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REVIEW

Neural crest cell‑derived pericytes act 
as pro‑angiogenic cells in human neocortex 
development and gliomas
Francesco Girolamo1*†  , Ignazio de Trizio1,2†, Mariella Errede1†, Giovanna Longo3, Antonio d’Amati1,4 and 
Daniela Virgintino1 

Abstract 

Central nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvas-
culopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier 
alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of 
its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of 
the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to 
their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between 
endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells 
(OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. 
Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-
mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking 
services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenviron-
ments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embry-
onic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically 
different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/
apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of 
angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of 
the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved 
in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative 
perspective on cell subtype-specific therapeutic approaches.
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Background
The Rouget cells, firstly described by Charles-Marie 
Benjamin Rouget in the late 19th century [1], were later 
denoted as pericytes (PCs) [2]. They are described as vas-
cular cells that, at the level of the microvessel segments 
(precapillary arterioles, capillary, and postcapillary ven-
ules) of the vascular tree, wrap around the endothelial 
cells (ECs), being retained within the vessel basal lamina, 
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that is known to be formed by two layers, pertaining to 
ECs and astrocytes, respectively. Herein, the term ‘basal 
lamina’ is used instead of ‘basement membrane’, since 
brain microvessels only show a ‘basal lamina’ without the 
‘lamina reticularis’ made up by fibrillar collagens, type 
I, III, and V. After the pioneering descriptions of brain 
PCs’ morphology in primates, including humans, gained 
by electron transmission microscopy (TEM) [3, 4], the 
emergence of scanning electron microscopy (SEM) has 

provided, together with subsequent 3D reconstructions 
by TEM serial sections [5, 6], a complete rendering of 
the 3D morphology and relationships of PCs (Figs.  1, 
2). PCs show a prominent nuclear region bulging out on 
the abluminal vessel side, two longitudinally oriented 
primary processes sending out transversely arranged 
secondary processes and additional flat, finger-like, pro-
trusions that interdigitate to fill the remaining gaps. As 
a consequence of their location within the neurovascular 

Fig. 1  Pericyte morphology and relationships within the NVU. a, b Scanning electron microscope images of 14-day-old chick embryo microvessels, 
showing in a primary (red arrow) and secondary (red arrowheads) pericyte processes and in b their highly indented and interdigitated finger-like 
processes (red arrows) [from [5] with permission]. c Dorsal wall of the telencephalic vesicles (forebrain, future neocortex) of an 18-week-old human 
fetus, GFAP+ (glial fibrillary acidic protein) radial glia fibers and a pericyte coverage NG2 2164C3+, the latter shows finger-like processes (arrows); 
note the very fine perivascular processes of OPCs (arrowheads). d A schematic representation showing NVU components: ECs, PCs, perivascular 
astrocytes, vessel-associated microglial cells, OPCs/NG2-glia, macrophages, nerve fiber terminal [from [13] with permission]. PCs, embedded in the 
vessel basal lamina (here not shown) are the cells closest to the endothelium and display a variety of extensive contacts on their abluminal surface, 
in particular the relation with astrocytes and OPCs/NG2-glia [10]. e Astrocyte-pericyte relations are shown by glutamine synthetase (GS), confined 
within the astrocyte body (arrow) and in perivascular endfeet (arrowheads), most of which are in contact with CD248+ PCs rather than, directly, with 
ECs. Scale bars a, b 1 µm; c 20 µm; e 10 µm
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Fig. 2  Pericyte morphology and vessel basal lamina relationships. a Morphology of an activated, PDGFR-β+ pericyte in contact with the collagen 
type IV+ basal lamina of a neocortex microvessel from a 22-week-old human fetus; note the abluminal bumpy surface of the PC (arrow), a detail 
well-depicted by the scanning electron microscopy 3D image (b; 14-day-old chick embryo) [from [5] with permission]. c, d The NG2 isoform, 
specifically recognized by antibody 2161F9, is able to outlines the finer cell details, thus describing the real extension of the pericyte coverage (c, 
inset) and its relation with the collagen VI-enriched basal lamina (d); note a pericyte conduit and its collagen VI sleeve (d, inset). e, f NG2 2161F9 
immunostaining shows few large gaps in the pericyte coverage (better shown in e, inset); on the same field (f), a TNT/MT-like intervascular bridge is 
revealed by collagen VI staining; the inset shows two PCs close to the site of TNT/MT origin (arrowheads). a, c–f, Human telencephalon 22 wg. Scale 
bars a 7.5 µm; b–f 10 µm



Page 4 of 26Girolamo et al. Fluids Barriers CNS           (2021) 18:14 

unit (NVU) of the central nervous system (CNS), PCs 
develop their two-sided activity: direct communica-
tion with ECs through peg socket connections and het-
erotypic gap junctions, interactions through extracellular 
matrix molecules and soluble factors, autocrine and par-
acrine signaling pathways, including those involved in 
the astrocyte-pericyte crosstalk [7, 8] and in interactions 
with all the other vessel-associated NVU components 
(Fig. 1) [9–13]. The NVU is essential in CNS homeosta-
sis, neurovascular coupling, regulation of blood flow, 
as well as differentiation and functional activities of the 
blood-brain barrier (BBB) [14, 15]. In this context, PCs 
accomplish direct roles in leading microvessel develop-
ment, maturation, and remodeling, finally stabilizing 
blood vessels and contributing to the BBB function [13, 
16–24]. PCs, as the cells physically closest to the brain 
microvascular endothelium, also display immune activi-
ties characterized by the production of immune media-
tors such as nitric oxide and cytokines, thus participating 
in neuroinflammatory processes in brain infections and 
neurodegenerative diseases [13, 25, 26]. 

