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Abstract 

Background:  Understanding molecular transport in the brain is critical to care and prevention of neurological dis-
ease and injury. A key question is whether transport occurs primarily by diffusion, or also by convection or dispersion. 
Dynamic contrast-enhanced (DCE-MRI) experiments have long reported solute transport in the brain that appears to 
be faster than diffusion alone, but this transport rate has not been quantified to a physically relevant value that can be 
compared to known diffusive rates of tracers.

Methods:  In this work, DCE-MRI experimental data is analyzed using subject-specific finite-element models to 
quantify transport in different anatomical regions across the whole mouse brain. The set of regional effective diffusivi-
ties ( Deff  ), a transport parameter combining all mechanisms of transport, that best represent the experimental data 
are determined and compared to apparent diffusivity ( Dapp ), the known rate of diffusion through brain tissue, to draw 
conclusions about dominant transport mechanisms in each region.

Results:  In the perivascular regions of major arteries, Deff  for gadoteridol (550 Da) was over 10,000 times greater than 
Dapp . In the brain tissue, constituting interstitial space and the perivascular space of smaller blood vessels, Deff  was 
10–25 times greater than Dapp.

Conclusions:  The analysis concludes that convection is present throughout the brain. Convection is dominant in the 
perivascular space of major surface and branching arteries (Pe > 1000) and significant to large molecules (> 1 kDa) in 
the combined interstitial space and perivascular space of smaller vessels (not resolved by DCE-MRI). Importantly, this 
work supports perivascular convection along penetrating blood vessels.

Keywords:  Biotransport, Brain transport, Glymphatic, Perivascular transport, Interstitial transport, Dynamic contrast-
enhanced MRI
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Background
Molecular transport is an essential element in physiologi-
cal brain function, contributing to neurotransmission, 
ion homeostasis, nutrient delivery and waste clearance 
[1]. Changes in interstitial molecular transport have been 
implicated in several pathological states, including the 
proposal that impairment of interstitial peptide and pro-
tein clearance may underlie the vulnerability of the aging 

or injured brain to the development of protein aggregates 
in neurodegenerative disease [2–4].

While solute transport within the brain parenchyma 
is classically attributed to diffusion [5], Rennels et al. [6] 
and Cserr et  al. [7] reported that tracers injected both 
into the brain interstitium and the cerebrospinal fluid 
compartments move preferentially along perivascu-
lar spaces (PVSs) surrounding the cerebral vasculature 
and that the observed tracer movement was too fast to 
be explained by diffusion alone. These PVSs are annular 
spaces bounded by the vascular wall on the inside and by 
perivascular astroglial endfeet on the outside. Patterns of 
tracer distribution demonstrate that PVSs are continuous 
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both with the brain interstitium and the cerebrospinal 
fluid (CSF) surrounding the brain.

This topic has risen in visibility over recent years with 
the description of the ‘glymphatic’ system [3, 8–10]. The 
glymphatic system is a brain-wide system for molecular 
transport (Fig. 1) where: (1) subarachnoid CSF enters the 
brain along PVS surrounding penetrating arteries (mov-
ing in the same direction as blood flow), (2) fluid and 
solutes exchange into the interstitial space through gaps 
between astroglial endfeet, and (3) interstitial fluid and 
solutes drain along PVSs surrounding large-caliber drain-
ing veins towards sinus-associated CSF compartments. 
The subsequent characterization of meningeal lymphatic 
vessels [11, 12] associated with dural sinuses provided a 
final potential step in the clearance of these interstitial 
solutes from the cranium along the lymphatic drainage. 
In the glymphatic model, PVSs surrounding the branch-
ing cerebral vasculature provide a low-resistance conduit 
for efficient exchange of fluid between the brain surface 
and regions deep within the brain, supporting solute 
delivery and waste clearance.

The existence of both perivascular and interstitial 
convection in the brain has undergone much debate 
[14–22]. Periarterial flow has been measured directly 
at 1.2  mm/min [18, 19] and entrains to arterial pulsa-
tion [9, 18, 23], suggesting that peristaltic flow within 
the PVS is generated by pulsation of the arterial (inner) 
wall against a mostly rigid outer ‘wall’ comprised of 

ensheathing leptomeninges or astroglial endfeet. How-
ever, to date mathematical and computational models 
of arterial-pulse driven periarterial flow do not rep-
licate the flows observed experimentally [20, 24–27], 
concluding a physiologically reasonable, but as yet uni-
dentified, static pressure gradient is required to gener-
ate flows observed experimentally [26, 27]. Dispersion 
has also been predicted to moderately enhance periar-
terial transport over diffusion alone [20, 28]. Dispersion 
is a transport effect caused by the coupling of concen-
tration gradients and fluid flow [29]. Periarterial dis-
persion is caused by fluctuations in flow generated by 
arterial pulsation that facilitates mixing and accelerate 
transport relative to diffusion alone or the net flow of 
the fluid.

Measurements of periarterial flow have been con-
ducted only along distil segments of the middle cerebral 
artery (MCA) on the brain surface [18, 19]. Observed 
flow characteristics are indicative of flow in an open 
channel [18, 23], which has a lower hydraulic resistance 
than a porous, media-filled space. However, the 1-μm 
diameter microspheres tracked in the experiments did 
not enter PVSs surrounding penetrating arteries [19, 
23]. It is possible that periarterial flow may only occur 
around surface arteries [19] or that periarterial space sur-
rounding penetrating vessels may be “somewhat porous”, 
excluding the relatively large microspheres while permit-
ting the transport of large soluble tracers [8, 19, 23].

Periarterial
CSF influx

Peri-
arterial
space

Peri-
venous
efflux

Fig. 1  Perivascular glymphatic transport in the brain. Schematic depicting the proposed mechanism underlying molecular transport in brain 
tissue, the glymphatic system. Perivascular spaces (PVS) surround cerebral blood vessels and are bounded by the vascular wall on the inside and 
by the ‘endfeet’ of astrocyte cells (green) on the outside. It is proposed that cerebrospinal fluid moves inward from the subarachnoid space along 
periarterial spaces surrounding penetrating arteries deep into the brain. The fluid enters the interstitium through gaps between astroglial endfeet. 
Interstitial solutes (‘waste’) are cleared by interstitial convection towards peri-venous spaces and extracranial efflux routes. Perivascular CSF influx 
and interstitial solute efflux is facilitated by astroglial aquaporin-4 (AQP4) water channels. Reproduced from [13] with nomenclature updated from 
‘para-arterial’ to ‘periarterial’
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In the interstitial space, transport models have esti-
mated interstitial flow superficial velocity ranging from 
no flow to 0.05 mm/min [30–32]. An interstitial flow of 
0.01 mm/min is sufficient to affect the transport rate of 
macromolecules greater than 1  kDa in size, including 
the peptides and proteins (amyloid β, tau, a synuclein) 
implicated in neurodegenerative diseases [30, 32]. Dif-
ferences between models of interstitial flow originate 
from varying assumptions about the hydraulic conduc-
tivity of brain tissue (the ease with which fluid can move 
through ‘porous’ interstitial space) and pressure gradi-
ents between periarterial and perivenous spaces, which 
are not known. With these uncertainties surrounding 
the existence, magnitude and extent of perivascular and 
interstitial flow, it is unclear whether convection is a sig-
nificant contributor to the transport of molecules within 
brain tissue.

Dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI) has emerged as the gold-standard for 
investigating molecular transport within the healthy and 
diseased rodent and human brain, with a recent review 
summarizing fifteen such studies since the first experi-
ment in 2013 [33, 34]. DCE-MRI offers a brain-wide, 
macroscopic view of transport, complimentary to the 
microscopic view of flow surrounding single vessels pro-
vided by 2-photon microscopy [8, 18]. Studies utilizing 
DCE-MRI demonstrate that contrast agents injected into 
the subarachnoid CSF of the murine brain move along 
preferential pathways following major arteries near the 
surface of the brain, then penetrate into the brain at a 
rate too rapid to be described by diffusion alone [34–40]. 
Typically, cluster analysis is performed on time-series 
signal data to show the speed of contrast agent uptake 
in different brain regions or the general direction of con-
trast agent movement [17, 34, 41]. Optimal mass trans-
port (OMT) modelling has emerged as an excellent tool 
for visualizing movement of intrathecal contrast agents 
through the brain [42]. However, these semi-quantitative 
techniques do not permit the determination of the fun-
damental parameters characterizing molecular trans-
port that are independent of experimental procedures 
and allow direct comparison with known diffusion rates. 
Within these DCE-MRI studies, measured signal changes 
have been regarded as a surrogate for contrast concen-
tration, assuming a direct proportionality between con-
centration and signal change, when this relationship is 
somewhat more complex (see “Methods”).

