lot #138610) and goat 
anti-mouse IgG conjugated to a 594 nm-emitting Alexa 
fluorophore (astrocytic end-feet study, Jackson, cata-
logue #115-585-146, lot #136295) in 1% NGS made in 
TBS with Triton. Finally, the sections were rinsed in 
TBS, mounted on glass slides, and coverslipped using 
4′,6-diamidino-2-phenylindole (DAPI) based medium 
(Vector, catalogue #H-1500) and stored in darkness at 
4 °C until imaging [62]. The choice of fluorophore com-
binations for the multi-fluorescence studies was deter-
mined empirically. For immunohistochemical staining 
of Aβ, sections were rinsed in TBS and then incubated 
in 80% formic acid for two minutes. Endogenous per-
oxidase activity was inhibited by incubating the tissue 
in 1.5% H2O2 made in TBS for 30  min. Sections were 
then rinsed in TBS and incubated in 5% NGS made in 
TBS, rinsed, and incubated overnight in mouse mono-
clonal IgG raised against Aβ diluted 1:3000 in 1% goat 
serum made in TBS (clone 6E10, BioLegend cata-
logue #803002, lot #B198896) at 4  °C. Sections were 
then washed in TBS and incubated in biotinylated 
goat anti-mouse IgG (Jackson, catalogue #115-065-
146, lot #128250) in 1% goat serum made in TBS for 
1 h, washed in TBS, and reacted using the avidin–bio-
tin method (ABC Elite kit, Vector Laboratories). The 
color reaction was developed using a 0.05% solution 
of nickel-enhanced 3,3-diaminobenzidine tetra-hydro-
chloride and 0.03% H2O2. Sections were then dehy-
drated in alcohols, cleared in xylenes, and coverslipped 
with Permount (Fisher). In all experiments using mouse 
monoclonal antibodies, control tissue sections were 
processed as described above but without the primary 
antibody (primary delete). No non-specific staining was 
observed in these control sections (not shown).

Cyano-PiB (2-(4′-methylaminophenyl)-6-cyanobenzo-
thiazole) histofluorescence was performed as described 
previously [56]. Tissue sections were incubated in 10 μM 
cyano-PiB for 45  min in dark conditions at room tem-
perature. Sections were then dipped three times in potas-
sium phosphate buffer, incubated for 1  min in fresh 

potassium phosphate buffer, and coverslipped with Fluo-
romount-G (SouthernBiotech, Birmingham, AL, cata-
logue #0100-01).

Random sampling scheme of the cerebral cortex
Image stacks were acquired using an Olympus BX-51WI 
upright microscope equipped with an Olympus DSU 
spinning disk confocal, a super-corrected 65× Olympus 
Plan Apo N 1.42 numerical aperture oil immersion objec-
tive, a MBF CX9000 front mounted digital camera (MBF 
Bioscience), a BioPrecision2 XYZ motorized stage with 
linear XYZ encoders (Ludl), and filters for laser wave-
length output of 405  nm (to visualize DAPI), 488  nm 
(to visualize the Alexa 488 fluorophore), and 594 nm (to 
visualize the Alexa 594 fluorophore). All z-stacks were 
obtained using an optical section separation interval 
(z-interval) of 0.25 µm. Two 25 µm-thick (post-process-
ing shrinkage of original 40  µm-thick sections) sections 
were chosen per mouse using the previously described 
criteria. Using unbiased stereological principles on Stere-
oInvestigator (MBF), five optical disectors per hemi-sec-
tion were examined within the cortex using the central 
sulcus and rhinal fissure as dorsal and ventral borders, 
respectively.

Amyloid burden (% area)
Brain sections were processed for total Aβ load using Aβ 
immunohistochemistry as described above and imaged 
using light microscopy (see Fig. 1). A set of adjacent sec-
tions was processed for mature fibrillar amyloid depos-
its (avoiding the formic acid pre-treatment) using the 
fluorescent amyloid binding dye cyano-Pittsburgh com-
pound-B (cyano-PiB) [56] and imaged using epifluores-
cence microscopy. Digital images of stained sections were 
acquired at 4× magnification to create a composite of the 
cerebral cortex and hippocampus for each section. Per-
cent area coverage of labeled deposits was then calcu-
lated by thresholding positive signal and determining the 
percent of cerebral cortical tissue occupied by plaques 
using modified algorithms in the FIJI Open-Source image 
analysis software adapted from ImageJ [114].

