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Abstract

confounding issues of using primary cells.

Background: Fetal cerebrospinal fluid (CSF) contains many neurotrophic and growth factors and has been shown
to be capable of supporting viability, proliferation and differentiation of primary cortical progenitor cells. Rat
pheochromocytoma PC12 cells have been widely used as an in vitro model of neuronal differentiation since they
differentiate into sympathetic neuron-like cells in response to growth factors. This study aimed to establish whether
PC12 cells were responsive to fetal CSF and therefore whether they might be used to investigate CSF physiology in
a stable cell line lacking the time-specific response patterns of primary cells previously described.

Methods: /n vitro assays of viability, proliferation and differentiation were carried out after incubation of PC12 cells
in media with and without addition of fetal rat CSF. An MTT tetrazolium assay was used to assess cell viability and/
or cell proliferation. Expression of neural differentiation markers (MAP-2 and {3-Ill tubulin) was determined by
immunocytochemistry. Formation and growth of neurites was measured by image analysis.

Results: PC12 cells differentiate into neuronal cell types when exposed to bFGF. Viability and cell proliferation of
PC12 cells cultured in CSF-supplemented medium from E18 rat fetuses were significantly elevated relative to the
control group. Neuronal-like outgrowths from cells appeared following the application of bFGF or CSF from E17 and
E19 fetuses but not E18 or E20 CSF. Beta-lll tubulin was expressed in PC12 cells cultured in any media except that
supplemented with E18 CSF. MAP-2 expression was found in control cultures and in those with E17 and E19 CSF.
MAP2 was located in neurites except in E17 CSF when the whole cell was positive.

Conclusions: Fetal rat CSF supports viability and stimulates proliferation and neurogenic differentiation of PC12
cells in an age-dependent way, suggesting that CSF composition changes with age. This feature may be important
in vivo for the promotion of normal brain development. There were significant differences in the effects on PC12
cells compared to primary cortical cells. This suggests there is an interaction in vivo between developmental stage
of cells and the composition of CSF. The data presented here support an important, perhaps driving role for CSF
composition, specifically neurotrophic factors, in neuronal survival, proliferation and differentiation. The effects of
CSF on PC12 cells can thus be used to further investigate the role of CSF in driving development without the
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Background

The central nervous system develops around a fluid filled
tube, the neural tube. Initially the tube forms around
amniotic fluid which is then modified by secretions from
a structure in the mesencephalon which transports blood
components into the neural tube fluid [1]. This has been
shown to form a powerful growth medium, called neural
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tube fluid, or embryonic cerebrospinal fluid (ECSF), for
neural stem cells, stimulating proliferation and differenti-
ation in the developing brain stem and spinal cord [2-5].
The cerebral cortex develops much later, the initiation of
which coincides with a change in the fluid source to the
choroid plexus (CP) as well as an increase in fluid vol-
ume and a consequential need for exit from the tube and
drainage [6,7]. Subsequently, cerebrospinal fluid (CSF) is
secreted by the CP, highly vascularised secretory epithe-
lial structures in the lateral, third and fourth ventricles.
During development CSF is rich in protein in contrast to
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the low protein content in normal adults [8,9]. It is
secreted from the initial stages of cortical development
and continues to be secreted for the entire life of the in-
dividual [10]. Previously, CSF was considered to be a
fluid with simple physiological and mechanical functions,
but it is becoming increasingly clear that CSF plays crit-
ical roles in complicated brain physiology, most espe-
cially during development, driving the functions of
neural stem cells [2,11-19]. Abnormalities in the CSF
system or CSF composition are associated with distinct
neurological conditions and global developmental
defects/deficiencies [20-26].