Previous computational models of brain transport 
predicting fundamental parameters have been at the 
microscale and have only qualitatively compared results 
to experimental data [20, 30, 31]. An exception is Valnes 
et  al., who developed a finite-element model simulating 
contrast transport in a section of the human brain [43], 

utilizing DCE-MRI data derived from human studies [44, 
45] to estimate transport parameters in grey and white 
matter. However, the complexity of the highly-folded 
surface of the human brain, variability among study par-
ticipants, and the noisy nature of DCE-MRI data resulted 
in dependence of results upon boundary-data filtering 
methods. Here, a finite-element transport model is devel-
oped for the simpler case of the mouse brain. The mouse 
brain has a smoother cortical surface, little white mat-
ter, and smaller size that enables modelling of the whole 
brain while small-animal MRI has the resolution needed 
to identify the major cerebral vasculature. This permits 
the quantification of transport along major periarterial 
conduits, which are important to molecular movement 
across the brain.

In this study, a simplified finite-element model of trans-
port in the brain is applied to analyze DCE-MRI datasets 
and determine fundamental parameters describing mac-
roscopic transport mechanisms across the brain volume. 
By analyzing the physically relevant variable of concentra-
tion (calculated from DCE-MRI signal), using subject-spe-
cific models segmented based on anatomical landmarks 
and concentration dynamics, and applying theory from 
transport phenomena, we aim to calculate transport 
parameters that can be directly compared to known diffu-
sivity through brain tissue ( Dapp ) and are independent of 
the experimental situation. Our analysis shows evidence 
of: (1) convection along preferential routes surround-
ing major arteries that is consistent with experimental 
measurements of periarterial flow, and (2) convection at a 
slower, but significant rate through the brain tissue, which 
includes smaller perivascular and interstitial space.

Methods
The purpose of this work is to analyze DCE-MRI data 
using theories from mass transport to quantify experi-
mentally observed rates of macroscopic solute transport, 
i.e. at the scale of the whole brain, that can be compared 
between experiments and directly compared to known 
rates of diffusion. Through comparison of overall trans-
port rates to known diffusive rates, and using current 
understandings of brain transport from the literature, 
conclusions can be drawn about possible modes of trans-
port in different anatomical regions. This approach pro-
vides insight into the properties of glymphatic transport, 
including whether convective fluid flow is an important 
contributor to molecular transport within brain tissue.

Methodology
Transport of molecules in brain tissue may occur by a 
combination of mechanisms according to Eq. 1, including 
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diffusion, dispersion, convection, and source or sink 
terms (given in order on the right-hand side of Eq. 3):

where c = concentration, Dapp = apparent diffusivity, 
Ddisp = dispersion coefficient, v = superficial velocity (a 
vector field), s(c)  = spatially dependent source term (e.g., 
injection), and f (c)  = sink term (e.g., cellular uptake, 
adsorption, efflux route). The contrast agent was chosen 
for its lack of biological activity in the CNS, therefore cel-
lular uptake and adsorption can be ignored. For a biologi-
cally active molecule, transport would be slowed by these 
processes of interaction with cells.

The convective term in Eq.  (1) presents a challenge 
when characterizing macroscopic transport and utiliz-
ing data with a resolution of only 100 μm, which does not 
resolve the microvessels that provide the primary conduit 
for fluid transport throughout the brain. The fluid velocity 
(v) in the convective term is a vector, meaning it has both 
magnitude and direction. Fluid velocity, as described by 
the glymphatic theory, may occur in several directions 
within a single voxel—first along periarterial space, which 
is branching in nature, then across interstitial space from 
periarterial to perivenous, likely to be perpendicular to 
the periarterial flow, and then along perivenous space, 
which is also branching in nature. Therefore, fluid veloc-
ity observed at the resolution of an MRI voxel represents 
a combination of these velocity mechanisms resulting in 
a net propagation of the contrast agent across the voxel 
more rapid than diffusion alone.

Despite the multi-directional fluid velocities within 
a voxel, is it possible to determine a “net” velocity mag-
nitude within an anatomical region using the DCE-MRI 
data and a transport model built from Eq. 1? Character-
izing transport using this approach would still require 
a unit vector describing the direction of the velocity for 
each mesh element. As fluid moves through the brain, 
following the branching network of the vasculature and 
crossing interstitial space, it changes direction, likely 
element-by-element. In addition, MRI resolution allows 
identification of large caliber vessels, but contains no 
information about the smaller vasculature that might 
inform unit vector assumptions. Such an approach 
would require unreasonable assumptions about veloc-
ity direction, adding a great deal of uncertainty to the 
calculations.

Is it feasible to build a model from first principles to 
predict the details of glymphatic flow across the whole 
brain that can be compared to the DCE-MRI data? Fluid 
velocity, according to the glymphatic theory, is driven by 
mechanisms at the microscopic level with the primary 

(1)

∂c

∂t
= Dapp∇

2c + Ddisp∇
2c − v · ∇c + s(c)− f (c)

driver being periarterial flow. As described in the intro-
duction, experimental evidence supports periarterial flow 
entrained with arterial pulsation, however observed peri-
arterial flows [18, 19] have not yet been predicted from 
first principles assuming this mechanism [20, 24, 26, 
27]. In fact, using the most sophisticated computational 
models to date, both Daversin-Catty et  al. and Kedara-
setti et al. demonstrated arterial pulsation alone produces 
negligible net flow and a static pressure gradient of about 
2  mmHg/m (or 0.1  mmHg along the 5  mm MCA) is 
required to achieve experimentally observed periarterial 
flows [26, 27]. (An elliptical periarterial cross section, as 
observed experimentally [18], produces half the hydrau-
lic resistance of the circular cross sction [46] used in the 
computational models, which would further reduce the 
required pressure gradient by as much as half ). Although 
the cardiac cycle produces a static pressure gradient of 
this magnitude, it is not clear how that might be trans-
mitted to the fluid in the periarterial space [27]. Oth-
ers have argued that hydrostatic pressure gradients 
within the brain are not sufficient to generate observed 
flows [47]. Interstitial flow has been shown to be well 
described by Darcy’s law for flow through porous media 
( v = −k∇P ). However, the periarterial pressures that 
drive both interstitial and perivenous flow are unknown. 
Given the complexity of the vascular network across the 
brain and current limitations of first-principles models 
for periarterial flow, it is not currently feasible to predict 
fluid flow throughout the brain.

Provided the above limitations on calculation or esti-
mation of fluid velocity at the macroscopic scale, an over-
all transport parameter approach is utilized:

where all transport mechanisms are ‘lumped’ into a sin-
gle parameter, effective diffusivity ( Deff  ) and this overall 
transport parameter can be compared to the known dif-
fusivity of the contrast agent to draw conclusions about 
additional transport mechanisms. Effective diffusivity, 
Deff  , represents a composite of diffusion, perivascular 
dispersion, perivascular convection, and interstitial con-
vection within a single transport parameter. Modelling 
transport with Deff  under conditions where the dominant 
mechanisms are uncertain is a general approach that 
has been taken previously [43] to quantify and compare 
transport rates within the CNS. The downside of this 
simplification is that it forces the mathematical form of 
diffusion, and all mechanisms of transport are lumped 
into a single parameter. The benefits of the methodology 
are (1) the resulting problem is relatively simple and solv-
able in a complex geometry with few assumptions, (2) it 
requires only concentration data, obtained directly from 

(2)
∂c

∂t
= Deff ∇c2 + s(c)
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DCE-MRI, and (3) the result is directly comparable to 
the known diffusivity of the contrast agent. Being agnos-
tic towards the mechanism of transport is advantageous 
given the broad range of models and results surrounding 
the subject of brain transport, spanning from diffusion, 
to dispersion, to convection [25]. Thus, given real uncer-
tainty about the presence and driving forces of convective 
flow in the brain, the simplified model is well-suited for 
impartial characterization of brain transport measured 
by DCE-MRI.

The Deff  values for each segmented anatomical volume 
are compared to the known apparent diffusivity ( Dapp ) of 
gadoteridol:

where D = 0.016 mm2/min [48] is the free diffusivity of 
gadoteridol, and λ = 1.6 [49] or λ = 1.85 [32] is tortuosity, 
which represents the degree to which molecular trans-
port is slowed by the porous medium. From these com-
parisons, we can infer the prevalence and magnitude of 
convection and dispersion for each anatomical subdo-
main in the transport model. For example, if significant 
convection is present, the Deff  values will be orders of 
magnitude greater than the Dapp values.