Capillary density estimation
We defined cortical capillaries as microvessels measur-
ing 10  µm in diameter or less. Our technical approach 
to measuring total number of capillaries [Ntot(cap)] is 
adapted from published reports [80, 94, 96]. The num-
ber of intersecting points (nodes) in each capillary net-
work created a “node-segment network” where a single 
capillary was defined as the vessel segment between 
two nodes. Each node has a valence (n) defined by the 
number of vessel segments that intersect at a node. In 
each individual optical dissector, we first calculated the 
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number of capillaries (Ncap) as a function of the number 
of nodes (Nnode) containing each valence (n with range 
3–4), as described in Eq. 1:

To determine the Ntot(cap) in each optical dissec-
tor, we calculated the sum of all Ncap of each valence 
using correction factors as previously described [80, 
94, 96], and detailed below. In the present study, we 
counted capillaries in two cerebral hemi-sections 
selected from a series through the rostral-caudal extent 
of the mouse brain. These selected hemi-sections rep-
resented a known fraction of total sections which we 
determined to be 1/53.5 (ssf) based on tissue thickness 

(1)Ncap =

(

n− 2

2
· Nnode

)

+ 1.

and the rostral-caudal extent of the mouse brain. Our 
randomly generated optical dissector consisted of a 
143.95  µm × 111.52  µm counting frame with an area 
(Aframe) equal to 16,052.65  µm2. The average distance 
between positions of the optical dissector (Astep) var-
ied per mouse, due to differences in brain volume, and 
ranged from 732,656 to 1,911,707  µm in both x and y 
dimensions. Thus, the counting frame also represented 
a known fraction of the total brain hemi-section area 
(asf), defined as (Aframe/Astep). Finally, we examined a 
known fraction of the total tissue thickness using the 
confocal microscope (tsf) defined as the average height 
of imaging depth per mouse (h) divided by the total tis-
sue thickness (t) accounting for shrinkage with process-
ing, where h varied per mouse (range: 9.61–23.70 µm) 

Fig. 1  Cortical Aβ load after bTBI in APP/PS1 mice at 3-months and 12-months survival. A–E A whole hemisphere coronal section stained for 
Nissl substance (obtained from the Allen Brain Atlas) illustrates the cytoarchitecture of the cortical area targeted (A; purple cresyl violet signal) and 
Aβ-immunostained sections illustrating Aβ pathology load (B–E) in transgenic mice undergoing Sham or bTBI exposure and evaluated at 3-months 
survival (B and C, respectively) or at 12-months survival (D and E, respectively). F, G Graphs showing percent area coverage of Aβ-immunoreactive 
deposits (F) and cyano-PiB labeled amyloid pathology (G). Wild type mice are not shown as they were free of Aβ immunolabeling and cyano-PiB 
fluorescence. CTX, neocortex; HPC, hippocampus; THAL, thalamus. N = 3 mice/group. One-way ANOVA: F (3, 8) = 229.9, P < 0.0001 [Aβ (6E10) 
immunohistochemistry]; F (3, 8) = 94.10, P < 0.0001 (cyano-PiB). Brackets indicate differences of P < 0.05
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and t equals 25  µm. Adjusting for these variations in 
fraction of sections, area, and thickness, Ntot(cap) is 
presented in Eq. 2:

Pericyte estimation
A similar quantification method was used to estimate 
the total number of pericytes using the optical dissec-
tor probe, adapted from a previous study [94], in two 
cerebral hemi-sections. To identify pericytes situated 
amongst the capillary basement membrane, we per-
formed dual-labeling using fluorophore-conjugated LEL 
and the pericyte-specific PDGFRβ antibody visualized 
using a fluorophore-conjugated secondary antibody. As 
seen in Fig.  3, the clear bumps along the LEL-labeled 
basement membrane, coined “ghost-like cell bodies” [94], 
co-localize with PDGFRβ and DAPI. Using our optical 
dissector, we counted these “ghost-bodies” to estimate 
the total number of pericytes (see Fig. 3). Using the same 
parameters as the capillary analysis, total numbers of 
pericytes (Ntot peri) were calculated using the sum of peri-
cytes in each optical dissector (Q) as listed in Eq. 3:

Astrocytic end‑feet contacts estimation
To estimate the contact surface of astrocytic end-feet 
interfacing with the endothelial basement membrane, 
we identified percentage overlap of AQP4-immunoreac-
tive end-feet and STL immunosignal as measured with 
2D voxels corresponding to fluorescence intensities in 
FIJI. We first masked the surrounding tissue around the 
capillary vessel to create several “iso-surfaces” of capil-
lary per optical dissector [40]. This allowed for detection 
of AQP4-labeled interaction at the level of the capillary 
iso-surface which could be quantified as both red- and 
green-fluorescent signal. Then, we took the percentage of 
AQP4-immunoreactive astrocytic end-feet as a function 
of STL (vessel) co-localizing within the given unmasked 
iso-surface, and created an average surface area overlap 
using a 2D reconstruction, as described in Eq. 4:

Statistical analysis
We report all data as mean ± SEM. Excel (Microsoft) and 
Prism software (GraphPad, San Diego, CA) were used in 
generating statistics and graphs for all data. The mean 
value per randomly sampled optical dissector was used 

(2)Ntot(cap) =
∑

Ncap ·
1

ssf
·

1

asf
·

1

tsf
.

(3)Ntot peri = SQ ∗ 1/ssf ∗ 1/asf ∗ 1/tsf .

(4)
% contact surface

= AQP4 stain intensity
/

STL stain intensity.

in all statistical analyses. One-way ANOVA with Tukey’s 
post hoc testing was used to assess the plaque load data. 
Two-way ANOVA with Sidak’s multiple test comparison 
were used to analyze the astrocyte, capillary, and pericyte 
data. Using an alpha of 0.05, results were considered sig-
nificant when p < 0.05.

Results
Cortical Aβ plaque load in Tg mice after bTBI or Sham 
surgery
Tg-bTBI and Tg-Sham groups had statistically significantly 
higher Aβ pathology loads at 12-months survival (i.e., 
15-month-old mice) compared to 3-months survival (i.e., 
6-month-old mice) when assessed by Aβ immunohisto-
chemistry (Fig. 1A–F) or cyano-PiB histofluorescence stain 
of fibrillar Aβ deposits (Fig. 1G). No statistically significant 
differences in Aβ-immunoreactive plaque load in the cer-
ebral cortex were detected between the two Tg groups at 
3-months survival (Tg-bTBI/3-months: 0.2706 ± 0.0757; 
Tg-Sham/3-months: 0.1688 ± 0.0850) or at 12-months sur-
vival (Tg-bTBI/12-months: 5.8820 ± 0.3933; Tg-Sham/12-
months: 5.4390 ± 0.5910) (Fig. 1F). Similarly, no statistically 
significant differences in cyano-PiB positive plaque load in 
the cerebral cortex were detected between the Tg-bTBI and 
Tg-Sham groups at 3-months survival (Tg-bTBI/3-months: 
0.2087 ± 0.0326; Tg-Sham/3-months: 0.1352 ± 0.0501) or at 
12-months survival (Tg-bTBI/12-months: 5.0539 ± 0.6457; 
Tg-Sham/12-months: 4.4579 ± 0.6931) (Fig. 1G).