Pluripotency and heterogeneity of pericytes
The cell components pertaining to the NVU have 
recently been demonstrated to feature different lev-
els of diversity, giving rise to the new concept of NVU 

heterogeneity [11]. Genome-wide association and 
RNA-seq studies have revealed morphological and 
functional astrocytes and microglia subtypes associated 
to both normal and pathological conditions [27–29]. 
Transcriptional profiling has highlighted the presence 
of different glial sub-populations [30–32], includ-
ing neurotoxic, type A1, and neuroprotective, type 
A2, astrocytes associated to astrogliosis [33]. In addi-
tion, high-resolution transcriptomic analyses, together 
with the emergence of novel single-cell techniques 
and single-cell RNA sequencing, now propel studies of 
microglia heterogeneity, unveiling a variety of spatially 
and developmentally distinct microglia subtypes (for a 
Review see [34]. RNA-seq studies have also investigated 
PCs and their possible role in NVU heterogeneity [28, 
35, 36]. Therefore, if it is correct to consider CNS PCs as 
motile, contractile cells, as proposed in Rouget’s origi-
nal description [1], it is also true that heterogeneity and 
multitasking aptitude of PCs have already been pointed 
out [36–44]. Different subclasses of PCs along the capil-
lary bed and in specific developmental and pathological 
conditions have been identified [13, 45]. These multiple 
profiles form the basis for the pericyte functional and 
phenotypic variety, including their differentiation along 
the mesenchymal lineage [46] (Table 1). PCs, as mesen-
chymal-like cells, are able to migrate by digesting the 

Table 1  Pericyte subpopulations according to ontogeny

Origin Position Gene expression Roles

Neuroectoderm
⇓
Neural crest stem cells
⇓
Ectomesenchyme
⇓
Ectomesenchyme-derived pericytes

Forebrain Leptomeninges
Forebrain vessels
Retinal vessels
Skull, face, neck tissues
Truncus arteriosus
Mesentery (?)
[69, 75–81]

PAX3, PAX7, TFAP2A
[82]
FOXC1, FOXC2 [83]

Vessel development [76, 84–87]
Glioblastoma neo-vessels [87–94]

Intraembryonic Mesoderm
⇓
Lateral mesoderm (mesothelium)
⇓
Mesenchyme
⇓
Mesenchyme-derived type 1 pericytes

Lung
Heart
Liver
Gut
[69, 78, 81, 95–98]

MIXL1, TBXT [82] Absence in tumor vessels [99]
Fibrosis, myopathies [58, 81]

Intraembryonic mesoderm
⇓
Paraxial mesoderm (sclerotome)
⇓
Mesenchyme
⇓
Mesenchyme-derived type 2 pericytes

Midbrain
Hindbrain
Spinal cord
[69, 76, 78, 100, 101]

MIXL1, TBXT [82] Vessel development
Tumor neo-vessels
Glioma neo-vessels
[102, 103]

Extraembryonic mesoderm
⇓
Mesenchyme
⇓
Yolk sac-derived myeloid progenitor
⇓
Macrophage-derived pericytes

Midbrain
Rostral back skin
Retina
[104, 105]

Kcnj8, Rgs5, Dlk1, and Abcc9, 
TGFBR2 [105]

Vascular anastomosis [106]
Retinal vascular density [107]
Tumor angiogenesis [108]
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basal lamina molecules [41, 47–49] (Fig. 3) and to dif-
ferentiate into fibroblasts [50–52], smooth muscle cells 
[53, 54], macrophages [55, 56], osteoblasts [57], myo-
blasts [58], adipocytes [59], chondrocytes [60], and also 
into neural and glial cells comprising oligodendrocyte 
progenitors [42, 61–65]. A general consensus holds that 
PCs are cells with a high plasticity, despite two studies 
challenged this concept [66, 67]. The response of PCs to 
specific cues in specific tissue contexts suggests that, in 
each of the vascular districts, PCs should be considered 
according to their origin and consequent morphologi-
cal and functional singularities [25, 37, 68–71]. Accord-
ingly, the variety of different pericyte subtypes [60, 72, 
73] (Table 1) and the complexity of the PCs biology and 
genetic profile emerge, together with the variety of the 
pericyte-expressed molecules studies conducted up to 
now and the attempts at identifying specific pan-peri-
cyte markers [42, 68, 74] (Table 2).  

Neural crest cells and head morphogenesis
Wilhelm His, observing the CNS development in neu-
rula-stage chick embryos, was the first to describe the 
appearance of neural crest cells (NCCs) (Zwischenstrang) 
as cellular elements derived, but distinct, from the neu-
roectodermal cells that form the neuroepithelium of 
the neural tube [236]. Pioneering studies in fish dem-
onstrated the capacity of these (neuro)ectodermal cells 
to colonize the embryo head [237]. However, despite of 
these early observations, the existence, distribution, and 
fate of the NCCs remained largely ignored by embryolo-
gists for decades, and then became the subject of active 
controversies. NCCs, soon after their detachment from 
the neuroectoderm fold lips, undergo an epithelial-to-
mesenchymal transition, becoming hardly distinguish-
able, along their migratory pathways and inside the 
colonized tissues and organs, from typical mesenchymal 
cells of mesodermal origin. It was an embryologist, Julia 
Platt [238], who first recognized the head mesenchyme 

Fig. 3  Resting and migrating PCs. a An MMP2+ resting pericyte embedded in the collagen IV vessel basal lamina and b a migrating pericyte in the 
act of breaking out by releasing enzyme MMP2 (arrow). c, d Active PCs (arrow) passing through the collagen IV-enriched basal lamina; note the 
trace of the enzymatically attenuated collagen IV. Human telencephalon 18 weeks of gestation. A, astrocyte. Scale bars a, b 7.5 µm; c, d 15 µm
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Table 2  Markers of pericytes expressed in healthy and diseased CNS (with BBB dysfunction)

Pericyte marker Healthy CNS Diseased CNS

Neuron-glial antigen 2 (NG2) Development [10, 40, 80, 84, 88, 109–112] Dementia [113]
Healing wounds [114]
Neurofibromatosis [115].
Neuroinflammation [116, 117]
Tumor neovasculature [10, 87, 88, 114, 118–122].
Traumatic injury [123, 124]

NG2 isoforms Development [88, 125] Glioblastoma [88, 126]
Ullrich’s congenital muscular dystrophy [125]

Platelet derived growth factor receptor beta 
(PDGFRβ)

Development [84, 127, 128]
Adult [10, 18, 40, 70, 108, 110, 129–132]

Alzheimer’s disease [129, 133, 134]
Amyotrophic lateral sclerosis [135, 136]
Angiopathies [132, 137–142]
Neuroinflammation [10, 123, 143, 144]
Tumor neovasculature [108, 145]

Alanyl aminopeptidase (CD13) Adult [10, 35, 70, 74, 128, 131, 146–149] Neuroinflammation [150]
Stroke [151]

Vimentin (VIM) Adult [39, 131, 152, 153] Angiopathies [154–156]

Regulator of G protein signaling 5 (RGS5) Development [157–161] Huntington’s disease [162]
Stroke [163–166]