Method overview
An overview of the process used to estimate transport 
parameters for different anatomical regions using finite-
element modelling and DCE-MRI data is presented in 

(3)Dapp = D/�2 = 0.016/1.732 = 0.005mm2/min

Fig. 2. At a high level, DCE-MRI signal data are used to 
calculate contrast agent concentration and to define dis-
crete anatomical regions for the computational model 
relevant to brain-wide transport. Subject-specific, finite-
element models of molecular transport are built for the 
whole mouse brain where unique transport parameters 
are applied to each defined anatomical region. Transport 
parameter sets are varied, and simulations performed to 
determine the optimal combination of parameters for 
each subject that minimizes the difference between the 
concentration data and the simulation. Calculated trans-
port parameters are then compared to the known diffu-
sivity of the contrast agent through brain tissue to draw 
conclusions about convective transport in the different 
regions of the brain.

DCE‑MRI experiments
The present study reflects an analysis of previ-
ously published DCE-MRI data collected in n = 4 
male and female 3–6  month old C57 Bl/6 mice [17]. 
Briefly, ketamine/xylazine-anesthetized (100/10  mg/
kg, respectively) animals were injected with 10 μl of 
68  mM gadoteridol contrast agent (550  Da) at a rate 
of 0.5  µl/min via a pulled glass pipette surgically 
inserted through the atlanto-occipital membrane into 
the aqueduct between the fourth ventricle and the 
subarachnoid space (SAS). Following contrast agent 
infusion, a 2  µl chase of saline was infused. Serial 
3D FLASH T1-weighted MR images with isotropic 
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Fig. 2  Schematic of brain transport analysis using finite-element modeling with DCE-MRI Data. DCE-MRI signal data is used to calculate contrast 
agent concentration and T1,0 , a parameter used to identify different types of tissues. Contrast concentration and T1,0 are used to define anatomical 
masks for regions relevant to brain-wide transport, including the ventricular system, the macroscopic arterial vasculature, and its associated 
perivascular spaces. DCE-MRI data is also utilized to extract the surface of the brain. The anatomical masks are unique to each experimental 
subject. A 3D tetrahedral mesh is built from the brain surface. The concentration data and anatomical masks are interpolated onto the mesh. A 
finite-element model is developed utilizing the simplified mass transport equation (Eq. 2) and subdomains defined by the anatomical masks (Fig. 3). 
Unique effective diffusivities are applied to each subdomain. Simulations are performed for varying effective diffusivities to find the combination of 
effective diffusivities that minimizes the difference between the concentrations data and the simulation
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(100 × 100 × 100 µm) voxels were obtained at 11.75 T 
at 10-min intervals over 80 min with the mouse in the 
prone position. The image series for each subject was 
aligned to a baseline image using a linear rigid-body 
registration, followed by masking to remove non-brain 
regions (see Additional file  2), and subsequent linear 
registration to the Badhwar mouse hippocampal Atlas 
with 60 × 60 × 60  µm isotropic voxels (FSL). Due to 
the high magnetic field utilized in this experiment, 
interference of T2/T2* effects in T1-weighted images 
is encountered in places of high contrast concentra-
tion and in proximity to bones like the skull. These 
magnetic susceptibility effects cause any contrast 
enhancement to be obscured by a decreased intensity 
in the affected voxels.

As reported in our prior study, early contrast enhance-
ment occurred along the ventral surface of the brain, 
after which parenchymal enhancement throughout 
brain tissue began to increase with high concentrations 
observed in the olfactory bulb, a known glymphatic 
efflux route.

Calculation of contrast concentration and identification 
of anatomical regions
To quantify transport parameters, concentration–a 
fundamental physical variable–is required. The major-
ity of DCE-MRI data in the literature are reported and 
analyzed as signal. Measured signal changes are often 
regarded as a surrogate for contrast concentration, 
assuming direct proportionality. T1-weighted signal is 
increased by the presence of the contrast agent, but the 
relationship between signal change and concentration 
is more complex. Gadoteridol concentration is related 
to MRI signal by [50]:

where r1 = Gadoteridol (Prohance) relaxivity, 3.2 × 10–3 
L/mmol-ms [51]. T1,0 = pre-contrast relaxation time (ms). 
SGd = signal intensity after contrast injection (as a func-
tion of time, dimensionless). S0  = baseline signal inten-
sity prior to contrast agent injection (dimensionless).

The proportionality assumption between contrast 
concentration and signal change is correct if T1,0 is 
constant across the sample. However, T1,0 is depend-
ent on the molecular environment and varies sig-
nificantly (500–4500) across different tissues in a 
biological subject, especially one as complex as the 
brain. T1,0 can be estimated from baseline MRI signals 
collected at different flip angles according to the fol-
lowing equation [52]:

(4)[gadoteridol] ∼=
1

r1 · T1,0

(

SGd − S0

S0

)

where TR = repetition time (16  ms for the experiments 
reported here), and α = flip angle.

For each voxel, T1,0 is calculated from S0 (baseline) 
images at α= 3° and 15° using a curve fit to Eq. 5. Know-
ing T1,0 , Eq. 4 is used to calculate gadoteridol concen-
tration from DCE-MRI signal for each voxel and time 
point. The calculated concentration, [gadoteridol], is 
a superficial concentration ( c ) used in porous media 
theory, where c = c · φ and ∅ is void fraction or poros-
ity. It is assumed the void fraction is constant across the 
brain; ∅ has a well-known value of approximately 20% 
[1, 49] for most adult brain tissues. Throughout the 
text the accent on superficial concentration has been 
dropped and it is denoted simply as c.

Upon careful examination of the concentration data, 
regions of distinctly different concentration dynamics 
are observed. These regions correlate with anatomical 
features of the brain and are observed in all experimen-
tal subjects. Concentration and T1,0 thresholds were 
used to develop masks, voxels assigned to a specific 
feature, that segment the brain into volumes exhibit-
ing different concentration dynamics. Since T1,0 varies 
markedly between different types of tissue, it can be 
used to identify anatomical features, such as blood ves-
sels and ventricles. Using T1,0 , the segmented volumes 
(described in “Results”) are shown to correlate with 
anatomical features.

Finite‑element model
Three-dimensional, finite-element models (FEMs) of 
transport in the mouse brain were developed based on 
the simplified transport equation (Eq. 2). Subject-specific 
models of the whole brain (skull and subarachnoid space 
excluded) segmented into five anatomical volumes, or 
subdomains, were built for four different mice. Effective 
diffusivities were varied for each anatomical subdomain 
to determine the optimal combination of parameters that 
give best agreement with the DCE-MRI concentration 
data.

To build the finite-element mesh, brain surfaces 
were extracted from the MRI data using MRIcroS [53]. 
Defects in the resulting surface were repaired using 
Meshlab [54]. The volume mesh of approximately 
900,000 tetrahedral elements was generated with gmsh 
[55]. The anatomical masks were interpolated onto 
the mesh using an inverse-distance weighted (IDW) 
method to define anatomical subdomains within the 
whole-brain mesh. Time-series contrast concentrations 

(5)S(M0,α) = M0 sin(α)
1− e

−TR/T1,0

1− cos(α)e
−TR/T1,0
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were also interpolated onto the mesh for error calcu-
lations. The IDW method is essentially the application 
of a Gaussian filter, and therefore also had the effect of 
locally smoothing the data.

The simplified transport equation (Eq.  2) was solved 
by finite-element method within the complex geom-
etry of the whole mouse brain. Effective diffusivity, 
Deff  , was assumed to be constant within each subdo-
main, but each subdomain might have a different Deff  
value. The contrast injection, which occurred over the 
first 20 min of the experiment, was modelled as a point 
source in space and a rectangular function in time. 
Although concentration data at the surface of the brain 
would have been the most accurate boundary condi-
tion, any contrast enhancement there was obscured by 
the strong local T2/T2* effect derived from the nearby 
skull, which decreases intensity and renders the data 
useless for a thickness of one to three voxels from the 
outer surface (see Additional file  2). (The SAS of the 
murine brain is extremely narrow, resulting in a mini-
mal barrier between the brain and the skull.) A no-flux 
boundary condition was applied, given the skull is an 
impenetrable barrier, except for discrete locations like 
the opening for the spine. Although some contrast 
agent will leave the brain via CSF and glymphatic efflux 
routes, it is assumed this loss will be small over the 
short timescale of the DCE-MRI experiment.