Aβ-immunoreactive and cyano-PiB plaque loads in the 
hippocampus were higher at 12-months survival com-
pared to 3-months survival (Aβ: Tg-Sham/3-months: 
0.4797 ± 0.1040; Tg-Sham/12-months: 5.0546 ± 1.2075; 
Tg-bTBI/3-months: 0.4285 ± 0.1665; Tg-bTBI/12-
months: 4.8861 ± 0.7188; cyano-PiB: Tg-Sham/3-months: 
0.4279 ± 0.2631; Tg-Sham/12  months: 4.7037 ± 0.9840; 
Tg-bTBI/3-months: 0.5441 ± 0.3897; Tg-bTBI/12 months: 
4.5529 ± 0.8166). No statistically significant differences in 
hippocampal Aβ-immunoreactive or cyano-PiB plaque 
loads were detected between the Tg-bTBI and Tg-Sham 
groups at either survival interval.

No Aβ immunoreactive or cyano-PiB fluorescent 
plaques were detected in brain tissue sections from Wt 
mice exposed to bTBI or to the Sham procedure.

Astrocyte AQP4‑immunoreactive end‑foot contacts 
with microvasculature in Wt and Tg mice after bTBI 
or Sham exposure
AQP4 immunofluorescence was observed primarily in 
contact with capillary endothelium, indicating its pref-
erential localization to astrocytic end-feet (Fig.  2A–F). 
Quantification of the interface between AQP4-immuno-
fluorescence at the level of capillary endothelium showed 
statistically significantly lower values in the Tg-bTBI 
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group compared to the Tg-Sham group at 3-months sur-
vival (Fig. 2G) but not at 12-months survival. We did not 
observe differences in AQP4 among experimental groups 
of Wt mice at either survival interval (Fig. 2G).

Numbers of pericytes in Wt and Tg mice after bTBI or Sham 
exposure
Figure 3 illustrates representative images of immunofluo-
rescently labeled pericytes (anti-PDGFRβ, green fluores-
cence, panels A, D1, E1, D3, E3) located within bump-like 
protrusions of the basement membrane (LEL, red fluo-
rescence, B, D2, E2, D3 E3). There were no injury- or gen-
otype-related effects on pericyte numbers at 3-months 
survival (Fig. 3F).

The Wt-bTBI group at 12-months survival had statisti-
cally significantly lower numbers of pericytes compared 
to the Wt-bTBI group at 3-months survival (Fig. 3F). In 
Tg mice, pericyte numbers were not different between 
the Tg-bTBI group and the Tg-Sham group at 3-months 
or 12-months survival. There were no differences when 
the Tg-TBI and Tg-Sham groups at 3-months survival 
were compared to the same groups at 12-months survival 
(Fig. 3F). However, significantly greater numbers of peri-
cytes were observed in Tg mice compared to Wt mice for 
both the bTBI and Sham groups at 12-months survival 
(Fig. 3F).

Pericytes relative to capillary density in Wt and Tg mice 
after bTBI or Sham exposure
Figure  3G shows the total number of pericytes relative 
to capillary density within each experimental group. No 
differences in pericyte numbers were observed between 

experimental groups when adjusted for capillary densi-
ties (Fig. 3G).

Capillary densities in Wt and Tg mice after bTBI or Sham 
exposure
In Wt mice, the bTBI and Sham groups did not differ by 
capillary density at 3-months survival or at 12-months 
survival (Fig. 3H). The Wt-bTBI group at the 12-months 
survival had statistically significantly lower capillary den-
sity when compared to the Wt-bTBI group at 3-months 
survival (Fig. 3H).

In Tg mice, capillary density at 12-months survival was 
statistically significantly higher in the bTBI group than 
the Sham group (Fig. 3H). The Tg-bTBI group had signifi-
cantly higher capillary density at 12-months survival than 
at 3-months survival (Fig. 3H).

Numbers of capillaries did not differ between geno-
types at 3-months survival (Fig. 3H). At 12-months sur-
vival, both the Tg-bTBI group and the Tg-Sham group 
had statistically significantly higher numbers of capillar-
ies compared to the Wt-bTBI group and the Wt-Sham 
group, respectively (Fig. 3H).