Smooth Muscle α-Actin (α-SMA) Adult (pre- and post-capillary pericytes) [70, 
128, 131, 167–172]

Retinal angiopathy [170]
Familial form of Alzheimer’s disease [173]

Vascular endothelial growth factor (VEFG) Development [174, 175] Angiopathies [176, 177]
Neurotoxicity [178]

CXCR4 Development [179–181] Glioma [182, 183]
Neuroinflammation [184]

Toll-like receptor 4 (TLR4) Adult (transcriptome analysis) [185] Stroke [186, 187]

ATP binding cassette subfamily C member 9 
(ABCC9)

Adult [131, 188] Aging [189]

Melanoma Cell Adhesion Molecule (CD146) Development [74, 87, 190, 191] Glioblastoma [87]

Vascular cell adhesion molecule-1 (VCAM-1) FACS [192] Neuroinflammation [56]
Tumorigenesis [193]

Intercellular adhesion molecule-1 (ICAM-1) FACS [192]
Cell cultures [56]

Neuroinflammation [56, 194]

3G5-defined ganglioside Adult [195] Retinopathies [196, 197]

Angiopoietin 1 and 2 and Tie2 receptor Development [198–201] Diabetic retinopathy [202]
Neurotoxicity [175]
Stroke [203, 204]

Leptin receptor (LepRb) Development [205] Neuroinflammation [206]

Endosialin (CD248) Development [84, 207–209] Glioma [88, 208, 209]

Sphingosine-1-phosphate receptor 2 and 3 (S1PR2 
and 3) 

Adult [198, 210, 211] Stroke [211, 212]
Traumatic injury [213]

Transforming growth factor β (TGF β) Adult [198]
Cell cultures [171, 214]

Neuroinflammation [10, 215, 216]

Angiotensin 1 and 2 receptors (AT1 and AT2) Cell cultures [179, 217, 218] Diabetic retinopathy [219, 220]

ATP-gated Purinergic 2X receptor cation channel 
(P2X7R)

Adult [221] Diabetic retinopathy [222]
 Neuroinflammation [221, 223]

Zic1 Development [83]

Potassium inwardly-rectifying channel (Kir6.1) Adult [131, 188, 224]

Delta Like Non-Canonical Notch Ligand 1 (DLK1) Adult (microarray analysis) [188]

Vitronectin (VTN) Development [110, 225]

Interferon-induced transmembrane protein 
1 (Ifitm-1)

Development (transcriptome analysis) [110]

Myosin light chain phosphatase (MLCP) Cell culture [226]

Fluoro-Nissl dye NeuroTrace 500/525 Adult [227]

Forkhead transcription factor C1 (FoxfC1) Development [83]

Interferon-induced transmembrane protein 
1(Ifitm-1)

Development (transcriptome analysis) [110]
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as derived from NCCs and coined the term ‘mesecto-
derm’ to denote the mesenchyme of neuroectodermal 
origin (now known as ‘ectomesenchyme’), distinct from 
the ‘mesentoderm’, a term that indicated the mesenchyme 
which originates from the mesodermal germ layer (now 
simply ‘mesenchyme’). More recently, after more than 
half a century from these observations, the role of NCCs 
during head morphogenesis began to be unveiled by 
fate-mapping experiments [239]. Subsequently, embryo-
to-embryo transplant studies in the chick-quail chimera 
experimental models made it possible to define the NCCs 
as a pluripotent, ‘stem’, embryonic cell population (neural 
crest stem cells, NCSCs), able to develop into a large vari-
ety of tissues, including cartilages, membranous bones, 
cartilaginous bones and other connective components, 
such as dermis and tendons, and also skeletal and visceral 
muscles, during skull (neurocranium) and face- (splanch-
nocranium) and neck-branchial regions development 
[240–244]. In addition, the NCSC-derived ectomes-
enchyme gives origin to the leptomeninges, including 
the forebrain leptomeninges, and is necessary for neu-
roepithelium survival and vascularization [239, 240, 245] 
(Table 1).

Neural crest stem cell‑derived pericytes
Little is known about the exact identity of pericyte ances-
tors within developing tissues, and distinct developmen-
tal sources have been demonstrated, highlighting that the 
embryonic origin of PCs differs among tissues and organs 
[69, 246, 247]. Several studies using lineage tracing meth-
ods indicate that PCs in part of the cephalic region and 
thymus have an ectomesenchyme origin [248–252], while 
in the lung, heart, liver and gut, PCs derive from the mes-
othelium. Thus, they have a lateral mesoderm, epithelial-
like, mesenchymal origin [69, 78, 95–98]. In most other 
organs, PCs derive from the paraxial mesoderm, specifi-
cally the sclerotome compartment, so again they have a 
mesenchyme origin [69, 76, 78, 100] (Table 1).

Neural crest stem cell‑derived forebrain pericytes
During embryonic neurogenesis, NCSCs are concen-
trated at the cranial and ventral secondary encephalic 

vesicles (telencephalon and diencephalon) of the fore-
brain. In this region, unlike in the remaining parts of the 
brain (midbrain, hindbrain) [253, 254], PCs, hereafter 
named forebrain PCs, derive entirely from NCSCs, thus 
they represent a subset of PCs with a specific ontogeny 
and are distally sharply delimited by the midbrain [69, 
75–80]. In the anterior/ventral head regions, NCSCs 
are initially present in the ectomesenchymal layer com-
prised between the surface ectoderm and the develop-
ing CNS, where they differentiate into PCs and become 
associated with mesoderm-derived endothelial precur-
sors that express VEGFR2 (vascular endothelial growth 
factor receptor 2) [76]. The resulting vascular plexus then 
ramifies and vascularizes the forebrain leptomeninges 
(arachnoid mater and pia mater), retinal choroids, and 
facial structures. Therefore, as already described, NCSCs 
participate in the constitution of the forebrain meninges 
[239, 240], which enclose the deeper, pial capillary net-
work, necessary for later vascularization of the brain. 
Passing through the meninges, capillaries with PCs of 
ectomesenchyme origin supply the forebrain, while capil-
laries with PCs of mesenchyme origin supply the mesen-
cephalon, the rhombencephalon and the spinal cord. An 
intriguing aspect of PCs origin and heterogeneity is the 
demonstration of PCs localized in the mouse embryonic 
rostral back skin, an ectodermal derivative, and some 
PCs in the midbrain, a neuroectodermal derivative, shar-
ing the same origin with myeloid progenitors; these cells 
differentiate into PCs under the TGF-β (transforming 
growth factor-β) signaling control [104, 105].

