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B waves: a systematic review of terminology, 
characteristics, and analysis methods
Isabel Martinez‑Tejada1,2* , Alexander Arum1, Jens E. Wilhjelm2, Marianne Juhler1 and Morten Andresen1

Abstract 

Background: Although B waves were introduced as a concept in the analysis of intracranial pressure (ICP) recordings 
nearly 60 years ago, there is still a lack consensus on precise definitions, terminology, amplitude, frequency or origin. 
Several competing terms exist, addressing either their probable physiological origin or their physical characteristics. To 
better understand B wave characteristics and ease their detection, a literature review was carried out.

Methods: A systematic review protocol including search strategy and eligibility criteria was prepared in advance. A 
literature search was carried out using PubMed/MEDLINE, with the following search terms: B waves + review filter, slow 
waves + review filter, ICP B waves, slow ICP waves, slow vasogenic waves, Lundberg B waves, MOCAIP.

Results: In total, 19 different terms were found, B waves being the most common. These terminologies appear to be 
interchangeable and seem to be used indiscriminately, with some papers using more than five different terms. Defini‑
tions and etiologies are still unclear, which makes systematic and standardized detection difficult.

Conclusions: Two future lines of action are available for automating macro‑pattern identification in ICP signals: 
achieving strict agreement on morphological characteristics of “traditional” B waveforms, or starting a new with a fresh 
computerized approach for recognition of new clinically relevant patterns.
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Background
Intracranial pressure (ICP) monitoring plays an impor-
tant role in the management of patients with many 
neurological and neurosurgical disorders. In the 1960s, 
Lundberg described typical macro-patterns: A, B and C 
waves [1]. B waves were defined as short repeating eleva-
tions in ICP (10–20 mmHg) with a frequency of 0.5–2 
waves/min. These classic B wave patterns may be seen 
in ICP monitoring in intensive care unit settings (ICU), 
but ICP is also monitored in a large number of brain 
diseases covering a spectrum from acute and subacute 
ICU settings to elective outpatient follow-up. Today a 
large proportion of patients undergo ICP monitoring 
for milder degrees of disease where pathological pat-
terns are not as prominent. In such scenarios, wave pat-
terns are still called B waves but differ in amplitude and 

visual appearance from those defined by Lundberg. Such 
‘uncharacteristic’ B waves are often smaller in amplitude 
and appear as an irregular pattern, but they have not yet 
been formally classified. The current paper uses B waves 
as an encompassing umbrella for all variations.

The source of B waves is unknown and although they 
are mostly associated with cerebral dysfunction, their 
clinical significance is unclear, as they may also appear as 
normal physiological phenomena [2, 3]. Their source is 
most commonly related to vasogenic activity, but an ori-
gin from a neuro-pacemaker system has also been sug-
gested [4]. This diverging information poses a challenge 
to a consensus for a general description of B waves and 
their quantification, hindering their identification during 
diagnosis and treatment of different diseases categories. 
Because of these difficulties, clinical practice outside spe-
cialized centers with a focus on ICP-related research is 
currently largely restricted to readings of mean ICP.

Identification of waveform abnormalities by simple vis-
ual inspection is still a common clinical practice. This has 
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an obvious bias from reliance on personal empiric expe-
rience and raises questions of interobserver reproduc-
ibility. Automated and standardized detection of B wave 
patterns would increase the usefulness in both clinical 
and research settings. This automated detection is only 
possible if the waveform morphological characteristics 
are clearly defined; preferably by consensus in the sci-
entific community. A systematic quantitative detection 
system could allow for identification of B wave variations 
and other ‘non-Lundberg’ patterns, replacing traditional 
visual inspection.

The aim of this study was to assess the various terms 
and definitions used to describe classical B waves in 
order to highlight the lack of consensus in terms of ter-
minology and morphological characteristics, frequency 
and amplitude. Therefore, a systematic review was car-
ried out to summarize the different terminologies and 
definitions regarding B waves and the methods used for B 
wave identification.

Methods
Relevant studies were identified by a single reviewer 
using the online database PubMed/Medline. The dia-
gram in Fig. 1 gives an overview of the literature search 
based on the PRISMA systematic review methodology 
[5]. Studies were selected if they included the key terms 
slow vasogenic waves, Lundberg B waves, slow ICP waves, 
ICP B waves, MOCAIP, B waves + review filter, and slow 
waves + review filter. A total sum of 816 paper abstracts 
were screened initially for content relevance and 124 
papers were included in the search review.