Discussion
This study demonstrates chronic changes in the cer-
ebral cortical microvasculature after a single bTBI 
(~ 138  kPa/~ 20 psi) in adult female transgenic (Tg) 
APP/PS1 human Aβ over-producing mice compared to 
non-transgenic wild type (Wt) mice which have physi-
ological levels of murine Aβ. We observed that com-
pared to the Sham procedure, bTBI resulted in lower 
AQP4-expression at contact areas between astrocyte 
end-feet and the capillary network in the cerebral 

Fig. 2  Reduced perivascular AQP4-expressing astrocytic end-feet after bTBI in APP/PS1 mice. A, B Maximum intensity projection of a confocal 
image stack demonstrating aquaporin-4 immunofluorescence signal (AQP4, red) contacting capillaries labeled with a fluorescent lectin (STL, 
green) in representative Tg-Sham (A–C) and Tg-bTBI (D–F) mice at 3-months survival (n = 3 mice/group). Merged images (C, F) have an overlay 
of DAPI-labeled nuclei (blue). G Quantification of percent area coverage of sampled AQP4 immunofluorescence interfacing with the STL-labeled 
endothelium. N = 3 mice/group. Two-way ANOVA: F (1, 16) = 5.816, P = 0.0343. Brackets indicate differences of P < 0.05. Scale bar = 20 µm (A–F) 
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cortex of Tg, but not Wt, mice at 3-months survival. 
At 12-months survival, Tg mice exposed to bTBI had 
greater capillary densities in the cerebral cortex than Tg 
mice exposed to the Sham procedure (12-months sur-
vival) as well as Tg mice exposed to bTBI and assessed 
at 3-months survival. In contrast, Wt mice exposed to 
bTBI had statistically significant lower capillary densi-
ties at 12-months survival than at 3-months survival. 
Changes in microvascular densities paralleled changes 
in numbers of pericytes in both Tg and Wt mice, result-
ing in stable numbers of pericytes per capillary density 
at both chronic survival intervals after bTBI or Sham 
procedure.

Our previous study found that APP/PS1 Tg mice sub-
jected to a bTBI at 2–3 months of age and assessed after 
a 2-months survival had no significant changes in corti-
cal Aβ plaque load relative to their Sham-exposed Tg 
counterparts [44]. Similarly, in the current study using 
the same bTBI injury procedure, we did not detect sta-
tistically significant changes in Aβ load after a 3-months 
survival in APP/PS1 Tg-bTBI mice compared to Tg-
Sham mice. These results are in agreement with a recent 
report that Aβ plaque load is not significantly different 
in 5-months-old APP/PS1 Tg mice exposed to repeti-
tive low-level bTBI compared to sham APP/PS1 Tg mice 
when assessed after 3–4  months survival [100]. We 

Fig. 3  Blast TBI affects pericytes and capillaries differently in APP/PS1 mice and wild type mice. A–E Maximum intensity projection of a confocal 
image stack demonstrating PDGFR-β immunofluorescent signal (A, D1, E1, green) associated with capillaries labeled with a fluorescent lectin (B, 
D2, E2, LEL, red). Merged pairs of images with DAPI-stained nuclei are shown in panels C, D3, and E3. Asterisks in panels A–C mark the position 
of two pericytes shown at higher magnification in panels D1–D3 and E1–E3 where arrows demarcate the area occupied by each pericyte. 
F–H Graphs showing total numbers of pericytes (F), pericytes per capillary length (G), and capillary densities (H) in experimental groups. N = 3 
mice/group. Two-way ANOVA (pericytes): F (3, 16) = 22.15, p < 0.0001 (row). Two-way ANOVA (capillaries): F (3, 16) = 38.98, P < 0.0001 (row); F (1, 
16) = 3.299; P = 0.0297 (column); F (3, 16) = 8.448, P = 0.0014 (interaction). Brackets indicate differences of P < 0.05. Scale bar = 25 µm (A-C) 5 µm 
(D1-D3, E1-E3)
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extend these findings by showing that at a longer chronic 
(12-months) survival interval, bTBI has no significant 
effect on Aβ load in APP/PS1 Tg mice. Interestingly, a 
study of bTBI in wild type rodents with acute (24 h and 
1 week) survival reported no changes in endogenous Aβ 
concentration when the level of blast exposure was simi-
lar to our study (116.7 kPa), while reduced Aβ42 concen-
trations were detected when using lower level (36.6 kPa 
and 74.5  kPa) blast exposures [27]. The same group 
reported that in APP/PS1 Tg mice, low-level (34.5  kPa) 
blast exposure had no effect on soluble and insoluble 
Aβ42 at 1 week survival while Aβ42 levels were reduced 
at 1-month survival [100]. Collectively, these studies indi-
cate that the level/severity of bTBI, in addition to other 
variables such as the number and frequency of blast 
exposures and the length of survival, may differentially 
influence Aβ concentrations in brain. However, the pro-
gressive transgene-driven Aβ deposition in Tg mice could 
mask the potentially subtle injury-related changes in cor-
tical Aβ deposits. It will be important that future studies 
examine time points between 3 and 12 months.

