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Abstract

The maintenance of adequate blood flow to the brain is critical for normal brain function; cerebral blood flow, its
regulation and the effect of alteration in this flow with disease have been studied extensively and are very well
understood. This flow is not steady, however; the systolic increase in blood pressure over the cardiac cycle causes
regular variations in blood flow into and throughout the brain that are synchronous with the heart beat. Because
the brain is contained within the fixed skull, these pulsations in flow and pressure are in turn transferred into brain
tissue and all of the fluids contained therein including cerebrospinal fluid. While intracranial pulsatility has not been
a primary focus of the clinical community, considerable data have accrued over the last sixty years and new
applications are emerging to this day. Investigators have found it a useful marker in certain diseases, particularly in
hydrocephalus and traumatic brain injury where large changes in intracranial pressure and in the biomechanical
properties of the brain can lead to significant changes in pressure and flow pulsatility. In this work, we review the
history of intracranial pulsatility beginning with its discovery and early characterization, consider the specific
technologies such as transcranial Doppler and phase contrast MRI used to assess various aspects of brain
pulsations, and examine the experimental and clinical studies which have used pulsatility to better understand
brain function in health and with disease.

Introduction
Numerous homeostatic processes in the brain, such as
cerebral blood flow and maintenance of interstitial fluid
equilibrium, depend critically on the regulation of intra-
cranial pressure (ICP) and fluid flow. While it is the
mean pressure and flow which are most important
in these processes, there are also systematic variations in
pressure and flow which can play an important part in
homeostasis. In the brain, the largest of these variations
is due to the variation in blood pressure over the cardiac
cycle, henceforth referred to as cardiac pulsatility. Other
pulsatile variations, such as respiratory and vasomotor
induced oscillations, do affect pressure and flow over
time but have less of an effect compared to cardiac-
induced variations. (Note: For the remainder of this
review article, we will consider cardiac-induced pulsati-
lity only, and refer to this simply as pulsatility). How
changes in pulsatile pressure and flow in the brain
might affect disease development and progression is a

question of recent interest. In particular, in diseases
such as hydrocephalus (HC) and traumatic brain injury
(TBI) where changes in the biomechanical properties of
the brain can lead to marked changes in pressure and
flow dynamics, the role of pulsations is a potentially
important one. In this article, we will review the study
of cardiac-induced pulsatility over the last sixty years by
looking at a) the key elements of the pulsatile waveform,
b) measurement and analysis methods for pressure and
flow pulsatility in the brain, c) an historical review of
intracranial pulsatility and how it has led to an
improved understanding of intracranial physiology, and
finally, d) some speculation about where pulsatility
research might take us in improving medical diagnosis
and treatment.

Pressure and flow “compartments”
The contractile variations in cardiac output have two
distinct effects on intracranial dynamics, temporal
changes in pressure and temporal changes in flow
within the brain. While pressure and flow are related
physical phenomena, they should be considered sepa-
rately for one primary reason: pressure pulses propagate
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through the brain at the speed of sound and the exact
point of measurement is usually not of great interest,
while flow requires the displacement of fluid from one
compartment to another and flow pulsations vary dra-
matically depending on location. Indeed, pressure can
be measured almost anywhere in the brain and most
studies of ICP dynamics have found that pressure pulsa-
tions in the brain are identical irrespective of location
[1,2] (e.g., whether measured in the ventricle, in the cis-
ternum magnum or in the parenchyma). Flow pulsations
throughout the brain, on the other hand, are highly
dependent on the location chosen (e.g., from tens of
centimeters per second within intracranial arteries to
millimeters per second within the subarachnoid spaces).
Figure 1 illustrates the relevant intracranial compart-
ments considered. While there is certainly pulsatile flow
within other compartments, such as interstitial fluid and
the brain parenchyma itself, we will focus primarily on
macroscopic fluid flow which is readily accessible with
noninvasive measurement techniques.

Pulsatility and compliance
It has been recognized for quite some time that pressure
and flow pulsatility can change with disease; this has
been used as a diagnostic tool in a number of areas.
These changes are mostly due to the dependence of
volume change on mean pressure, as first described by
Marmarou et al for brain tissue [3], and based on the
exponential pressure-volume relationship in the cranium
(see Figure 2). It is important to understand that this
exponential relationship is not a fundamental property
of tissues, fluid, or flow, but rather a reasonable mathe-
matical approximation based on observed data. It
reflects the observation that a change in volume, such as
during a systolic inflow of blood, is generally accompa-
nied by a change in pressure, and that the magnitude of
the change rises exponentially with mean pressure. The
exponential relationship dictates that as the mean pres-
sure increases, so do the pressure pulses (even though
the volume of blood has not changed).
To fully understand the pressure-volume curve, it is

important to introduce the concept of compliance (C),
the ratio of volume (V) change to pressure (P) change,
C = ΔV/ΔP. In a high compliance system, a large increase
in volume will only result in a small increase in pressure.
Conversely, in a low compliance system, only a small
increase in volume can lead to a significant pressure rise.
Graphically, compliance is the inverse of the slope of the
pressure-volume curve. Thus, for the two pressure waves