Generation of pericytes by hiPSC‑derived neural crest cells
Mesoderm-derived PCs and NCC-derived PCs can be 
obtained from induced pluripotent stem cell (iPSC) 
[77, 82, 255]. A recent study [82], starting from human 
iPSC obtained from healthy and AD patients (human 
iPSC; hiPSC), developed two differentiation-inducing 
protocols serving to generate both mesoderm-derived 
(mesenchymal) PCs and NCC-derived (ectomesenchy-
mal) PCs. Firstly, hiPSCs were grown in either a meso-
dermal induction medium or in neural crest induction 
medium, in order to generate mesodermal cells and 

Table 2  (continued)

Pericyte marker Healthy CNS Diseased CNS

Connexin 30 (Cx30) Adult [228]

P-type ATPase (Atp13a5gene) Adult (transcriptome analysis) [131]

Basic fibroblast growth factor (bFGF) Stroke [229]

Sox2 and Klf4 Stroke [230]

protein encoded by the NOTCH3 gene CADASIL angiopathy [231–234]

Bone morphogenetic protein 4 Alzheimer’s disease, angiopathies [235]
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NCCs, respectively. Following induction, cells were 
passaged and maintained in pericytes medium, which 
stimulates pericytes differentiation. The pericyte iden-
tity of both mesoderm- and NCC-derived PCs was 
demonstrated by the expression of pericyte cell-surface 
markers, PDGFR-β (platelet-derived growth factor 
receptor-β), NG2 (neuron-glial antigen 2), CD13 and 
CD146, and of brain pericyte-specific genes, vitronec-
tin and the forkhead transcription factors, FOXF2 and 
FOXC1. Interestingly, FOXF2, which is expressed by 
NCCs during development, was primarily expressed by 
NCC-derived PCs, while WNT signaling seemed to be 
specifically associated to pericyte development through 
the NCC pathway. Reliable methods for engineering 
brain-specific subpopulations of PCs from hiPSCs are 
a promising improvement of in  vitro studies on both 
barriergenesis and angiogenesis. However, the main 
limitation for iPSCs derived PCs and others NVU cell 
components remains the lack of the important contri-
bution of cell–cell contact and fluid shear stress and, 
moreover, the maturation of these cells to the adult 
brain PCs. The roles of major signaling pathways on 
them and their secretome have not been studied yet 
[256]. Nonetheless nowadays stem cell-based BBB 
models represent the main tool for neurodegenerative, 
neuroinflammatory and brain tumor disease modeling 
where PCs may play important underestimated roles.

Human neocortex and the developing NVU
In the entire CNS, within the NVU, PCs are heavily 
involved in maintaining tissue homeostasis, vessel stabil-
ity, and integrity of BBB cellular and molecular mecha-
nisms [257–270]. Nonetheless, specific properties have 
been observed for NCSC-derived PCs, that contribute 
to the vascularization of forebrain that will develop the 
telencephalon dorsal wall (future neocortex), where the 
origin of forebrain PCs from NCSCs seems to entail addi-
tional biological functions, involved in both angiogenesis 
and barriergenesis [271, 272]. In our studies on human 
telencephalon development and vascularization, we have 
relied on the detection of NG2, an integral membrane 
chondroitin sulphate proteoglycan encoded by the Cspg4 
gene pericyte marker (Fig. 2). NG2 was firstly identified 
as an important neural cell surface antigen by Stallcup 
and Cohn [273] and its expression by active, immature 
PCs and proliferating oligodendrocyte precursor cells 
(OPCs) was demonstrated [274, 275]. The large juxtam-
embrane extracellular domain (D3) of NG2 mediates 
several cell–cell and cell–matrix interactions, including a 
fundamental role in endothelial cell adhesion and spread-
ing (for a comprehensive review please see Nishiyama 
et al. [276]).

The forebrain pericytes leading role in human cerebral 
cortex vascularization
In humans, a large part of organogenesis (early ontogen-
esis) takes place during the embryonic period, that is lim-
ited to the first 8 weeks of embryonic development, while 
ontogenesis will continue during the subsequent fetal 
development. At the 9th week of gestation [277, 278], the 
telencephalic vesicles are already surrounded by a peri-
neuronal vascular plexus of a composite origin: mesen-
chyme-derived ECs and ectomesenchyme-derived PCs 
[76], in fact, NCCs give origin to the PCs, although not 
to the ECs [240, 279]. When the cerebral cortex starts to 
form, soon after the pre-plate stage (9–9.5 weeks of ges-
tation), vessel sprouts originate from the perineural vas-
cular plexus and, guided by a VEGF gradient [127, 280], 
radially invade the nervous wall, elongate, and start to 
branch at their distal ends [281–284] (Fig. 4). Therefore, 
NCC-derived PCs associated with these parenchymal 
microvessels, including those associated to the vascular 
bed of the choroid plexuses [76], are already present at 
the very beginning of brain vascularization. In human 
developing cortex, NG2+ forebrain PCs are promptly 
detectable, together with early NVU radial glia compo-
nents [84, 85] and with EC structural and functional hall-
marks of BBB differentiation (Fig. 4). In fact, in humans 
the process of cerebral cortex vascularization seems to 
proceed in parallel with the appearance of an endothelial 
BBB phenotype and barrier devices, such as endothelial 
tight junctions [285], metabolic transporters [286], and 
efflux transporters [287]. This distinctive feature high-
lights the vital role played by the BBB also during CNS 
development, as recently confirmed by an in  vivo study 
on transgenic zebrafish lines [288]. Human forebrain PCs 
that establish tight relations with ECs during the earli-
est stages of vessel growth [84], and contribute to vessel 
stability [51] and BBB function [40], also appear to play 
important roles during angiogenesis and vessel branch-
ing. In fact, forebrain PCs, identified by NG2 and CD146, 
have been observed at the leading edge of growing vessels 
[289], where these cells are able to raise tunnelling nano-
tubes (TNTs) and microtubes (MTs) and, like ECs, are 
also seen to form leading sprout-like structures (Fig.  5) 
[87]. Pro-angiogenic PCs, surrounded by a collagen type 
IV- and type VI-enriched basal lamina, appeared always 
in contact with radial glia cells (Fig.  6) [87]. Pericyte 
MTs have been described as EC-free conduits [89], then 
able to recruit ECs according to a process that seems to 
reverse the classical EC/pericyte interplay and that has 
been suggested as an alternative mode of vessel growth 
[84] (Fig.  7). These data, diverging from the classical 
angiogenic model consisting of endothelial sprouting 
and pericyte recruitment events [69, 127, 290], should be 
considered to reveal a direct angiogenic activity of PCs 
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[291] and offer a possible ‘additional’ perspective on angi-
ogenic mechanisms (Additional file  1: Figure  S1). Peri-
cyte TNT/MT-like structures, and a direct involvement 
of these cells in early angiogenesis, were firstly reported 
by Nehls et al. [292], who detected cord-like structures in 
whole-mount preparations of rat mesentery, composed 
solely of PCs at the sprouting front. The PCs lay at and 
in front of the advancing tips of endothelial sprouts and 
also bridged the gap between the leading edges of oppos-
ing endothelial sprouts. These observations mirror the 
description of pericyte TNT/MT as guiding structures 
aiding the outgrowth of ECs during human cerebral cor-
tex vascularization [87]. Previous studies postulate an 
alternative contribution of PCs to neovascularization, 
describing endothelium-free pericyte tubes and seg-
ments of growing sprouts formed by PCs in both nor-
mally developing microvasculature of mouse retina and 
tumor vascularization (including melanomas and glio-
mas) [89], in murine tumor models [86], in subcutaneous 
matrigel plug assays, and in adult mouse cornea [293]. 
Interestingly, tubular structures, observed in tumors and 
denoted tumor microtubes (TMs), have been considered 
closely related to TNTs/MTs, although they possibly also 
have other functions [294]. It is therefore conceivable 