The appropriateness of the no-flux boundary con-
dition was tested by calculating the total amount of 
gadoteridol in the brain versus time using the concen-
trations calculated from DCE-MRI data. If a no-flux 
boundary condition accurately represents the physical 
situation, the total amount of Gad in the brain would 
increase during the injection, over the first 20 min, and 
then remain constant. The total amount of gadoteridol 
in the brain, calculated from DCE-MRI data, increases 
or plateaus over the full course of the experiment (up 
to 84  min) for three out of the four mice, consistent 
with no loss of contrast agent through the boundaries, 
or no flux. Observed increases in total gadoteridol over 
time are an artifact of T2/T2* interference with the 
T1-weighted contrast enhancement at high contrast 
concentrations, which exclude several voxels (on the 
order of 10,000 voxels) near the injection site contain-
ing relatively large amounts of gadoteridol from the cal-
culation at early time points. As contrast disperses over 
time, the number of voxels effected by T2/T2* interfer-
ence decreases, adding previously “hidden” gadoteridol 
to the total calculation.

Effective diffusivities were varied among the subdo-
mains and the root mean square error (rms) between the 
data and the simulation mapped to determine the set of 
Deff  resulting in the minimum error.

The T2/T2* interference region near the injection site, 
the ventricles, and the blood vessels were excluded from 
the error calculation. Time points up to 52 min were used 
in the error calculation, later time points were excluded 
to minimize the error due to assumptions of no efflux 
routes and the no-flux boundary condition.

Equation 2 was approximately solved using FEniCS [56, 
57], an open-source solver of partial differential equations 
by the finite-element method, using quadratic (Lagran-
gian) mesh elements and a preconditioned iterative solver 
for the linear system of equations. The time derivative was 
discretized using a backward difference (i.e., an implicit 
Euler method). The solution for each set of effective diffu-
sivities required 2–3 h on an Amazon Web Server (AWS) 
c5 instance or a MacBook Pro with an i9 processor and 
32 GB of RAM. Fifty to two-hundred combinations of Deff  
were simulated for each subject to generate error surfaces 
from which the values resulting in the minimum rms were 
determined (see Additional file 2). Post processing of sim-
ulations and DCE-MRI concentration data was carried 
out using Python [58], Paraview [59], and Excel. Every 
effort was made to use open-source software.

Results
Segmentation of transport regions
Careful evaluation of three-dimensional time-series 
DCE-MRI experimental data revealed several regions of 
enhancement with distinct concentration dynamics that 
aligned with the anatomy of the cerebral arterial vascu-
lature and the cerebral ventricular system. In all subjects, 
contrast was observed to move from the injection site at 
the back of the brain along the major arteries of the ven-
tral surface, then surrounding major branching arteries 
and from those preferential routes into the parenchyma. 
Based on these observations, the pre-contrast baseline 
images and DCE-MRI data were used to individually 
segment each brain into five volumes: (1) the cerebral 
ventricles, (2) the macroscopic cerebral arterial vascula-
ture, (3) periarterial spaces surrounding the major sur-
face arteries, (4) periarterial spaces surrounding major 
branching and penetrating arteries, and (5) the remain-
der of the brain parenchyma (Fig. 3A). Contrast was not 
observed surrounding major venous structures, in fact 
little tracer was observed in the dorsal half of the brain 
where venous structures are most prevalent in mice and 
rats. Lack of contrast near venous structures could be 
due to either: (1) contrast had not yet reached the major 
venous structures or (2) upon reaching major perivenous 
space the contrast was transported away so quickly that 

(6)rms =

√

∑T

c=1

(cdata − csimulation)
2

T



Page 8 of 19Ray et al. Fluids and Barriers of the CNS           (2021) 18:55 

its concentration remained small. The five segmentations 
listed above were used to create subdomains within the 
finite-element model for which unique transport param-
eters were determined.

The MRI acquisition obtained isotropic 100  μm vox-
els, which through atlas registration were interpolated to 
60 μm isotropic voxels, and provided sufficient resolution 
to segment the proximal arterial vasculature. The identi-
fiable surface arteries include the communicating arteries 
of the Circle of Willis (CoW), basilar artery (Bas), and the 
anterior cerebral artery (ACA) (Fig. 3D). The identifiable 
branching arteries include the posterior cerebral artery 
(PCA), middle cerebral artery (MCA) and olfactory arter-
ies (OAs) (Fig. 3D).

The periarterial spaces were identified based on their 
unique concentration dynamics and are named peri-
arterial due to their location, surrounding the major 
arteries. High contrast concentrations are observed sur-
rounding surface and branching arteries at early time 
points that describe the major periarterial space. Periar-
terial spaces surrounding the surface arteries (PASSurf) 

and the branching arteries (PASBranch) (Fig.  3B and C) 
were defined by high contrast concentration ([gadoteri-
dol] > 0.15  mM at t = 20  min) and proximity (≤ 7 voxels 
for PASSurf and ≤ 3 voxels for PASBranch) to major arter-
ies (T1,0 < 1000–1400 (depending on subject) determined 
from the baseline (pre-contrast) MRI scans).

Preferential routes of tracer movement surrounding the 
surface arteries that transit the subarachnoid space have 
been established by several research groups [41, 60, 61]. 
The anatomical details of these preferential routes have 
been argued, however, independent of anatomy they 
have come to be referred to as periarterial space [41]. 
Harrison et  al. further demonstrated that fluid flow in 
these preferential routes is both parallel and proximal 
to the arteries [62]. Pizzo et  al. present fluorescent and 
DCE-MRI images of the preferential routes surround-
ing the major arteries on the ventral surface of the brain 
similar to the segmentation defined as surface periarte-
rial space in this work [41]. Periarterial space in the seg-
mented model does not necessarily denote anatomical 
periarterial space, but correlates well with the structure 

Periarterial Space: Preferen�al Routes

Arteries and Ventricles:  No Glympha�c Transport
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Fig. 3  Anatomical details extracted from MRI data define transport model subdomains. Structure MRI scans and DCE-MRI data were used to build 
subdomains within the whole-brain finite-element model. Data were analyzed to determine transport parameters for each subdomain within 
the whole-brain model. A Subject-specific, 3D tetrahedral mesh of mouse brain in translucent white (crystal brain). Sagittal cross-section shows 
all five anatomical subdomains within the finite-element model. B Close up of segmentation between artery and periarterial space as 2D coronal 
slices (perpendicular to cross-section shown in (A)) along the left branch of the Circle of Willis, where lines depict the edges of tetrahedral mesh 
vertices. The width of the periarterial space ranges from three to nine vertices. Because the periarterial space is defined primarily by concentration, 
sometimes a buffer one or two vertices thick resides between the artery and the periarterial space that is indicative of boundaries between regions 
where one or more materials may reside in the same voxel and influence the measured signal (see “Sources of Error”). The artery, which holds 
no contrast agent, exhibits no post-contrast signal change, while the periarterial space, which has high contrast concentration, exhibits large 
post-contrast signal change. The intermediate region is a combination of both, which produces a signal in between thus excluding the voxel from 
the definitions of either the arterial or periarterial region. C 3D ‘crystal brain’ image of the surface (light grey) and branching (peach) periarterial 
subdomains. Translucent white shows the surface of the brain. D 3D ‘crystal brain’ image of arterial (red) and ventricular (blue) subdomains (lateral 
ventricle (LV), Third Ventricle (3 V), Fourth Ventricle (4 V), Circle of Willis (CoW))
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and width of the preferential transport routes character-
ized by Mestre et al. [18] and Tithof et al. [46] and iden-
tified by those groups as PVS surrounding arteries (see 
Additional file 2). In addition, the segmented periarterial 
volumes of the model serve the purpose of the preferen-
tial transport routes identified as periarterial space in the 
glymphatic model.

At 60  µm resolution, smaller arteries and the micro-
vasculature could not be individually resolved from the 
wider brain interstitium and were thus lumped into vox-
els of the brain tissue volume (Fig. 4). Therefore, Deff  esti-
mated for the brain tissue volume will lump, or combine, 
transport in interstitial and small PVS (periarterial and 
perivenous space). Contrast transport into the arteries 
and across the ventricular walls (between the CSF com-
partment within the ventricles and the surrounding brain 
tissue) was negligible and these regions were assigned 
extremely small transport parameters (0.000001% of 
the brain tissue region). Thus, based on the segmenta-
tion described above, the current model defines optimal 
parameters for three key regions in brain-wide trans-
port: the PASSurf, the PASBranch, and the remaining brain 

tissue (BT), combining interstitial and small perivascular 
spaces.