CSF is the major element forming the external environ-
ment for germinal matrix, stem and progenitor cells of the
developing cortex, containing a high concentration of
cytokines, growth factors and other proteins secreted by
the choroid plexus, and which acts as a growth medium
for brain development [1,12,27-29]. Although there is
some discussion about the timing of formation and the ef-
fectiveness of the different barrier systems within the
brain, it is accepted that the ependymal layer forms during
late cortical development and that neural stem cells are
thus in direct contact with CSF during most of the devel-
opmental period [30-33]. The path that CSF follows is a
one-way flow from the lateral ventricle, through the third
ventricle into the cerebral aqueduct to enter the fourth
ventricle where it exits the brain into the surrounding sub-
arachnoid space. The fluid then drains via arachnoid villi
into the superior sagittal sinus and/or facial lymphatics
[6,34-39], although the latter route may not be present
until late in development, in the post natal brain [37].
During this process CSF carries signals derived from differ-
ent sites within the flow pathway to downstream targets
[40]. Previous studies have shown that an obstruction in
the fluid pathway results in fluid composition changes that
arrest cortical development through a cell cycle blockage
[23,24]. This was shown to be due to inhibition of 10-for-
myl tetrahydrofolate dehydrogenase secretion from cells in
the ventricular zone [26]. CSF from different ages of nor-
mal fetal development was shown to affect proliferation of
primary cortical cells in an age-dependent manner [19].
Because the data also showed an age-dependent response
of primary cells, we have now investigated the effect of
ECSF on in vitro cultures of the PC12 cell line.

PC12 cells are frequently used as an in vitro model for
neuronal differentiation. These cells differentiate into
dopaminergic neurons when cultured with certain
growth factors, including nerve growth factor (NGEF),
basic fibroblastic growth factor (b-FGF), insulin growth
factor-1 (IGF-I), glial cell line-derived neurotrophic factor
(GDNF), epidermal growth factor (EGF) and transform-
ing growth factor-a (TGF-a) [41-44]. It seemed reason-
able to use these cells to investigate the effects of
developmental CSF without the confounding effects of
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age-dependent responses of primary cells. The aim of the
present study was to investigate the effects of prenatal
CSF from various gestational ages on the survival, prolif-
eration and differentiation of PC12 cells.

Methods

Animals

Wistar rats were bred in house in the research facility of
the Department of Biology, Tarbiat Moallem University
following ethical review of the project by the animal use
committees of both The University of Manchester and
Tarbiat Moallem University. They were kept in large rat
boxes at constant temperature and 12hour light/dark cycle
with free access to food and water. Individual male and fe-
male rats were paired in mating cages and checked regu-
larly for the presence of a vaginal plug which was taken as
an indication of successful mating and the day noted as
embryonic day 0 (E0). Embryonic age was calculated from
that day. At a particular time point pregnant dams were
euthanized by cervical dislocation, the uterus rapidly
removed onto ice and fetuses dissected out onto ice. Each
pregnant dam usually produced between 1015 fetuses.

Collection of CSF samples

CSF was collected from the cisterna magna of rat fetuses
at E17, E18, E19, and E20 using glass micropipettes and
capillary action without aspiration. Aspiration invariably
resulted in bleeding and contamination of the samples.
Fetuses were positioned with heads flexed down onto the
chest to allow penetration into the cisternal cavity through
the skin and underlying muscle. Samples containing un-
desirable blood contamination, visualised as a pink colour
in the fluid, caused by damaging a blood vessel within the
cisternal cavity, were discarded. All samples were collected
into sterile microtubes and centrifuged at 14,000 rpm to
remove cells or debris from the fluid, and the supernatant
was transferred into another sterile tube. These samples
were stored at —80°C until use. The volume of CSF col-
lected from each fetus by this method was between 5 and
50 pl and samples were pooled for each experiment. At
least three litters provided six independent pooled samples
(half litter per pooled sample) for each age of CSF tested.

Total protein analysis

Total protein concentration in each pooled CSF sample
was determined by the Bio-Rad protein assay (Bio-Rad
Laboratories, Hercules, CA, USA), based on the Bradford
dye procedure. The absorbance of samples was measured
at 595 nm wavelength. Each pooled sample was analysed
for each age tested.