Results
Terminologies
A total of 19 terminologies were found to describe B 
waves in the reviewed papers (Table  1). The most com-
mon terms being B waves and (ICP) slow waves (Fig. 2). 
Nine articles used four or more terms to refer to B waves. 
The choice of terminology is often related to the ongoing 
etiology discussion: 22 articles include the word vasogenic 
thereby implying cerebrovascular changes as the origin of 
the waves. Raftopoulos [6], Santamarta [7], Yokota [8], 
and Kasprowicz [9], defined further subgroups in order 
to clarify the sources underlying the presence of B waves 
(Table 2). 

Characteristics
B waves were identified based on two major wave param-
eters: frequency and amplitude. Frequency is the num-
ber of waves that fit into a certain time period, usually 
measured as waves per minute and 27% of the papers 
defined a frequency of 0.5–2 waves/min, as originally 
defined by Lundberg [1]. To accommodate B waves of a 

lower frequency, the term slow was introduced [10]. The 
term slow waves was then used to define waves with a fre-
quency window of 0.33 to 3 waves/min [11]. Two other 
papers extended the frequency upper limit to 4 waves/
min [12, 13].

As mentioned, B waves can also be characterized by 
their amplitude. Lundberg defined a maximum amplitude 
of 50 mmHg back in the 1960s. Under pathological con-
ditions, this level of elevation is less often seen to such 
an extent today, and B waves with lower amplitudes are 
more likely to be present. As an example, lower ampli-
tude B waves are present in cases of normal pressure 
hydrocephalus, where the occurrence of B waves is not 
related to high ICP [14].

Sub‑classification
In addition to frequency and amplitude, two other 
parameters are generally defined for the analysis of B 
waves. B waves can also be characterized by their shape 
and whether a plateau phase is present or not. The shape 
is considered symmetrical if the duration of ascend-
ing and descending phases is the same. If the ascend-
ing phase is longer, then the shape is asymmetrical. The 
use of these parameters gives rise to different subclasses 
within B waves (Table 2). All subclasses fit into the tradi-
tional definition of B waves with an extended frequency 
spectrum, but mainly differ in their morphological char-
acteristics (Fig. 3).

Besides these four parameters, Raftopolous et  al. and 
Santamarta et  al. also use the duration of the ICP wave 
to characterize B waves. They distinguish between three 
morphological subclasses: (1) small symmetrical waves 
with an amplitude below 10 mmHg, (2) great symmetri-
cal waves with an amplitude above 10 mmHg, and (3) 
intermediate waves, with the same frequency as symmet-
rical waves but an amplitude similar to plateau waves [6, 
7].

Kasprowicz et  al. describe three subcategories of B 
waves based on the investigation of their unique shape: 
(1) symmetrical ICP B waves, (2) asymmetrical ICP B 
waves, and (3) slow ICP B waves with plateau phase. They 
show how the different subtypes of B waves are related 
to changes in the ICP pulse shape, which indicate that 
each has a unique origin [9]. Similarly, Yokota et al. also 
suggest the existence of three subgroups but from the 
analysis of ICP amplitude and occurrence: (1) episodic 
B-waves, (2) persistent, high pressure B-waves, and (3) 
continuous, regular B-waves, and that these patterns may 
better distinguish between different origins of ICP waves 
[8].

The intermediate waves described by Raftopolous et al. 
[6] and Santamarta et  al. [7] contain amplitudes similar 
to plateau waves, Kasprowicz et al. [9] describe B waves 
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with a plateau phase, and Yokota et al. [8] describe per-
sistent high pressure B waves. It is noteworthy that all 
sub-classification attempts contain a B wave subtype with 
plateau-like features. This raises the question whether 
there is a continuous transition from B waves to plateau 
waves or whether they have different etiology.

To summarize, B waves are categorized into differ-
ent subclasses if they have distinct shapes and/or if their 
amplitude is different. These sub-classification attempts 
may be used as supplementary evidence that the classi-
cal waveform categories do not adequately address wave-
forms identified in clinical practice today.