that conduit-forming PCs may be able to promote a self-
regulated process of endothelization/lumenalization, 
through trans-basal membrane interactions [52], includ-
ing the processes more directly mediated by NG2. In fact, 
ECs adhere to and spread on NG2-coated surfaces, and 
NG2 stimulates the migration of ECs and promotes cor-
neal angiogenesis [295].

The supportive paracrine role of pericytes
Besides the stabilizing role exerted by PCs on ECs [52, 158], 
there is an active angiogenic effect of PCs in secreting pro-
regenerative molecules in response to PDGF-B [295, 296]. 
Of particular note is VEGF, which has been immunolocal-
ized in PCs during human cerebral cortex development 
[174] and is released by these cells in in vitro models [175, 
296, 297]. In a mathematical, biomimetic 3D angiogenesis 
model, it has been demonstrated that PCs intervene in the 
VEGF/TNF-α (tumor necrosis factor-α) proangiogenic/
antiangiogenic interplay, promoting a proangiogenic effect 
of TNF-α, thus allowing complete VEGF-induced sprout 
formation, elongation, and lumenalization, and also ensur-
ing that the efficacy of the reverted TNF-α effect is pro-
portional to the extension of the pericyte coverage. In fact, 
TNF-α activity is fully inhibitory with a very low pericyte 

Fig. 4  First steps in human dorsal telencephalon vascularization. a–c Sequence of cerebral cortex formation and vascularization at 9/9.5 weeks 
of gestation (a, pre-plate; PP), 10 weeks of gestation (b, early cortical plate; eCP), and 12 weeks of gestation (c, developing cortical plate; dCP): the 
newly penetrated microvessels are lined by von Willebrand factor (vWF)-reactive ECs and surrounded by collagen IV (a, b) and by collagen IV and 
laminin (c); note in c a penetrating microvessel (arrow) that branches in the subventricular zone (SVZ) and forms a loop-like anastomosis (asterisk). 
d–f During these early phases of cerebral cortex vascularization, ECs express the BBB-specific transporter Glut1 and are enwrapped by a continuous 
layer of NG2+ PCs (arrow). d–f Human telencephalon 12 weeks of gestation. Scale bars a 40 µm; b 10 µm
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coverage, and switches sharply to strongly proangiogenic in 
the presence of a uniform pericyte coverage [298]. In the 
above-cited study on mesoderm- and NCC-derived PCs 
obtained from induced pluripotent stem cells (hiPSCs) 
[82], it was demonstrated that both mesoderm- and NCC-
derived PCs are able to induce the formation of endothe-
lial lumenalized tube-like structures and that the activity of 
NCC-derived PCs was significantly more effective (Addi-
tional file 2: Figure S2).

The forebrain pericytes leading role in glioblastoma 
neo‑angiogenesis
In our hypothesis, forebrain PCs may display a unique 
angiogenic aptitude as compared to the PCs of 

mesodermal origin, found in other regions of the CNS. 
Exploratory studies of pericyte-endothelial relationships 
during human fetal brain vascularization revealed an 
intimate interplay between the ECs and the leading activ-
ity of forebrain PCs in vessel sprouting events [84, 289]. 
Notably, glioblastoma multiforme (GBM) is the most 
highly vascularized brain neoplasm,  it is characterized 
by very active and diverse angiogenic mechanisms, and 
by a tumor microvascular architecture heterogeneity, 
including tumoral cell channels (vessel mimicry), intus-
susceptive vessels, and glomeruloid vessels [299, 300]. 
In GBM, we have observed the presence of several glo-
meruloid vessels, where NG2+/CD248+  PCs, express-
ing a variety of NG2 molecular forms, proliferate and 

Fig. 5  Pericyte-derived leading structures during human cerebral cortex vascularization. a, b Forebrain PCs, revealed by colocalization of NG2 and 
CD146, form the leading tip of cerebral cortex growing microvessels and give rise to TNT-like (a) and MT-like (b) structures. c, d CD146 staining 
unveils the filopodial processes of NG2+/CD146+ sprouting PCs (arrow). (a from [87] with permission). Human telencephalon 22 weeks of gestation. 
Scale bars a–c 10 µm; d 7.5 µm
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form a multilayered shell [88]. Hyperplastic PCs, whose 
rate of proliferation increases with the glioma grade, but 
not ECs, that appear confined to the monolayer lining 
cells, have been described as the main feature of higher 
grade glioma vessels, together with pericyte tubular or 
cord clusters [301]. It has been suggested that tumoral 
PCs originate endothelium-free vessel-like structures, 
that may play important, active and direct roles in tumor 
neoangiogenesis [87–92] (Fig. 8). An additional possible 
rationale for the demonstrated improvement of chemo-
therapy efficiency, in xenograft mouse glioma models 
after GBM-derived pericyte targeting [94], has given rise 
to the intriguing idea of identifying molecular markers 

for TNTs/MTs/TMs so as to pharmacologically discon-
nect the TNT/MT/TM communication networks [302]. 
This idea hypothesized the pericyte TNT/MT/TM-sup-
ported and pericyte-guided tumor angiogenesis roles in 
the control of cancer onset and progression.