Transport parameters
The average Deff  (and standard deviation) for each ana-
tomical subdomain are reported in Table 1. The Deff  for 
each subdomain is greater than Dapp , indicating that 
transport is faster than attributable to diffusion alone 
throughout the brain. The estimated value for Deff  is 
greatest for the regions surrounding the major arterial 
spaces (PASSurf, PASBranch) whose values are of similar 
magnitude. In fact, Deff  in the periarterial regions is so 
much faster than Dapp (> 10,000× faster) that periarte-
rial transport along major vessels can only be explained 
by convection. Dispersion in major periarterial spaces is 
predicted to increase the rate of transport over diffusion 
by a factor of as much as two [20]. Asgari et al. assumed 
porous periarterial space, while transport in periarte-
rial spaces at the surface of the brain has been shown to 
agree with transport in open, non-porous channels [46]. 
In an open channel, predicted dispersion may be greater, 
but would still account for only a very small fraction of 
the observed enhancement. For transport in unhindered 
space, such as an open channel, Deff  is more appropri-
ately compared to the free diffusivity (D). Deff  for the 
major periarterial spaces is > 1,000 X’s faster than D, also 
indicating convection.

In the BT subdomain, which combines interstitial space 
and PVSs associated with smaller vasculature and the 
microcirculation, the enhancement of overall transport 
( Deff  ) over Dapp is smaller (10–25×), but still supports 
the presence of convection within the bulk tissue. As dis-
cussed above, Deff  of the BT volume represents a com-
bination of diffusion, periarterial convection, periarterial 
dispersion, interstitial convection, and perivenous con-
vection. For a small molecule like gadoteridol (550  Da), 
interstitial convection and diffusion are predicted to have 
similar rates [32]. Dispersion could also enhance trans-
port within the smaller periarterial space, however, as 

60 m

Details of Brain Tissue Subdomain

Gad Tracer
Inters��al 
Space
Peri-arterial 
Space
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Fig. 4  Simplified illustration of a DCE-MRI voxel, which measures 60 
μm on a side, in the brain tissue subdomain (light blue in Fig. 3A). 
Each voxel in the brain tissue subdomain contains interstitial space 
and PVSs too small to resolve by MRI. Therefore, the transport 
parameter determined for this subdomain combines transport in the 
interstitial space and PVSs

Table 1  Quantitative analysis of brain transport parameters for each anatomical subdomain

Table reports: (1) Optimal effective diffusivity Deff  . (2) Peclet number reflecting the ratio of convective to diffusive transport. “Open” uses the free diffusivity and 
represents transport in unhindered space such as surface periarterial space. “Porous” uses apparent diffusivity and represents transport through porous media such 
as interstitial space. (3) Average velocity estimated from Deff  using a characteristic length for the anatomical subdomain. (4) Measured brain transport parameters (or 
parameters estimated using a model) from the literature for comparison. (Error is one standard deviation)

Anatomical Subdomain Deff  (mm2/min) Peclet number 
(open/porous)

Charac. 
length 
(mm)

Estimated 
velocity (mm/
min)

Published transport parameter

Branching Periarterial Space (PASBranch) 60 ± 20 4000/12,000 5 12 ± 4 vPAS = 1.2mm/min [18, 19]

Surface Periarterial Space (PASSurf) 95 ± 40 6000/19,000 12 8 ± 3 vPAS = 1.2mm/min [18, 19]

Brain Tissue (BT): Interstitial space, PVS of 
microvessels

0.10 ± 0.04 6/18 0.5 0.2 ± 0.1 Dapp = 0.005mm
2/min [48, 49]

vIS = 0.01mm/min [32]
vPAS = not known
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discussed above, it is unlikely to have a contribution high 
enough to account for the full remaining enhancement 
of Deff  within the BT subdomain over Dapp . Therefore, 
much of the increase in Deff  over Dapp observed in the 
BT volume is likely attributable to convection along the 
smaller penetrating PVS, in agreement with the observa-
tions of Cserr et al. and Rennels et al. [6, 7].

Effective diffusivity is a volume averaged value, while 
the perivascular space makes up only a small fraction of 
the brain volume, meaning the enhancement of overall 
transport compared to diffusion alone in the small PVS 
is likely much greater than that of the combined brain 
tissue region. Vasculature occupies about 3% of the total 
brain volume on average. If one assumes perivascular 
space is also about 3% of the brain volume, based on the 
PVS having a similar cross sectional area to the vessel it 
surrounds [18], then, after subtracting interstitial convec-
tion and periarterial dispersion, Deff  attributable to PVS 
convection in the brain tissue is estimated at 3 mm2/min. 
This small PVS transport rate is 600×’s faster than Dapp 
and about 20×’s less than transport in the major periarte-
rial space, suggesting perivascular flow continues into the 
brain parenchyma and may be slower than in the peri-
arterial space surrounding major arteries. It is unknown 
whether perivascular space within the brain parenchyma 
is porous in nature, potentially filled with extracellular 
matrix [20, 25]. However, such rapid transport suggests 
open (not porous) PVS channels.

Simulation comparison
Figure 5 shows simulated concentration contours com-
pared to concentration calculated from DCE-MRI data 
for a representative mouse (see Additional file 1 for 3D 
animations and Additional file  2 for 2D slices). Con-
trast agent progression follows the same pattern from 
its posterior injection site as observed in other studies 
[34–40]: (1) contrast moves rapidly along the ventral 
surface of the brain following surface arteries, reach-
ing the anterior brain in less than 10 min, (2) contrast 
follows branching arteries into the brain parenchyma, 
and (3) moves into the surrounding brain tissue from 
these major periarterial pathways. Given the simpli-
fications applied in the present model, concentration 
simulations are visually well matched to the experi-
mental data. In the simulation, however, contrast does 
not move as rapidly towards the anterior brain at early 
time points and the volume occupied by contrast con-
centration > 0.1  mM remains greater in the posterior 
brain compared to the observed experimental distri-
bution. This discrepancy is an outcome of modelling 
convective transport, which has a first-order relation-
ship with concentration gradient (Eq.  1), using a dif-
fusive model, which is second-order with respect to 

concentration gradient (Eq. 2). A second-order model, 
such as that used in the simulation, will yield higher 
concentration near the contrast source (the posterior 
brain) and decrease more rapidly moving anteriorly, 
while in a first-order model, such as that of convection 
in the full transport equation, concentration will follow 
a linear decline. The observed first-order relationship 
between contrast concentration data and rostro-caudal 
distance is additional evidence in support of periarte-
rial convection.

A more refined inspection of the simulation versus 
the experimental data (Fig.  5 and Additional file  2) 
shows that at later time points the experimental data 
exhibit heterogeneity of contrast concentration (e.g., 
distinct areas of high and low concentrations), while 
in the simulation the contrast concentrations decline 
smoothly through the tissue. This smooth dispersal 
is the expected outcome of a diffusive model (Eq.  2). 
Therefore, such discrepancies are expected given the 
model chosen and the anatomical simplifications made 
in this work. The heterogeneity of the measured con-
trast concentration at later time points suggests that 
the brain tissue is more heterogeneous than modelled, 
as are the transport mechanisms underlying this ana-
tomical heterogeneity. Certainly, the local agreement 
between the simulations and the experimental data can 
be improved by including greater anatomical detail. 
However, the addition of these details adds complex-
ity and requires more adjustable parameters that dilute 
the usefulness of the quantified parameters, add new 
potential sources of error and require extremely large 
computational resources. Although the model does not 
perfectly simulate the experimental data, the parame-
ters determined from the model well describe macro-
scopic transport mechanisms throughout the brain.