While bTBI significantly altered AQP4 expression at 
the astrocytic end-foot/endothelium interface in Tg mice, 
we did not observe such changes in the age-matched Wt 
mice undergoing the same injury protocol. This obser-
vation suggests that high concentrations of human Aβ 
present in the Tg mouse brain confers susceptibility for 
chronic dysfunction of perivascular astrocytes in the 
context of bTBI exposure. Astrocyte dysfunction has 
been reported in multiple models of CNS insult. For 
example, after TBI, ischemia, and in neurodegenera-
tive disease, astrocytes enter a hypertrophic state char-
acteristic of astrogliosis [31, 117], and this process can 
contribute to impairments in gliovascular connections, 
BBB permeability, and cerebral blood circulation [21, 97, 
98]. Several studies reported adverse effects of bTBI on 
perivascular astrocytes in adult male rats. Acutely after 
single or repetitive bTBI using an open-ended shock 
tube model (peak pressure of 150  kPa), Uzunalli and 
colleagues reported reactive astrogliosis accompanied 
by early signs of astrocytic end-foot displacement from 
blood vessels, and a trend for reduced AQP4 expression 
[127]. Another bTBI study applied a series of three low-
energy blast exposures of 74.5 kPa (10.8 psi) intensity and 
reported reduced levels of vascular-associated astrocytic 
GFAP, coupled with swelling of perivascular astrocytes 
and degeneration of their end-feet, 6-weeks after the last 
impact [36]. Our current data suggest that in wild type 
animals which do not accumulate human Aβ, astrocyte 
pathology, reported previously at acute and subacute time 
points after TBI, may resolve over chronic time intervals 
after injury. Alternatively, sex or species differences may 
account for discrepancies between studies. When bTBI 

occurs in individuals with ongoing Aβ accumulation as a 
predisposition for developing AD-like amyloid pathology 
(modeled in adult Tg APP/PS1 mice exposed to bTBI), 
perivascular astrocyte dysfunction is either more severe 
or damaged astrocytes undergo slower recovery relative 
to astrocytes in Wt mice. The consequences of chronic 
astrocyte changes (pathological changes and recovery) 
on microvascular circulation and BBB permeability after 
bTBI require further exploration.