What do forebrain, retinal, mesenteric, and tumoral 
pericytes have in common?
NCSC-derived ectomesenchyme has been demonstrated 
to have a trophic effect on the early forebrain; in fact, the 
removal of the posterior diencephalic and mesencephalic 
neural folds produces massive cell death preceding the 
forebrain normal period of vascularisation [303]. When 

Fig. 6  Radial glia/pericyte TNT relationships in the human developing cerebral cortex. a, b Triple staining with antibody NG2 2164C3, GFAP, and 
collagen IV reveals a very long pericyte TNT and the accompanying collagen IV basal lamina (a, arrows), enlarged on a single optical plane in b; note 
a TNT conveyed nucleus (arrowhead) and the extensive relations with GFAP+ radial glia fibers. c Multiple NG2+collagen IV+ TNTs (arrowheads) arise 
from the same parental vessel, one of which receives multiple contacts from a perivascular NG2+ OPC (arrow). d A ramified TNT arises from the 
pericyte body (arrowhead). Human telencephalon 22 weeks of gestation. Scale bars a 20 µm; b–d 10 µm



Page 12 of 26Girolamo et al. Fluids Barriers CNS           (2021) 18:14 

NCSCs migrate from the mesencephalic regions (mid-
brain) towards the forebrain, the forebrain is formed by 
a cranial telencephalon (“end-brain”) and a caudal dien-
cephalon (“between brain”), which gives rise to optic 
cups. The latter is also surrounded by a layer of mesen-
chyme derived from NCCs. The wall of the optic cup is 
continuous with the neuroectoderm and will form the 
pigmented epithelium of the neural retina, while NCCs 
contribute to the stroma of the cornea, the ciliary and 
iris muscles, fibrous sclera, and vascular choroid layers, 
whose angioblasts are, however, formed by the meso-
derm. It therefore seems conceivable that retinal capillar-
ies have a composite origin, namely mesoderm-derived 
ECs and ectomesenchyme-derived PCs, and a PC-driven 
angiogenesis as described in the human cerebral cortex 
[86, 89, 304].

Nehls et al. [292] were the first to challenge the dogma 
of PCs as cells secondarily recruited to stabilize the 
newly-formed microvessel, and without any obvious role 
during the initial phase of vessel sprouting. In their study 
they investigated the angiogenic reaction of PCs, after 
intraperitoneal application of angiogenic stimuli utiliz-
ing whole-mount preparations of rat mesenteries and 
desmin immunocytochemistry. Their results show that 
PCs are involved in the earliest stages of capillary sprout-
ing (see above) [292]. In this regard, and according to 
Sehgal [305], the enteric nervous system (ENS) predomi-
nantly originates from the vagal NCCs, located in an area 
between the brain and the spinal cord (post-otic hind-
brain). From this area, NCCs migrate along dorsolateral 
and ventromedial pathways, through which this latter 
group enter the proximal foregut to give rise to the ENS. 

Fig. 7  A pericyte conduit between facing radial vessels of the developing human cerebral cortex. a–c Two pericytes (P) are located at the opposite 
terminals of an NG2+collagen IV+ bridging conduit; as often observed, their nucleus marks the point of TNT/MT origin. d The enlargement of the 
merged image in c reveals further details and shows that in both the PCs, the nucleus is bent over on itself, describing a phrygian hat-like shape, 
so leaving an opening directly communicating with the lumen of the parental vessel; the entrance to the ‘tunnel’ is revealed by the collagen 
IV-enriched endothelial layer of the vessel basal lamina (red arrow). This critical passage is better shown in the single optical plane from the z-stack 
(e, red arrow); note the nucleus of an EC (white arrow) engaged through a collateral root. Human telencephalon 22 weeks of gestation. Scale bars 
a-e 25 µm
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Once intrinsic ENS NCCs reach the foregut, they are 
referred to as enteric neural crest-derived cells (ENCCs). 
The classical theory is that ENCCs undergo unimodal 
rostral-to-caudal migration within the gut mesenchyme 
to colonize the entire length of the gut. This theory is 
now being challenged by alternative models envisag-
ing a trans-mesenteric migration of NCCs. Using time-
lapse imaging analyses of mouse ENCCs, Nishiyama et al. 
[306] captured an ENCC population that crosses from 
the midgut to the hindgut via the mesentery during a 

developmental time period in which these gut regions are 
transiently juxtaposed. They proposed that such ‘trans-
mesenteric’ ENCCs constitute a large part of the hind-
gut ENS. It is conceivable that during their migration, 
ENCCs contribute to mesentery vascularization, living 
behind ‘angiogenic’ PCs that, together with ECs of the 
common splanchnopleuric mesoderm, form composite 
vessels with a dual origin.

Interestingly, more than half of all the GBM microves-
sel PCs have a host origin from endogenous brain PCs, 

Fig. 8  Example of alternative modes of tumor vessel growth in human GBM. a, b Multiple, EC-free pericyte conduits arise from a tumor vessel 
characterized by multilayers of PCs labeled by different NG2 isoforms (a, arrows) and an NG2+ pericyte MT surrounded by the collagen IV basal 
lamina (b, arrowheads). c A typical vessel sprout observed during cerebral cortex vascularization in a human fetus at 22 weeks of gestation; the 
CD31+ endothelial tip cell is characterized by a TNT-like process (arrow), a number of shorter, exploring filopodia, and a cloud of tip cell-associated 
microvescicles, confront with a GBM mimicking vessel sprout (d, arrow) formed by CD31+ glioblastoma cell-derived ECs [90, 92], surrounded by a 
disassembled collagen IV basal lamina and numerous, scattered, CD31+ cells. This growing structure closely resembles glioblastoma cells described 
migration in vitro through a 3D matrix [91]. Scale bars a, b 20 µm; c, d 10 µm
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rather than from tumor stem cells and/or bone marrow 
progenitors. Recent findings obtained in a GL261 mouse 
glioma model, orthotopically implanted in mice, dem-
onstrate that much of the tumor pericyte population is 
contributed by PDGFR-β+/NG2+ re-activated PCs of 
the host cerebral cortex overlying the tumor [93]. Host 
brain-derived PCs have been identified as type-2, a peri-
cyte subset that participates in normal angiogenesis and, 
when activated by the tumor, develops a strong tumor 
tropism. These PCs are integrated within the tumor ves-
sels, and show specific angiogenic competence, being 
capable of inducing new vessel formation [102]. Overall, 
these data support the idea that NCC-derived forebrain 
PCs and their intrinsic angiogenic activity, displayed dur-
ing human neocortex development, may spark neo-angi-
ogenesis in both tumors and neurological diseases [103] 
(Table 1).