Fig. 1 Modified PRISMA 2009 flow diagram. Systematic literature search and selection process overview. Given that the goal of this literature review 
was to give an insight into the different terminologies and definitions of B waves, only articles specifically mentioning B waves or related terms 
were included in the study selection. As an example: slow waves of ABP was not included. Papers simultaneously published by different journals 
were considered as duplicates and also excluded. The remaining articles (n = 124) were thoroughly examined and included in this study following 
the PRISMA flow‑diagram. Terminologies, definitions, and methods were identified individually by two independent reviewers and categorized 
according to a predefined protocol. Disagreements were resolved by consensus. No importance was given to the order of words, ICP B waves was 
treated equally to B ICP waves. Hyphens were removed, B-waves were grouped together with B waves. Of and in were disregarded, slow waves of 
ICP were registered as slow waves ICP. Only terminologies associated with ICP B waves were included (i.e. slow waves of ABP was not included). 
Terminologies in singular form were registered as plural, B wave was registered as B waves. Terms used less than three times were categorized as 
other 
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Analysis tools
32% of the papers had an explicitly stated analysis 
method. While traditionally the most common analyti-
cal method used was either spectral analysis (40%) or 
spectral analysis with an amplitude threshold (7%), there 
is now an increasing tendency (10%) to detect B waves 
using trained machine learning algorithms, as observed 
in more recently published papers [9, 15, 16]. These algo-
rithms use as input morphological features extracted 
from the ICP pulse wave via the Morphological cluster-
ing and analysis of ICP pulse (MOCAIP) algorithm. Thus, 

instead of defining B waves in terms of amplitude and 
frequency, they define them according to different mor-
phological parameters of the pulse wave. These param-
eters are based on the three subpeaks ( P1 , P2 , and P3 ) 
of the pulse wave: systolic peak, tidal peak, and dicrotic 
peak, respectively [9]. Examples of these ICP pulse met-
rics include the amplitude of the subpeaks, the latency 
between subpeaks, and the start of the ICP pulse wave 
and the pulse wave period, among others [17].

Terminology
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Vasogenic
waves
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Lundberg
B waves

Other(ICP) 
slow waves

(ICP) 
B waves

Slow 
vasogenic

(ICP) waves

Fig. 2 Frequency of terminology usage in the reviewed papers. The term B waves was used in most articles, followed by slow waves and ICP slow 
waves 

Table 2 Major morphological B wave subclasses

Term Shape Plateau Frequency 
(waves/min)

Amplitude 
(mmHg)

Raftopolous et al. [6]
Santamarta et al. [7]

Small symmetrical wave (SSW) Symmetrical No 0.36–5 < 10

Great symmetrical wave (GSW) Symmetrical No 0.36–5 > 10

Intermediate wave (IW) Asymmetrical No 0.33–1.67 6–34

Kasprowicz et al. [9] Slow symmetrical ICP wave Symmetrical No – –

Slow asymmetrical ICP wave Asymmetrical No – –

Slow ICP B with plateau phase Symmetrical Yes – –

Yokota et al. [8] Type II episodic B‑wave – – – 25–75

Type III persistent, high pressure B‑wave – – 0.5–2 40–100

Type IV continuous, regular B‑wave – – 0.5–2 10–30
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Discussion
ICP arises from pressure contributions from the brain, 
the heart, and the cerebrospinal fluid (CSF) inside the 
skull [18]. ICP is monitored invasively with a pressure 
transducer inserted either intracranially (subdural, epi-
dural, intraparenchymal or intraventricular placements) 
or in the spinal compartment (lumbar puncture). As the 
brain is enclosed within the skull and its expandability is 

restricted, the ability to compensate for pressure-volume 
changes (auto-regulation) is also limited (i.e. compliance 
is low). Under normal conditions, auto-regulatory pro-
cesses are responsible for keeping the intracranial volume 
constant. As brain compliance starts to decrease, the 
compensatory capacity is exhausted so that further vol-
ume changes are no longer accommodated; this causes 
ICP to increase. Space-occupying lesions are the main 
causes for the changes in intracranial volume. Hydro-
cephalus, intracranial haemorrhage, haematoma, and 
brain edema are examples of such lesions [19].

Under normal compensatory adaptations, the ICP stays 
within a narrow pressure range for each assumed body 
posture [20, 21]. This is the simplest way of looking at 
ICP, as just a number that should remain within certain 
boundary values. Going beyond that, the ICP signal can 
be analyzed from a different perspective by studying the 
presence of macro-patterns. The diversity of B waves is 
the most commonly encountered macro-wave in clinical 
practice.

This study demonstrates the lack of agreement with 
regard to the terminology and characteristics used 
to define B waves. Different names are used to refer 
to the same phenomena, in order to either describe 
characteristics and morphological variations of the 
wave or the etiology behind their occurrence. This 
makes mathematical modeling of B waves more dif-
ficult, which consequently complicates the selection 
or development of an analysis tool that could be used 
to automatically interpret them. Automating B wave 
identification may be a way to detect and better under-
stand ICP deviations from a normal physiological state 
at an earlier stage. But with the focus of current analy-
sis tools on identifying previously defined B waves, 
they share a limitation of throwing away data related to 
other potentially relevant waveform deviations. Thus, 
underlying patterns of ICP that may contain important 
information on the interplay of physiological systems 
affecting the brain are potentially neglected. Open-
ing up the analysis of ICP signals without being lim-
ited to previously defined patterns and conventions 
could enable fruitful new investigative and diagnostic 
techniques.