Discussion
DCE-MRI experiments have long reported transport in 
the brain that appears to be faster than diffusion alone, 
but this transport rate has not been quantified to a physi-
cally relevant value that can be compared to known dif-
fusive rates of contrast agents. The effective diffusivities 
( Deff  ) estimated from our analysis are orders of magni-
tude larger than diffusivity of the contrast agent through 
brain tissue ( Dapp ), and thus indicate that convection is a 
significant contributor to transport throughout the brain. 
In this Discussion section, the Deff  results are further 
analyzed using concepts from transport phenomena and 
the results of that analysis compared to values reported 
in literature. Further, experimental factors impacting 
transport and sources of error from the analysis and the 
experiments are explored.
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Mechanisms of transport
Péclet number (Pe) is a dimensionless group that assesses 
the relative importance of convective to diffusive trans-
port rates:

If transport is predominantly by diffusion (i.e., by ran-
dom molecular motion in a stagnant fluid), then Pe ≪ 1, 
and if transport is predominantly by convection (i.e., 
by bulk fluid motion), Pe ≫ 1. Because it is uncertain 
whether perivascular space is open or porous, Pe is calcu-
lated using both D and Dapp respectively. Table 1 reports 

(7)Pe =
rate of convection

rate of diffusion
=

chateristic diffusion time

characteristic convection time
=

L2/D

L/v
=

Lv

D
=

Deff − Dapp − Ddisp

Dapp

Pe for each anatomical region using D = 0.016 mm2/min, 
Dapp = 0.005 mm2/min (Eq. 3) and Ddisp = Dapp [20]. In 
both major periarterial spaces (PASSurf and PASBranch), 
which are believed to be open, Pe exceeds 1000 and con-

vection (or bulk flow) is the dominant mechanism of 
transport. The brain tissue (BT), which consists of a com-
bination of interstitial tissue and PVSs associated with 
small blood vessels, exhibits an intermediate Pe = 18, 
where convection and diffusion are both relevant, but 
convection remains the larger mechanism of transport 
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Fig. 5  Comparison of simulation to experimental DCE-MRI gadoteridol concentration data. Images of contrast concentration versus time of 
simulation results for a representative mouse using segmentation as described above, and optimal transport parameters (brain tissue Deff   = 0.1 
mm2/min, PASSurf Deff  = 95 mm2/min, PASBranch Deff  = 60 mm2/min) compared to concentration calculated from DCE-MRI signal data. The 3D 
images show only the elements with concentration greater than 0.1 mM and are colored by concentration according to the color bar at the figure 
bottom. Images are shown for the ventral surface and from a lateral view with a slight downward tilt to display details around the Circle of Willis on 
the ventral surface and the branching arteries. In the data images, contrast is observed moving outwards from the injection site near the cisternal 
aqueduct, rapidly along the ventral surface of the brain following the communicating arteries of the Circle of Willis. Contrast then moves into the 
brain along major branching arteries, and from these preferential routes, penetrates the wider brain tissue. Contrast present in the ventricular 
system has been removed from the images for direct comparison to the simulation, which modelled only glymphatic transport (not ventricular 
transport). In the simulations, contrast movement follows the same progression, although it does not move as rapidly towards the anterior brain at 
early time points and remains higher in posterior regions than in the experimental data
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for the contrast agent. From the Péclet analysis, we con-
clude convection is present within and significant to 
transport within the wider brain tissue volume, however 
the contribution of each of its physiological components 
(the bulk interstitium versus microvascular PVS) is not 
determinable.

It is also important to note the transport characteris-
tics of the contrast agent used in this DCE-MRI study. 
The contrast agent was chosen for its lack of interaction 
with cells and its absence of known carriers or transport-
ers in the CNS; it is biologically inactive. Therefore, its 
transport is not slowed by biological interactions and is 
indicative of the pure transport mechanisms of diffusion, 
dispersion, and convection. Biologically active mole-
cules will be slowed by cellular and transporter interac-
tions, with their resulting rate being molecule specific. 
The transport rates observed in the DCE-MRI data and 
analyzed here should be considered the upper limit of 
transport for molecules around the size of gadoteridol 
(559  Da). Gadoteridol is also a smaller molecule com-
pared to biological macromolecules, including peptides 
and proteins of interest in neurodegeneration, such as 
amyloid β (4.5 kDa). These larger molecules have smaller 
Dapp , and therefore larger Pe, meaning the convection 
observed here will have an even greater effect on the 
overall transport of such macromolecules.

Average velocity
Using the definition of Péclet number (Eq. 7) and a char-
acteristic length for transport in each region, Deff  can 
be used to estimate average fluid velocity (v), which is 
reported for each region in Table  1. Periarterial con-
vection is estimated to have an average velocity of 
vPAS  = 8 mm/min in the PASSurf and vPAS = 12 mm/min 
in the PASBranch. The choice of characteristic length has a 
significant impact on the velocity calculated in this way. 
Using the convention of computing characteristic trans-
port times, characteristic lengths in the primary direction 
of transport for each anatomical region were estimated. 
The characteristic lengths reported in Table  1 for the 
PASSurf and PASBranch were chosen based on the length 
dimension of the brain in each direction (caudal-rostral 
for PASSurf and ventral-dorsal for PASBranch). As the vas-
culature followed by the PVS takes a tortuous, branching 
path and is connected from the major arteries down to 
the capillaries, the appropriate characteristic length for 
the periarterial regions may be longer than estimated, 
which would result in lower velocities. Perivascular fluid 
velocity at specific locations along the MCA (and its 
immediate branches) was measured to be 1.2 mm/min by 
both Mestre et al. and Bedussi et al. [18, 19]. The meas-
ured velocities are slower than the velocities estimated 
in our analysis, but similar in order of magnitude. The 

difference in velocity values may derive from: (1) differ-
ences in transport between small chemical tracers and 
particles, (2) calculation of an average velocity over a sys-
tem of periarterial spaces versus measurement of particle 
velocity at a specific location, and/or (3) sources of error 
in both the analysis and the experiments.

The BT volume represents a combination of interstitial 
transport and perivascular transport surrounding smaller 
blood vessels (illustrated in Figs. 1 & 3B). Therefore, lit-
erature values are investigated for each and compared to 
the estimated average velocity of vBT = 0.1–0.3 mm/min 
(Table 1). In previous work, Ray et al. estimated intersti-
tial flow in the brain (which is expected to be the lowest 
velocity for all anatomical regions considered here) on 
the order of vIS = 0.01  mm/min [32]. Measurements of 
interstitial flow through tissues outside the brain (in the 
periphery), which likely represent an upper limit on brain 
interstitial transport, report vIS = 0.006–0.12  mm/min 
[63]. Both estimates of interstitial velocity are lower by an 
order of magnitude than the average velocity estimated 
from the Deff  in the lumped BT volume, indicating the 
likelihood of a significant contribution from PVS flow.

Another way to think about velocity in the brain tissue 
region is as the velocity of a transport ‘front’. The smaller 
penetrating arteries and microvessels branch out in many 
directions, so there may be no clear direction of flow on 
the scale of the BT volume either in the penetrating peri-
arterial and perivenous spaces or for the interstitial flow 
that runs from periarterial to perivenous space. Instead, 
contrast progresses more rapidly than by diffusion alone, 
but along a tortuous convective path. Therefore, the 
velocity calculated in Table  1, vBT = 0.1–0.3  mm/min, 
may be better described as the velocity of a ‘front’ pro-
gressing deeper into the brain, as opposed to the veloc-
ity of the actual interstitial or perivascular flow. Plog et al. 
measured front velocities on the order of 0.1–1 mm/min 
in mice in the space between large vessels (analogous to 
the BT volume in this work) [64]. This front velocity, or 
an enhancement factor of Deff /Dapp , may be a better rep-
resentation of transport for the combined effects of peri-
arterial convection, perivenous convection, interstitial 
convection, dispersion, and diffusion in the brain tissue.

The results presented above for both the periarte-
rial spaces of major branching arteries (PASBranch) and 
the periarterial space of smaller penetrating arteries 
(included in the BT volume) support continuation of 
periarterial flow into the brain along penetrating arter-
ies. Mestre et al. [18] and Bedussi et al. [19] reported that 
1-μm microspheres tracking fluid movement in the peri-
arterial space surrounding the MCA were excluded from 
smaller branches of that artery penetrating into the brain. 
This observation raised the question of whether periar-
terial flow continues into the brain, and if so, whether 
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the penetrating periarterial spaces are filled with protein 
networks that behave like a porous media and impede 
flow. In the model, the PASBranch is comprised of PVS of 
the MCA, which resides primarily on the surface of the 
brain, but also the posterior cerebral artery (PCA) and 
the OAs, which penetrate into the brain tissue. Con-
vection was apparent along these large arteries of the 
PASBranch at a magnitude that suggests open channel flow, 
not flow through porous media. Convection is also sup-
ported for the space of microvessels. Although the actual 
flow velocity in the perivascular space of smaller arteries 
and veins cannot be determined from this analysis per-
formed at the scale of the whole brain, the results are best 
explained by significant perivascular flow surrounding 
penetrating vasculature. Therefore, the results reported 
here, when combined with current understandings in the 
literature, support open-channel periarterial flow along 
large penetrating arteries and perivascular flow along 
smaller cerebral blood vessels that may be open-channel 
or porous media flow.