Finally, during chick NCC migration in living embryos, 
the presence of dynamic TNTs, involved in inter-NCC 
communication and cytoplasmic exchange, has been 
revealed [307], further supporting these cell structures as 
the common trait between forebrain, retinal, mesenteric 
and glioma PCs and their embryonic ancestors. Like in 
NCCs, PC-derived TNTs/MTs described in human cere-
bral cortex and in GBM may convey pro-angiogenic mol-
ecules, thus restricting the range of dispersion of spatial 
information and/or amplifying local signals in physiolog-
ical and pathological vessel growth and collateralization 
[87].

NG2 proteoglycan: a switch‑on–off molecule 
involved in pericytes‑driven angiogenesis
PCs are adept at receiving external signaling, migrat-
ing and rapidly adapting to achieve functional tasks, 
that include duplication and differentiation, in vir-
tue of their extraordinary pluripotentiality [38–42, 
68, 246, 265, 308]. This important capacity is deter-
mined by the expression of molecules able to sense 
and capture signaling molecules released from the 
surrounding environment. One of these molecules is 
proteoglycan NG2, a single-pass, type I transmem-
brane proteoglycan [274, 275]. The NG2 protein core 
is composed of a large extracellular domain (290 kD), 
carrying two to three glycosaminoglycan chains and 
a number of potential N-glycosylation sites, a single 
transmembrane tract, and a short cytoplasmic tail 
(8.5 kD) [309]. Nonetheless, NG2 can be expressed 
without chondroitin sulphate glycosaminoglycan 
chains, placing NG2 in the category of so-called part-
time proteoglycans, specifically committed to bind, 
through the central domain of the core protein, basal 
lamina molecules [310–312] and a number of growth 

factors [274, 275, 311]. The involvement of NG2 
in NVU/BBB organization has been demonstrated 
in  vitro, where NG2 knockdown in PCs co-cultured 
with ECs reduces the endothelial barrier function 
[118] and in  vivo in NG2-knock out mice, that show 
a modified arrangement of endothelial tight junction 
strands in cerebral cortex microvessels [10]. Even 
though NG2 displays little capacity for independent 
signal transduction, it is actually a regulator of cell 
surface domains and growth factor activities [275, 
313]. In addition, working as a type I membrane pro-
tein, NG2 is subject to intramembrane proteolysis 
(RIP) regulated by α- and γ-secretases. The product 
of endogenous α-secretase action is the release of the 
NG2 ectodomain into the extracellular matrix. This 
process is termed shedding of soluble NG2 (sNG2) 
fragments [314–320]; four NG2 fragments have been 
associated with different biological functions in the 
CNS [321, 322]. The remaining C-terminal fragment 
undergoes a subsequent cleavage by γ-secretase, with 
the formation of an intracellular functional peptide, 
termed the released intracellular domain. The vari-
ety of NG2 and sNG2 biological roles has been inves-
tigated in NG2+ OPCs, where NG2 is maintained in 
mitotic active cells [323, 324] and is gradually down-
regulated until it disappears at the end of cell differ-
entiation [325]. NG2 regulates cell motility via Rho/
GTPase and polarity complex proteins [326] and has 
neuroprotective effects [327]. NG2 shedding from 
the OPC surface modulates the neuronal network 
and, in NG2 knock out mice, those neurons sur-
rounding OPCs exhibit diminished AMPA (α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid) and 
NMDA (N-methyl-D-aspartate) receptor-dependent 
current amplitudes [316, 322]. Interestingly, in the 
adult brain, NG2+ OPCs (also referred to as  NG2-
glia) contact neurons at axonal nodes of Ranvier and, 
in close proximity to synapses at neuronal cell bod-
ies, express ion channels [328–331]. They increase 
NG2 RIP after neuronal activity, producing a func-
tional switch toward the cell cycle S phase, and also 
increasing protein mRNA translation into proteins by 
modulating mTOR signaling components [332]. These 
observations may be pertinent to other NG2 express-
ing cells, especially immature/activated PCs. In fact, 
shed NG2 has been demonstrated to promote angio-
genesis and migration of ECs via binding of sNG2 to 
galectin-3 and α3β1 integrin on the ECs, demonstrat-
ing that pericyte-derived NG2 is an important fac-
tor in promoting EC migration and morphogenesis 
during the early stages of neovascularization [295]. 
These include the formation of pericyte TNTs/MTs or 
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effective pericyte conduits during both normal brain 
vascularization and tumoral neo-vessel formation 
[87, 88] (Figs.  7, 8, and Additional file  1: Figure  S1). 
Accordingly, a decreased level of NG2 has been meas-
ured in cerebrospinal fluids derived  from patients 
affected by Alzheimer’s disease [333] and Lewy bod-
ies dementia [113], where pericyte-altered clearance 
of amyloid impedes vascular integrity and endothelial 
regeneration [317, 334–336]. Endothelial regeneration 
is also tightly regulated by endothelial/pericyte con-
tacts through the activation of Notch1 RIP in a bone 
morphogenetic protein receptor 2-dependent pathway 
[337], although the effect of pericytes NG2 RIP has 
not yet been reported.