The current study finding that the longer bTBI survival 
in Wt mice (12-months compared to 3-months) is asso-
ciated with lower numbers of PDGFR-β immunolabeled 
pericytes could reflect a progressive loss of pericytes 
lengthily after bTBI. Loss of PDGFR-β expression was 
reported over 24 h after a bTBI in rats [2]. However, sin-
gle or repetitive exposure of rats to bTBI did not affect 
numbers of PDGFR-β-immunoreactive pericytes at 
1–3 days survival [127]. Using CD-13 and desmin immu-
nofluorescence as alternative markers of pericytes, the 
same study confirmed stability of pericyte numbers after 
a single bTBI exposure but detected a transient increase 
in pericyte numbers after repetitive bTBI [127]. These 
data indicate that different models of bTBI and use of 
different markers of pericytes can result in different and 
even opposite observations when pericyte numbers are 
assessed acutely after bTBI in rodents. In other models of 
TBI, loss of pericytes, a disrupted (permeable) BBB, and 
gliosis within days after TBI (i.e., acutely) were reported 
in wild type C57Bl/6 mice exposed to closed head mild 
controlled cortical impact (CCI) [133] and in rats with 
fluid percussion injury to the exposed brain dura [12]. 
Another study, using the model of CCI injury over the 
exposed brain dura of wild type C57Bl/6 mice, reported 
loss of pericytes within 6–12  h after injury followed by 
a recovery and proliferation of pericytes by 5 days after 
injury [135]. Loss or dysfunction of pericytes can affect 
microvascular flow [15] and BBB permeability [11]. It has 
been hypothesized that pericyte loss “would disrupt opti-
mized flow patterns and cause imbalanced perfusion and 
oxygen delivery” [45]. This imbalance could be exacer-
bated by injury- or disease-induced elevations in reactive 
oxygen species, which cause pericyte contraction [45], 
or by exposure to high levels of human Aβ forms [45] 
which has been associated with pericyte contraction in 
AD and mouse models of the disease [8, 70, 95]. In regard 
to BBB permeability, pericytes influence the transcrip-
tion of tight junction proteins by endothelial cells [11, 
26]. Changes in BBB permeability coinciding with loss of 
expression of the tight junction protein claudin-5 in the 
hippocampus of adult male C57Bl/6J mice were reported 
up to 72 h after a 20-psi bTBI [78], and loss of occludin 
acutely was reported in rat models of single bTBI [63] 
and repeated bTBI [48]. Another bTBI study in rat [2] 
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reported diminished expression of tight junction pro-
teins in parallel with loss of PDGFR-β-immunoreactivity. 
Though analysis of tight junction proteins was outside 
the scope of the current study, whether such changes per-
sist lengthily and are influenced by changes in pericytes 
are important avenues of investigation.

In addition to impairing the NVU, loss or dysfunction 
of pericytes after bTBI exposure could also influence 
Aβ pathology. For example, when the Tg APPsw mouse 
model of human Aβ peptide overproduction was crossed 
with pericyte-deficient PDGFR-β+/− mice, accelerated 
Aβ accumulation in brain parenchyma and in blood ves-
sel walls was observed [111]. We did not see statistically 
significant effects of bTBI on pericyte numbers in our 
Tg APP/PS1 mice compared to Tg-Sham mice. This was 
surprising when considering previous reports of peri-
cyte depletion, dysfunction, and/or disrupted pericyte-
endothelial cell signaling with exposure to soluble toxic 
Aβ peptides due to their impaired clearance and accumu-
lation [15, 19, 24, 28, 111]. In relation to Aβ pathology in 
postmortem AD brains, several studies reported reduced 
numbers of pericytes and pericyte coverage of capillar-
ies which corresponded to greater Aβ deposition and 
BBB impairment in these cases [42, 87, 115], while oth-
ers reported no significant changes in pericyte numbers 
[32, 33, 119]. The lack of a difference in the number of 
pericytes per capillary density when comparing bTBI and 
Sham groups of our Tg mice at 12-months survival was 
likely due to higher pericyte frequencies and capillary 
densities, as both could be stimulated by Aβ. Proliferation 
of pericytes contributes to increased angiogenesis [106] 
and, alternatively, angiogenesis could influence recruit-
ment of pericytes to newly formed capillaries [18]. It will 
be important to determine if these cells function nor-
mally, particularly in a brain environment with high con-
centrations of Aβ which causes capillary constriction at 
pericyte locations [95].

Our observations of higher capillary densities at 
12-months survival than 3-months survival in Tg mice 
exposed to bTBI, and no net change in pericyte num-
bers per capillary density are reminiscent of the results 
from stereological analyses in the frontal cortex of AD 
patients, reporting a 24% increase in capillary density and 
no change in numbers of pericytes per capillary segment 
[33]. Other studies also reported that Aβ pathology is 
associated with higher microvascular density in AD brain 
[14, 22, 33, 85, 101, 107] and in aged transgenic mice 
with human tau-overexpression [17]. This could be due, 
in part, to angiogenesis which plays a role in compensa-
tory vascular remodeling after cerebral hypoperfusion 
and hypoxia and/or an inflammatory process activated 
by AD pathology [102, 128]. Angiogenic signaling factors 
are increased in brains of people with AD and vascular 