Effect of experimental factors on transport rate
Although DCE-MRI is widely used for assessing sol-
ute transport in the brain, factors affecting glymphatic 
transport continue to be investigated and experimen-
tal techniques are still being standardized. Experimen-
tal parameters that may affect the glymphatic transport 
rates the DCE-MRI experiments are designed to measure 
include: contrast infusion procedures, body posture, and 
anesthesia. First, injection of contrast is accomplished 
through a pipette surgically inserted into the cisterna 
magna (CM), a widening in the subarachnoid space 
(SAS) surrounding the brain that is filled with CSF, at a 
controlled rate over several minutes. Lundgaard et  al. 
reported a decrease in glymphatic function with CM 
puncture under conditions where CSF was allowed to 
drain out of the skull [65]. The decrease in glymphatic 
function was believed to be a result of the associated loss 
of intracranial pressure, not the puncture itself. In the 
DCE-MRI experiments, the needle/pipette removal coin-
cided with sealing of the dura with cyanoacrylate glue. 
Thus, while needle removal opening the CM does impair 
glymphatic function, the sealing approach applied here 
maintains normal levels of glymphatic function like those 
observed where the needle is left in place.

Second, body posture has been shown to affect trans-
port rates in the murine brain, with the highest rates 
being observed in the lateral position and higher rates 
in the supine than prone position [66]. Rodents sleep 
naturally in groups, which can lead to a wide variety of 
body postures [33]. Foundational glymphatic experi-
ments (prior to DCE-MRI) were performed in the prone 
position [6, 7, 10, 34] and DCE-MRI images reported in 

literature are acquired in either the prone or supine posi-
tion [17, 33, 34, 67, 68], or the position is not reported 
[39, 69]. Based on contrast retention rates and loss 
rates calculated using a two-compartment model, brain 
transport in the prone position is 40% slower than in 
the supine position and about half the rate in the lateral 
position [66]. The DCE-MRI data used in this analysis 
was collected from mice in the prone position, therefore 
transport is likely to be slower than for data collected in 
the supine position.

Finally, anesthesia type is known to effect brain trans-
port rate [35–39, 70]. Most DCE-MRI experiments in 
the literature utilize isoflurane [33], which is an inhal-
able anesthesia standardly used in MRI, while a few use 
ketamine-xylazine (K-X), which was standard in many of 
the foundational experiments (prior to DCE MRI) study-
ing the glymphatic system. In particular, Xie et al. showed 
K-X to mimic natural sleep with respect to glymphatic 
activity [10]. Stanton et al. recently confirmed that con-
trast transport pathways differ between isoflurane and 
K-X anesthetic regimes [71]. Specifically, parenchymal 
penetration is poorer using isoflurane due to rapid efflux 
of contrast agent into the spinal canal and along cranial 
nerve sheaths. Under K-X anesthesia, contrast is distrib-
uted into the brain parenchyma, transported to the olfac-
tory bulb (a major efflux route), or transported down the 
spinal canal [71]. In the experiments used in this analysis 
mice were under ketamine-xylazine (K-X) anesthesia. As 
such, transport rates estimated here are expected to be 
faster than for data collected using isoflurane anesthesia.

Sources of error
Segmentation
To estimate transport parameters for regions of the brain 
demonstrating different transport dynamics, the whole-
brain model was segmented into volumes defined by 
either anatomical features determined from pre-contrast 
images and/or contrast concentration. DCE-MRI meas-
ures the average signal for the volume contained in each 
voxel. Therefore, at the boundaries between segmented 
volumes a voxel may contain more than one anatomi-
cal feature and the signal measured is an average of the 
signals resulting from each feature. Since the voxel size, 
or resolution, of 100 μm is significant with respect to 
anatomical features, “mixing” of different tissues at the 
boundaries of the segmented volumes is unavoidable. 
For example, there will be some fraction of brain tissue 
included in the periarterial volumes and vice versa. This 
“mixing” at the boundaries can be a source of error in 
estimating separate transport parameters, because there 
is not a clean division between features and concentra-
tion calculated from signal near boundaries includes con-
tributions from each feature.
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Valnes et  al. experienced significant complications 
due to ‘voxel averaging’ between tissues at the interface 
between the SAS CSF and the brain in their analysis of 
human brain transport using finite element modelling 
[43]. Concentration at the CSF/brain interface was criti-
cal to their modelling as contrast was injected intrathe-
cally and therefore entered the brain by passing from the 
CSF to the brain tissue. For the data analyzed here, con-
trast was infused directly into the brain volume resulting 
in less dependency between the analysis results and accu-
rate contrast concentration at the surface of the brain. 
Errors in the data exist at the surface of the brain for the 
murine experiments analyzed here, but their source is 
not a segmentation error. In the murine brain, the sur-
face signal is obscured by interference from local T2/
T2* effects from the skull, which has closer proximity to 
the brain than in humans (see “Methods” and Additional 
file 2). The DCE-MRI data show extremely low signal at 
the surface of the brain to a thickness of approximately 
one to three voxels for the entire time course, verifying 
this interference. If contrast were present in the CSF sur-
rounding the brain, a concentration gradient would be 
expected from the surface into the brain tissue. However, 
analysis of concentration gradients near the surface (see 
Additional file  2) shows no evidence of contrast agent 
in the SAS CSF. The effected surface voxels, which are 
included in the brain tissue region of the model, add to 
error between simulations and the data. However, this 
error is relatively consistent across different effective 
diffusivities, and is therefore unlikely to impact optimal 
effective diffusivity results, determined from minimum 
error.

With respect to other interfaces between transport 
regions, the BT volume is 99.9+ % of the total volume 
(by number of vertices), therefore, any PAS concentra-
tion dynamics incorporated into the BT volume at its 
boundaries are likely to have very little impact on the 
estimated BT Deff  . The estimated Deff  for the PASSurf and 
PASBranch volumes are significantly greater than the BT 
Deff  (> 600×s), therefore, any BT concentration dynamics 
incorporated into the PAS volumes at the boundaries are 
also likely to have little impact. In conclusion, although 
exact segmentation of features is limited by the resolu-
tion of the DCE-MRI measurements, such limitations are 
not likely to impact the transport parameter estimates 
which are significantly different between regions sharing 
boundaries.

Transport model
Transport in the brain is part of a complex, dynami-
cal interaction involving the vasculature (arteries, veins, 
and microvasculature), the CSF circulation, brain tissues, 
fluid/solute exchange, and the cranio/spinal connection. 

Transport may be influenced by pulsation [9, 18], cycles 
[27], and electrical waves [72] with short time constants 
relative to the DCE-MRI data being analyzed. The goal 
of the present study is to estimate fundamental trans-
port parameters that describe general transport over the 
macroscopic scale of the whole brain with the intention 
of better understanding the prevalence and magnitude of 
convection or dispersion in molecular transport across 
the entire brain. The goal is not to build a mechanistic 
model including refined details of brain transport and 
anatomy, but to improve on current analysis of DCE-
MRI data by applying the rigors of transport phenomena 
to determine physically relevant transport parameters. 
In order to analyze the data without bias to transport 
mechanism, the transport equation was simplified con-
densing all mechanisms into a single term; and in order 
to develop a computationally feasible model, anatomi-
cal features of the brain were substantially simplified. 
Although including additional anatomical subdomains 
(with unique Deff  ) would have led to improved agreement 
between simulations and data, it would also have resulted 
in additional adjustable parameters that diluted the use-
fulness of the results. The simplified model resulted in 
parameter estimates that are an improvement over cur-
rent analysis methods and provide understanding about 
transport routes and mechanisms that will help pave the 
way to more rigorous transport models in the future.

The simplified transport equation also forces the math-
ematical structure of diffusive transport. Careful compar-
isons of data and simulations show that the relationship 
between concentration and distance, particularly in the 
perivascular space, better follows the mathematical form 
of convection. The model could be greatly improved by 
specifically including all mechanisms of transport as 
shown in Eq.  1. However, the information required to 
build a convective model (e.g., pressure gradients driving 
physiological flow) at the scale of the whole brain is cur-
rently unknown. Alternatively, a convective field could be 
measured experimentally, possibly by Intravoxel Incoher-
ent Motion (IVIM) MRI [73]. The velocity field could be 
applied to the finite-element mesh directly and the trans-
port model could be used to answer more subtle ques-
tions about brain transport, i.e., understanding efflux 
routes or modelling disease states.