The CXCL12/CXCR4 axis is involved 
in NCSC‑derived pericytes signaling
The expression of CXCR4 (chemokine C-X-C motif 
receptor 4) by forebrain PCs during vessel sprout for-
mation is coincident with the demonstrated role of 
chemokine signaling in NCC migration. Chemokine 
CXCL12 (C-X-C motif chemokine ligand 12 or stromal 
cell-derived factor 1, SDF-1) and its cognate receptors 
CXCR4 and CXCR7 (chemokine C-X-C motif receptor 
7) have been implicated in the regulation of cell migra-
tion in a variety of tissues and conditions, also during 
human brain neurogenesis and vascularization [181]. 
CXCR4 is required for the migration of many stem cell 
and progenitor cell populations from their respective 
niches to the differentiating tissues and organs, and it 
has been identified as a key component for NCC migra-
tion [338]. In addition, specific CXCR4 antagonists 
(AMD3100 and TN14003) disrupt the migration of 
mesencephalic NCCs, suggesting a role for CXCL12/
CXCR4 signaling in the directed migration of mesence-
phalic NCCs in the early embryonic stages [339, 340]. 
The first, penetrating microvessels are followed by fur-
ther waves of radial vessels that also elongate to paral-
lel the progressively increasing width of the neural wall. 
At this time, typical endothelial sprouts coexist with a 
variety of forebrain PC-driven angiogenesis-associated 
structures [84] and, together with the classical signal-
ing systems [127], alternative pathways, such as the 
CXCL12/CXCR4/CXCR7 ligand receptors systems, are 
involved in radial glia-like stem cells-microvessel and 
endothelial-pericyte interactions that are also seen to 
include pericyte TNT/MT structures (Fig.  9). In par-
ticular, in the developing cerebral cortex, chemokine 
CXCL12 is highly expressed by radial glia-like stem 
cells, immature radial astrocytes, perivascular astrocyte 
endfeet, and activated, CD105+ endothelial tip cells, 

while CXCR4 appears to be specifically expressed by 
sprout-associated PCs and migrating neuroblasts [180, 
181] (Figs. 9, 10).

Conclusions
An ample heterogeneity has been reported in PCs even 
in the same organs [71]; for example, brain PCs have dis-
tinct morphologies, markers, and functions along the 
arteriole–capillary–venule vascular bed [70]. In addition, 
PCs can have a heterogeneous origin, even within the 
same tissue. In the embryo, the forebrain (telencephalon 
and diencephalon) is the only part of the developing CNS 
into which mesencephalic NCCs penetrate, giving origin 
to a subpopulation of forebrain PCs. During human neo-
cortex development and vascularization, NCC-derived, 
activated forebrain PCs are present as early as mitotic 
ECs, and almost completely ensheath the endothelial lin-
ing, forming de facto a tube-within-a-tube bi-layered ves-
sel wall and participating in the very early steps of cortex 
angiogenesis. In the cortex, forebrain PCs give origin 
to TNTs, MTs, and autonomous conduits and leading 
sprouts, their state of angiogenic activation being always 
marked by the expression of proteoglycan NG2, adhe-
sion molecule CD146, and chemokine receptor CXCR4. 
Proteoglycan NG2, also known as ‘high molecular weight 
melanoma-associated antigen’ (HMW-MAA), is also 
expressed by NCC-derived melanocytes, while the other 
two molecules are expressed by migrating NCCs and, 
according to our results, are still expressed by forebrain 
PCs (Figs. 5, 10).

Forebrain PCs may perform better than other CNS PCs 
in maintaining the BBB endothelial phenotype, stabiliz-
ing EC cord formation ‘in vitro’ [266, 341] and inducing 
barrier properties in primary and hematopoietic stem 
cell–derived ECs [259, 342, 343]. PCs denoted as ‘fore-
brain PCs’ are critical regulators of EC functions, includ-
ing cerebral blood-flow and BBB regulation, as well 
as tube-formation. Models that recapitulate forebrain 
PCs in  vivo ontogeny, by deriving them from hiPSCs 
in  vitro via a neural crest intermediate, showed a cel-
lular, behavioral and functional equivalence to in vitro-
derived and in  vivo-isolated normal, human forebrain 
PCs. This equivalence was demonstrated by cell migra-
tion and contractility assays and by the expression of 
genes associated with PC-specific biological processes, 
such as vesicular transport, formation, organization, 
and interaction of extracellular matrix, cell migration, 
contractility and angiogenesis [344]. hiPSCs can gen-
erate mesodermal cells and NCCs that can be induced 
to form mesoderm- and NCC-derived subpopulations 
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of PCs, that specifically express the mesodermal genes, 
MIXL1 and TBXT, and NCCs genes, PAX3, PAX7 and 
TFAP2A [82, 345]. These findings promise to propel 
further investigation of specific roles of forebrain PCs, 
especially angiogenic properties, which are not yet fully 
understood. Accordingly, it will be crucial to explore 
transcriptional or epigenetic landscapes of forebrain PCs 
during angiogenesis, and neurovascular barrier proper-
ties in vivo, in vitro, and in different CNS diseases. The 
availability of single-cell RNA sequencing approaches, 
coupled with both genetic and pharmacological pertur-
bations of forebrain PCs, makes it possible to identify 
signaling pathways that are triggered in the endothelial-
forebrain PCs crosstalk to modulate angiogenesis and 

barriergenesis under such different conditions. A better 
knowledge of the ontogenetic PCs subpopulations may 
help to understand specific interactions and mechanisms 
involved in pericyte function/dysfunction, including 
normal and pathological angiogenesis, thereby offer-
ing an alternative perspective on cell subtype-specific 
therapeutic approaches. These studies could not only 
strengthen our understanding of the complex mecha-
nisms involved in aberrant/tumoral vessel growth, but 
also provide us with new avenues for managing neuro-
logical diseases that could recognize angiogenic PCs 
as concurrent effectors in NVU ‘microvasculopathy’, 
suggesting therapeutic approaches that target both 

Fig. 9  Interaction of chemokine CXCL12+ radial glia with endothelial sprouts and pericyte TNTs. a, b Typical CD105+ growing vessels, characterized 
by tip cells and filopodial processes, appear in extensive contact with CXCL12+ radial glia fibers. c, d NG2+ forebrain pericyte TNTs are contacted by 
CXCL12+ radial glia fibers. Human telencephalon 22 weeks of gestation. Scale bars a 25 µm; b 10 µm
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endothelial and the NCC/forebrain PC-specific angio-
genic phenotypes and genotypes.
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 Additional file 1: Figure S1. The sequence of 34 single optical planes, 
from a z-stack image double stained with the endothelial marker CD31 
(green) and the pericyte marker NG2 (red), shows a growing microvessel 
formed by a leading pericyte-derived endothelialized conduit. Human 
telencephalon 22 weeks of gestation. Original magnification 60×. 

Additional file 2: Figure S2. Transmission electron microscopy images of 
newly-formed vessels in developing chick embryo brain. a A non–lume-
nalized microvessel with a continuous pericyte coverage (arrowheads), 
with few short projections toward the neuropil (arrows). b, c Small, 
lumenalized microvessels ensheathed by PCs (arrowheads). (from [5] with 
permission). Scale bars a, b, c 3 µm.
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