PC12 cell culture and in vitro tests
PC12 cells were cultured in RPMI1640 medium (Gibco,
Life Technologies Corporation) containing 10% fetal
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Figure 1 Total protein content of fetal rat CSF. Histogram of total protein concentration in pooled samples of cerebrospinal fluid (CSF) from
rat fetuses at days E17 to E20. The data shown are mean +SEM, n=5 at each age. There was a significant difference between E17 and E20 ECSF
protein content p <0.05).
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bovine serum, 100 U/ml penicillin and 100 mg/ml strepto-
mycin. The cultures were kept in a humidified incubator
with 5% CO, and maintained at 37°C. PC12 culture
medium was refreshed in a 2/3 ratio every 2 days. For
tests, 100 pl of cells at 4 x 10* cells/ml (4000 cells/well) in
RPMI1640 medium were plated into poly-D-lysine coated
96-well plates and cultured in a RPMI1640 medium with-
out serum for 24 hours and then supplemented with CSF
(E17-20) (10%v/v) or bFGF (10 ng/ml) for 7 days. bFGF

was used as a positive promoter of PC12 cell proliferation
and differentiation into neuronal phenotypes to compare
to the effects of CSF. After one week, cells were photo-
graphed and then prepared for morphological examination
and immunocytochemical staining. Three wells were used
for each pooled CSF sample giving a total of at least nine
wells per CSF age tested. An additional three wells per
pooled sample were used for the MTT assay. Cells were
photographed at the end of each experiment using phase
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Figure 2 Survival and/or proliferation of PC12 cells after culture with fetal rat CSF. Reduction of MTT (3-(4,5-Dimethylthiazol-2-y1)-2,5-
diphenyltetrazolium bromide) measured colourimetrically by the absorbance of formazan product. Cells were treated with CSF at different
gestational ages (E17-E20) and measured after 7 days in culture. Results are expressed as a percentage of control levels (cultures without added
CSF). All cultures with added CSF had higher viability and this was significant with E18 CSF. Data are mean + SEM, n =9, *; p <0.05 compared to
controls.
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contrast optics. Cells were then fixed in 4% paraformalde-
hyde and immunostained for B-tubulin and MAP2 using
monoclonal antibodies (Abcam, Cambridge, UK), visua-
lised with FITC conjugated goat-anti mouse secondary
antibodies and photographed using fluorescence micros-
copy. Controls were stained with vehicle solution without
the primary antibody. At least six wells were stained for
both B-tubulin and MAP2 expression and at least three
wells were used as negative controls.

Measurement of neurite length

For each culture condition, cells in individual wells were
photographed with phase-contrast optics (Olympus,
Tokyo, Japan) to visualize outgrowths from the cells. Mea-
surements were made using Image] software (NIH). A
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neurite was counted when a cellular process was longer
than the diameter of the cell body. The average length of
neurites was calculated from measurements of 10 cells in
each of 6 wells for each age of CSF tested.

Cell viability assay

Cell viability and/or proliferation was quantitatively deter-
mined by the MTT method using a colorimetric assay at
the end of 7 days in control medium or medium contain-
ing CSF or bFGF. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide), is a yellow tetrazolium dye
that responds to metabolic activity. Reductase enzymes in
living cells reduce MTT from a pale yellow colour to dark
blue formazan crystals. Cells were plated at 4000 cells per
well as described above. In separate experiments cells were

show any significant differentiation.