The transport model assumed a no-flux boundary 
along the brain surface and did not include efflux routes 
for the contrast agent to exit the brain volume. Although 
the skull presents an impenetrable (no-flux) barrier for 
much of the surface, it also has specific routes of efflux, 
namely the spinal cord, the cranial and olfactory nerves, 
and meningeal lymph vessels. Inspection of unmasked 
DCE-MRI data shows the presence of contrast along the 
spinal cord, especially at early time points. It is difficult 
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to quantify the amount of contrast agent lost to the spi-
nal cord, however, signal in the spinal cord is much less 
than signal observed in the parenchyma surrounding the 
injection site or surrounding the surface and penetrating 
arteries, and also less than the contrast concentration in 
the parenchyma surrounding these periarterial spaces.

In the glymphatic model, fluid and molecules hypo-
thetically exit the brain tissue through major perivenous 
space, ultimately emptying to extracranial lymphatic ves-
sels outside the blood–brain barrier [8]. As discussed 
in the “Results” section, no contrast was observed sur-
rounding major venous routes that reside in the dorsal 
half of the murine brain, therefore no data was available 
to inform transport along these specific pathways. In 
addition, glymphatic efflux routes are not well under-
stood and are therefore a place of continued investigation 
[22, 25].

If efflux or loss through the no-flux boundary was sig-
nificant to transport over the time scale of the experi-
ments, the total amount of tracer in the brain would be 
expected to decrease steadily after the injection was com-
plete. However, calculations made from DCE-MRI data 
show no decrease in total gadoteridol amount over the 
time points used in the analysis (0–54 min) for three of 
the four subjects, which supports that efflux may not be 
a significant contributor to transport over the time scale 
investigated. As more clarity is gained about mechanisms 
of efflux, distributed efflux or specific routes may be 
added to the model to improve its representation of the 
physical situation and allow analysis of longer time-series 
data.

DCE‑MRI experiments
Even though it is a powerful experimental tool, MRI is 
an inherently noisy technique with a low signal-to-noise 
ratio. In live biological subjects, this noise is exacerbated 
by small movements in the tissue, such as blood pump-
ing through vessels, or movement of the entire subject. 
MRI data is often filtered to reduce noise and smooth the 
data, but at the cost of averaging the data over regions 
considered large relative to anatomical details. In order to 
investigate the interaction of transport with specific ana-
tomical features, the decision was made to leave the data 
unfiltered. (Some minimal Gaussian filtering occurred as 
a result of interpolating the MRI data onto the finite-ele-
ment mesh.) A consequence of using the unfiltered data 
is greater variability between points in space and time, 
leading to greater error between the simulation and the 
data. However, all parameter combinations experience 
this same noise, and the transport parameters giving the 
minimum difference between simulation and data, which 
is relative, should not be greatly affected.

The DCE-MRI data used in this analysis exhibited T2/
T2* interference at high contrast concentration, sacri-
ficing useful data near the injection site. The DCE-MRI 
experimental parameters (i.e., magnetic field and pulse 
sequence) were optimized for measuring low concentra-
tions of gadoteridol in order to follow it deep into the tis-
sue and possibly elucidate efflux routes. In particular, T2/
T2* interference obscured the rapid transport path from 
the injection site to the tissue surrounding the ventral 
surface arteries, adding uncertainty to the PASsurf geom-
etry used in the model. T2/T2* interference was more 
likely to increase variability than to result in higher or 
lower values for Deff .

It has been questioned whether the contrast infusion, 
0.5 μl/min for the first 20  min of the experiments used 
here, might induce convection [28]. Xue et al. established 
infusion rates of 1–2 μl/min in mice to be safe and asso-
ciated with only minor transient changes in intracranial 
pressure (ICP) [74]. Raghunandan et al. directly addressed 
this question by comparing a tracer study with tradi-
tional infusion techniques, where tracer solution is slowly 
injected into the CSF, to a study where CSF was removed 
from the cranium at the same rate the tracer solution was 
injected, for no net addition of fluid [75]. The experimen-
tal results, where periarterial velocity in mice was meas-
ured using the same methods as Mestre et al. [18], were 
statistically identical for the two cases. The infusion rate 
used by Raghunandan et  al. was four times higher than 
the infusion rate for the DCE-MRI experiments reported 
here. In addition, Bedussi et al. [19] observed no increase 
in intracranial pressure (ICP) (CSF pressure remained 
within the range of pre-infusion ICP) at 70% of the infu-
sion rate used in the experiments reported here. There-
fore, published experimental results support that, at the 
infusion rate used for the DCE-MRI experiments ana-
lyzed here, convection is not an artifact of tracer infusion.

The model developed in this work could also aid in 
assessing this concern, but analysis of the current data is 
limited by T2/T2* interference in the important region 
near the injection site and few data sets during the infu-
sion. Even with those limitations, a simulation fitting 
different Deff  parameter sets during and after infusion 
showed potential differences, but still indicated signifi-
cant convection in the PVSs surrounding major arteries 
and transport that is faster than diffusion alone in the 
brain tissue region post infusion.

System efficiency
Finally, we analyze the transport parameter values as 
an integrated system. Constructal Theory, which has 
been used to analyze the efficiency of biological systems 
[76, 77], states natural systems optimize over time and 
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optimize around the constraints of the space allocated 
to the ‘function of the system’, the functional space. In an 
optimized natural system, transport across the functional 
space will be the rate limiting step, i.e., have the longest 
characteristic transport time (τ) in the system, and the 
remaining ‘flow system’, will optimize around the func-
tional space. For the glymphatic system, the functional 
space is the interstitial space, where nutrients are deliv-
ered to the cells and waste products are carried away, 
while the PVS makes up the flow system. Using Deff  
and characteristic lengths discussed above, τ(interstitial 
space) is about 3 min for small molecules (100 Da) and 
13  min for large molecules (1000  Da), while τ(major 
periarterial space) = 1–3  min and τ(minor periarterial 
space) = 2–5  min. For transport of small molecules, τ 
is similar for each ‘step’, indicating the whole system is 
optimized. For transport of large molecules, the inter-
stitial space is rate limiting as predicted, likely limited by 
the inherent slow diffusivity of large molecules and con-
strained by the maximum flow velocity tolerated by brain 
cells, and the flow system is faster.

Conclusions
Quantitative analysis of DCE-MRI data for transport of 
the small molecule gadoteridol (550 Da) across the whole 
mouse brain using a simplified finite-element transport 
model, indicates convection is present throughout the 
brain. Convection is estimated to be dominant in the 
periarterial space of major surface and branching arter-
ies, where Pe > 1000. Importantly, convection is estimated 
to continue into the brain tissue, demonstrating convec-
tion is more than a surface phenomenon. Perivascular 
convection for smaller penetrating vessels could not be 
separated from interstitial convection as the DCE-MRI 
data lack the resolution to make this distinction. How-
ever, comparison to estimated and upper bound values 
for interstitial flow and periarterial dispersion suggests 
fluid flow in the perivascular spaces dispersed through-
out the brain tissue. This convection within the paren-
chyma is estimated to be relevant for small molecules like 
gadoteridol (550 Da), and significant to overall transport 
for larger molecules implicated in neurodegenerative 
disease.

The whole-brain transport model described in this 
work represents an improvement over previous DCE-
MRI analysis methods in its quantification of funda-
mental transport parameters (instead of transport rates 
with arbitrary units) that can be directly compared to 
known diffusion rates. The model in its current form 
is simple, and not mechanistic, but is structured for 
continuous improvement as new information comes 
to light and may also be appropriately connected with 
small-scale models, such as for interstitial transport 

[32], to develop a multi-scale transport model. The 
transport analysis described here could be improved 
with experimental data investigating molecules of dif-
ferent sizes, i.e. 500  Da and 10,000  Da. Diffusion and 
dispersion are dependent on molecular size, while 
convection is relatively independent of molecular size. 
Therefore, comparison of transport data and param-
eters from contrast agents of significantly different 
molecular size would provide further evidence towards 
convective versus diffusive or dispersive transport. 
Additionally, IVIM MRI data, quantifying average fluid 
velocities throughout the brain, would enable improved 
mechanistic complexity in the transport model.
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