dementia [17, 102, 125], and multiple serum biomark-
ers of vascular functions including angiogenesis (vascu-
lar endothelial growth factor; von Willebrand factor) are 
elevated after experimental TBI [7, 73, 112]. Thus, angio-
genesis may underlie the increased microvascular densi-
ties observed in Tg mice in our bTBI study and reported 
previously in AD, but this change may not be successful 
in countering long-term brain hypoxia because, simi-
lar to the aftermath of stroke and in AD, newly formed 
microvascular networks can have impaired vessel reac-
tivity and reduced lumen diameter which manifests as 
greater vasoconstriction, thus limiting oxygen delivery 
[22, 125]. From a therapeutic standpoint, stimulation of 
angiogenesis by brain implantation of human umbilical 
cord perivascular cells after fluid percussion TBI in rats 
normalized (the reduced) capillary densities and peri-
cyte coverage of capillaries, resulting in lower BBB per-
meability and less axonal injury [12]. In contrast to the 
findings in Tg mice, we observed that Wt mice with bTBI 
had lower capillary density at 12-months survival than 
after 3-months survival, possibly reflecting an effect of 
age on capillary density in Wt mice as has been reported 
previously [113], or lack of high Aβ concentrations which 
could stimulate angiogenesis and pericyte proliferation in 
Tg mice.

Some limitations of the current study should be con-
sidered. The number of mice per experimental group 
was small, however we used an unbiased stereological 
approach with five optical dissectors per brain hemi-sec-
tion and, overall, 10 sites per mouse and did not observe 
large variations within groups. Nevertheless, we recog-
nize that the study was not sufficiently powered to draw 
definitive conclusions. The high complexity of the NVU 
requires that future studies of bTBI in mouse models 
of human neurogenerative diseases analyze additional 
components of the microvasculature and BBB including 
the endothelial tight junction proteins. TBI can impair 
the ability of astrocytes and pericytes to crosstalk with 
endothelial cells and this can lead to loss of tight junction 
proteins and further impairment of the BBB permeabil-
ity and capillary flow [10, 11, 54, 121]. Studies of human 
Aβ-overexpressing transgenic mice with longer survival 
intervals after bTBI will further define chronic changes 
in the microvasculature, permeability of the BBB, 
and cerebral blood circulation in relation to progres-
sive accumulation of Aβ as a risk of developing chronic 
neurodegeneration.

Conclusions
Human and experimental studies of brain injury report 
changes in BBB permeability, induction of perivas-
cular inflammation, altered endothelial-immune cell 
interactions, and dysfunction of endothelial cells and 
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pericytes [4]. While most of these changes are reported 
within the acute and subacute period, the current study 
contributes to a better understanding of the chronic 
phase of bTBI in relation to a risk of developing sus-
tained cerebral vascular dysfunction and AD-related 
Aβ pathology. We demonstrate that at the level of the 
microvasculature, bTBI results in significant long-
term changes (i.e. loss of pericytes and lower capillary 
density) in Wt mice while more complex detrimental 
and potentially compensatory chronic changes occur 
in a transgenic mouse model with AD-relevant brain 
accumulation of human Aβ. In the latter model, we 
observed that bTBI resulted in chronic loss of astro-
cytic AQP4 expression at the level of microvessels 
which could be due to AQP4 redistribution from end-
feet to the soma, retraction of astrocytic end-feet, or 
lack of coverage of newly formed vessels. Our obser-
vation that chronic bTBI in transgenic AD mice is 
associated with increased capillary density, with no 
significant change in numbers of pericytes relative to 
capillary density, is similar to what has been reported in 
brains of AD patients [33]. Further efforts to clarify the 
mechanisms responsible for chronic changes in compo-
nents of the microvasculature after bTBI in relation to 
increased Aβ accumulation may help identify areas for 
early or delayed therapeutic intervention.
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