Figure 3 PC12 cells after 7 days in culture photographed with phase-contrast optics. A: control culture, B: culture with b-FGF, C: culture
with added CSF-E17, D: with CSF-E18, E: with CSF-E19 and F: with CSF-E20. PC12 cells cultured with ECSF from E17 and E19, and with b-FGF
showed neurite outgrowth and morphological differentiation, whereas cells cultured with E-CSF from E18, E20, and the control group (A) did not
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plated at 2000 cells per well with no difference in prolifera-
tion or differentiation results (data not shown). At 24 h,
prior to addition of CSF or bFGF control plates were ana-
lysed for starting number of cells. Experimental and con-
trol media plates were left for a further 7 days and then
analysed for proliferation. Wells were incubated with
MTT (5 mg/mL in PBS) for 3 h at 37°C. In order to make
formazan crystals soluble, 0.04 N HCI, prepared in isopro-
pranolol, was added. The absorbance of the formazan
product was determined at a wavelength of 570 nm using
a plate reader.

Immunocytochemistry

For immunocytochemistry, after three washes with PBS
for 5 min, cells were fixed in 4% paraformaldehyde in
PBS for 15 min, permeabilized with 0.1% Triton X-100
for 30 min at room temperature and subsequently
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blocked with 5% BSA in TPBS (Tween 20 in PBS) for
1 h at room temperature. Cells were incubated at 4°C
overnight in the presence of either anti-beta III tubulin
mAb (1:50 dilution) or anti-MAP2 mAb (1:50 dilution).
The following day, after three washes with TPBS, FITC-
conjugated goat anti-mouse IgG (1:250 dilution; Sigma-
Aldrich, Poole, UK) was added at room temperature for
1 hr. Cells were then washed and cellular nuclei were
counterstained with propidium iodide (Sigma-Aldrich).
Photomicrographs were taken with a florescence micro-
scope (Olympus, Tokyo, Japan).

Statistical analysis

All values are expressed as mean * standard error of the
mean (SEM). Statistical analysis was performed using the
one-way ANOVA and Kruskal-Wallis test, and signifi-
cance was accepted for p values of <0.05.

E18 CSF (D).

Figure 4 Beta Il tubulin expression (green) in PC12 cells counterstained with propidium iodide (red). Beta Ill tubulin is expressed in PC12
cells cultured in normal media (A), media with b-FGF (10 ng/ml) (B), or with E-CSF from E17 (C), E19 (E) or E20 (F) but not in cells cultured with
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Results

Total protein concentration

CSF of rat fetuses aged E17 had a mean total protein con-
centration of 3.65+0.26 mg/ml, which was significantly
higher than that of E20 CSF (2.19 £ 0.12 mg/ml, p < 0.05,
Figure 1). Protein concentrations at E18 and E19 were
intermediate at 2.90 and 3.08 mg/ml, respectively.

Effects of embryonic CSF (ECSF) on the viability and/or
proliferation of PC12 cells

Figure 2 shows the absorbance of formazan produced by
cells treated for 7 days in culture with CSF from different
gestational ages. Compared to controls, a higher absorb-
ance (p <0.05) was obtained when cells were cultured
with the medium supplemented with CSF of any age in-
dicating greater viability of cells compared with that in
media alone. E18 CSF gave a significant increase in via-
bility over that seen in media alone which fits with our
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previous data from primary cortical cells where E18 and
E19 CSF gave increased proliferation of E20 cells [24].
For the PC12 cells cultured with CSEF, there was greater
clumping of cells suggestive of greater stimulation of
cell-cell adhesion rather than cell-substrate adhesion
(Figures 3, 4 and 5). This requires further investigation.

CSF induces neuronal differentiation in PC12 cells

Phase-contrast images of cultured PC12 cells are shown in
Figure 3. Compared to control medium (Figure 3A),
enhanced neurite outgrowth and morphological differenti-
ation occurred with cells incubated with bFGF (Figure 3B),
and in the presence of the medium supplemented with
CSF-E17 (Figure 3C) and E19 (Figure 3E). Little or no
morphological differentiation was detected in the control
medium (Figure 3A), with CSF-E18 (Figure 3D), or with
CSF-E20 (Figure 3F). However, with CSF-E18, PC12 cells
showed more proliferation. Clumping of cells was seen

CSF from E18 (D), E20 (F), or in control media (A).