Sub‑classification
B waves were first defined from ICP monitoring ses-
sions recorded in severely ill patients. Sub-classifica-
tions, which have mainly been qualitative, are the only 
attempts at modernizing the description of B waves to 
fit the clinical situations we see today [6–9].

The existence of multiple attempts at B wave sub-
grouping suggests that the overarching B wave 

A B

Fig. 3 Presentation of different B waves sub‑classification 
patterns. Each is illustrated by two computer‑generated examples: 
column A simulating ICP recordings and column B showing an 
artistic rendering. Examples on rows 1 and 2 exhibit B waves with 
symmetrical shape and amplitude lower and higher than 10 mmHg, 
respectively. Examples of row 3 correspond to symmetrical B waves 
with plateau. The last row shows examples for asymmetrical B waves. 
The time‑scale used in all examples is minutes
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category is not satisfactory for classification purposes 
today. A future avenue of research may instead be to 
direct attention away from classical B wave detection 
and instead focus on the identification of new param-
eters to automate the analysis of repeatable patterns in 
the ICP signal. Pattern recognition algorithms will be 
the fundamental approach used for this purpose.

Analysis tools
ICP signals arise from the interaction of multiple physi-
ological factors (e.g. heart pump, respiration, ...) that vary 
over time. Thus, it may be seen as a time series signal 
[22]. Traditionally, ICP signals have been inspected visu-
ally for B wave identification. In addition to being a time 
consuming technique, it is also subject to investigator 
bias due to interpretation subjectivity and dependence 
on clinical experience. Since the introduction of com-
puterized algorithms, spectral analysis has led the way in 
B wave detection. A general agreement on a certain fre-
quency range that this wave occupies may explain why 
spectral analysis is the most reported methodology. How-
ever, there is low frequency activity within the B-wave 
range that is unrelated to vasomotor activity (i.e. respira-
tory changes associated with sleep), thereby introduc-
ing a severe limitation in the use of spectral analysis. We 
might get unwanted contributions from these signals in 
the B-wave frequency range when breaking down the sig-
nal into frequency components. Eklund et al. developed 
an algorithm that strives to overcome this problem by 
also taking into account the wave amplitude [23].

Defining B waves in terms of amplitude is, however, 
very ambiguous. In particular, the term amplitude can be 
approached as the trough to peak pressure difference in 
the signal. If the wave has a sinusoidal appearance there 
is no problem in the identification of both its maximum 
and minimum values, but their identification becomes 
a challenge when the waveform is irregular. At the same 
time, the term amplitude can also refer to the distance 
from the peak of the wave to the baseline.

MOCAIP extracts morphological parameters from 
the pulse wave that are then used to characterize B 
waves instead of defining them based on their ampli-
tude and frequency [24]. With the advantage of no 
longer depending on the classical B wave definition, 
this algorithm presents other drawbacks that prevents 
it from proper implementation in clinical practice. It 
rejects ICP pulses if a corresponding matching tem-
plate is not included within the reference library pro-
posed. This library is limited to intraparenchymal ICP 
signals from patients with hydrocephalus and does 
not comprise any ICP pulses from other pathologies, 
so that ICP pulses could be falsely rejected. Another 

limitation is the requirement of a simultaneous acqui-
sition of ECG signal to help in the identification of 
the ICP pulse wave. Also, identifying B waves using 
MOCAIP assumes that the pulse waves are affected 
during the B waves, which is not definitively settled. 
Another approach proposed by Elixmann also isolates 
the pulse waves and classifies them based on predefined 
templates [25].

Conclusion
To exploit the potential role of macro-patterns in ICP 
dynamics and to automate their identification for diag-
nostic or therapeutic purposes, two approaches for future 
work may be considered.

There could be efforts to arrive at strict agreement 
on morphological characteristics of classical macro-
patterns, which requires consensus-based definitions to 
enable the derivation of relevant metrics to characterize 
them.

Alternatively, a new approach could be attempted with-
out relying on classical macro-patterns. Instead it could 
be based on recognition of new patterns that more ade-
quately describe variations seen in daily clinical prac-
tice today. This de novo pattern recognition approach 
requires relating macro-patterns to clinical information 
to ensure that they are biologically relevant.

Abbreviations
ICP: intracranial pressure; CSF: cerebrospinal fluid; ICU: intensive care unit; 
MOCAIP: morphological clustering and analysis of ICP pulse.
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