Figure 5 MAP2 expression (green) in PC12 cells counterstained with propidium iodide (red). MAP2 expression is shown in PC12 cells
cultured with CSF supplemented medium from E17 (C), in the neurites of cells in E19 (E) and b-FGF (10 ng/ml) (B) but not in cells cultured with
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with CSF and also with b-FGF, suggestive of cell-cell inter-
actions rather than “simple” clumping due to a lack of ini-
tial separation of cells in plating. We utilized the growth
factor bFGF (10 ng/ml) to compare its effects on differen-
tiation with those of ECSF treatment.

Immunocytochemical characteristics of differentiated

PC12 cells

We found beta III tubulin expression in PC12 cells grown
in control media as well as in media supplemented with
E17, E19 and E20 CSF but not in E18 CSF (Figure 4) By
contrast we found little evidence of MAP2 expression in
PC12 cells (Figure 5) except in the neurites of cells cultured
with bFGF or CSF from E17 or E19 but not in control
media or in CSF from E18 or E20. Interestingly, cells cul-
tured in E17 CSF showed expression in neurites and in their
cell bodies (Figure 5c¢).

Measurement of neurite outgrowth

The average neurite outgrowth of cells was significantly
greater than controls when cultured in the presence of
b-FGF (p <0.001), or CSF from E17 (p <0.01) and E19
(p<0.001) for 7 days (Figure 6). It was not increased
over controls in CSF from E18 or E20 though there was
a non-significant increase in E18 CSF. In addition, and
as shown in Figure 3, the density and length of neurites
was much greater in b-FGF treated cells than in CSF
(E17 and E19) treated cells.

Discussion

The present study has shown that CSF from rat fetuses
at different developmental ages (E17-E20) has a high
protein concentration of around 3 mg/ml that declined
to 2 mg/ml by E20. CSF when added to cultures of PC12
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cells had different effects on survival, proliferation and
neuronal differentiation depending on age. In contrast to
the control groups, samples of CSF at all ages tested,
gave a greater formazan absorbance reading indicating
improved cell survival and/or proliferation. This was
only significant with E18 CSF indicating a greater effect
of CSF at this age. Interestingly we previously showed a
greater proliferation of primary rat cortical cells in both
E19 and E18 CSF over both controls and E17 or E20
CSF [19]. The significant and most surprising result in
the current study is the failure of PC12 cells to respond
to E18 CSF with any measurable differentiation in either
the MAP2 or beta III tubulin study, even though E18
CSF stimulated greater proliferation. These findings
would fit with a three stage process, initial production of
preplate neurons at E17, high rates of proliferation
within the ventricular zone at E18, and migration of im-
mature neurons and differentiation of migrated neurons
within the cortical plate over E18-E20 [45,46]. The differ-
ence between the effects of PC12 cells and primary cor-
tical cells indicate a possible difference between the pre-
programmed development of the in vivo neural stem/
progenitor cells and the driving force of CSF compos-
ition in isolation.

In our experiments, we used cisternal CSF which is
likely to contain both proliferation, differentiation and
migration signals as it contains all the additions to CSF
that are made as the fluid passes through the ventricles.
It would of great value to test ventricular CSF and com-
pare its effects since our previous arguments suggest that
this may only contain proliferation and possibly differen-
tiation signals but not migration signals [6,7,23,25].
Thus, one outcome of this study is that the parallel use
of primary cortical cells and PC12 cells can help to
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Figure 6 Neurite growth in PC12 cell cultures. Length of neurites of PC12 cells cultured with E-CSF-supplemented medium and b-FGF (10 ng/
ml). PC12 cells were grown on 96-well cell culture plates for 7 days. Neurite length was measured as described. Data are mean + SEM, n=9, *¥;
p < 0.01 and ***; p < 0.001 compared to control culture.
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elucidate the varying roles of developmental time-
dependent programming of cells versus the contributions
made by the changes in CSF composition with age.
Almost 75% of CSF is secreted in vivo by the CP located
in the lateral ventricles with an additional 10% and 5%
secreted by the CP in the third and fourth ventricles re-
spectively [47,48]. Additional components are added to the
ventricular CSF from the interstitial fluid of the brain paren-
chyma and from specific organs including the circumventri-
cular organs. The most studied of these is the
subcommissural organ which has been shown to be vital for
particular physiological functions as well as keeping the
CSF pathways open [49-54]. Recent research demonstrates
wa significant, if not major role for CSF in the survival, pro-
liferation, migration and differentiation of neural stem/pro-
genitor cells [5,11,12,19,55]. Where problems exist in the
CSF system, whether in flow or composition, this develop-
mental program is adversely affected in ways that interfere
in normal development [4,20,34,49,56-61]. The most critical
constituents of CSF are its protein components, the quality
and quantity of which change during CNS development
[62-66]. About 20% of CSF proteins are derived from CNS,
neurons, glial and leptomeningeal cells, whereas the
remaining 80% originate from the blood or are synthesized
by the CP [30,67]. The CP synthesizes and secretes many
proteins, including various growth factors and neurotrophic
factors into the CSF [30,67]. These proteins are carried by
CSF bulk flow and provide the developing brain with
trophic support for cell survival and neurogenesis [68]. The
utilization of neutralizing antibodies against growth factors
in CSF showed that blocking of FGF2 in chick ECSF
reduces cell proliferation, cell viability and neurogenesis in
chick neuroepithelium [69], while the thickness of the
neuroepithelium and neuronal precursor proliferation
decreased after anti-NGF antibody was injected into the
fluid cavity of developing chick brain [70,71]. The current
study provides a parallel cell line-based analysis system to
that of primary brain cells to investigate the role of CSF.
This approach is important as the interaction between pri-
mary cell age and CSF age has already been demonstrated
[19] while the isolated effect of CSF on a cell line might not
expose all the interactions. The in vitro survival, prolifera-
tion and neuronal differentiation of PC12 cells are
dependent on certain growth factors which must also be
present in the CSF to elicit the effects observed in this
study. The evidence from previous studies indicates that
understanding the detailed role of CSF in development,
function and pathophysiology of the brain will be one key
productive area to promote normal development and to de-
velop strategies and treatments to prevent abnormal devel-
opment and neuropathological conditions. Isolating CSF
components responsible for these different effects can be
achieved using the parallel approach we propose. In our re-
cent work we have described a unique folate handling
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system serving the developing cerebral cortex that operates
through the CSF [26]. Obstruction to CSF flow or drainage
results in a failure of cortical cells to release 10-formyl tetra-
hydrofolate, which we believe acts as a folate binding and
transporter protein in CSE, and to an arrest in cell cycle and
consequential deficient cortical development [23,24,26]. Fol-
ate supply to the cerebral cortex can be affected independ-
ently of supply to the rest of the CNS and body and result
in various cerebral folate deficiencies underlying a variety of
neurological conditions that can be alleviated by specific fol-
ate supplements [20,22,26,57,61,72-81]. In addition to this
folate supply to the developing cortex, there is a complex
mix of growth factors and other important proteins in de-
velopmental CSF that are affected by CSF drainage and ob-
struction which remain to be tested for direct effects on the
process of cortical development (unpublished data).

Conclusions

This study has shown that CSF from fetal rat brains of
different gestational ages can promote the survival, pro-
liferation and differentiation of PC12 cells in an age
dependent manner. Significant differences exist between
the response of PC12 cells compared to primary fetal
cortical cells perhaps indicating an interaction between
the programming of primary cells and age-dependent
composition differences in CSF in the latter case. The
use of PC12 cells in future studies of CSF physiology
may therefore allow the identification of CSF factors
effecting cell physiology in isolation of primary cell,
in vivo programming.
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