Figure 1 Pressure and flow compartments in the brain.
Illustration of the pressure and flow “compartments” considered
throughout the paper. Pressure can be measured anywhere within
the cranium, and both mean pressure as well as pulse amplitude
are generally considered to be position-independent. From a
technical standpoint, however, pressure measurement is usually
restricted to the lateral ventricles, cisternum magnum or the brain
parenchyma. Flow, on the other hand, varies considerably with both
magnitude (i.e., mean flow) and pulsatility strongly depending on
fluid type (e.g., arterial blood vs. CSF) and on location. The figure
indicates typical locations for CSF flow measurement. Blood velocity
measurements (not shown) are generally restricted to the larger
inlet/outlet vessels of the cranium (e.g., carotid, basilar, middle
cerebral arteries, sagittal and straight sinuses).

Figure 2 The normal exponential pressure-volume relationship
of the cranium. The increase in pressure pulsatility with increased
mean pressure is a result of the relationship between pressure and
volume, which follows an exponential curve. At normal intracranial
pressure (ICP) levels, the increase of intracranial blood volume in
systole leads to a small increase in intracranial pressure, hence a
normally small intracranial pulse wave (lower waveform, typical
amplitude ~ 1 mmHg). With increases in intracranial pressure, the
concurrent reduction in intracranial compliance leads to a dramatic
increase in the pulse wave, even with no change in the arterial
pressure wave (upper waveform). The intracranial pressure-volume
curve was first introduced by Marmarou et al in 1975 [3], from
which this figure was adapted.
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shown in Figure 2, the compliance is high in the lower
waveform and low in the upper waveform. The exponen-
tial pressure-volume curve indicates that the compliance
of the system is reduced simply because of the increased
mean pressure. This makes sense intuitively. As the pres-
sure rises, the system becomes more rigid and more sen-
sitive to slight variations in volume.
Aside from the change in compliance with mean pres-

sure, there are other potential sources of compliance
change in the body which need to be considered, the
most important being vascular compliance (e.g., harden-
ing of the arteries with arteriosclerosis), which can affect
pulsatility even in the absence of mean pressure
changes. Thus, pulsatility can increase in a disease pro-
cess involving either increased mean tissue pressure, or
decreased tissue compliance. Examples of diseases exhi-
biting increased pulsatility abound: 1) age-related macu-
lar degeneration, in which intraocular pulsatility
increases with disease severity [4], 2) peripheral vascular
disease [5,6], 3) liver cirrhosis [7-9], and 4) dementia
[10,11], to name a few. This list highlights the fact that
pulsatility can be a valuable tool in disease assessment.

The brain as a pulsatile organ
Most clinical applications of pulsatility have been out-
side of the brain, and the cranium presents a unique
challenge for measuring pulsatility as well as a unique
biomechanical environment for pulsatility. The predomi-
nant theory of non-steady blood flow in the human
body is the Windkessel model, in which the elastic
arterial walls serve as a storage mechanism for flow pul-
satility, transforming pulsatile arterial blood flow into
steady peripheral flow [12]. Because of the high compli-
ance of the peripheral tissues, this mechanism is easily
accomplished outside of the cranium, allowing the systo-
lic arterial pulse wave to be transmitted and effectively
dissipated in the surrounding tissue. The result is signif-
icantly attenuated microvascular and venous pulsations.
The brain in contrast is enclosed in a rigid container,

and any transfer of pulsatility from the arterial walls
into the surrounding tissue is felt almost instantaneously
everywhere throughout the cranium. This leads to the
observation noted above that intraparenchymal and CSF
pressure waveforms tend to be similar and independent
of location. This is sometimes over generalized to sug-
gest that pressures are everywhere equal intracranially,
but this obviously does not apply to the very important
arterial and venous compartments. Secondly, this leads
to the interesting and potentially important phenom-
enon of measurable flow pulsatility in the microvascula-
ture [13] and in the venous system. In the brain, the
substitute for tissue compliance, which dissipates arterial
pulsations in non-cranial tissues, is the overall intracra-
nial compliance. This compliance, is comprised of four

main components: actual brain tissue compliance
(which is small), arterial compliance, venous compliance
(veins have highly compliant walls) and compliance of
the spinal thecal sac (which communicates with the
brain via the cerebrospinal fluid spaces). Traditionally,
intracranial compliance is assumed to decrease primarily
with increased ICP, due to the exponential pressure-
volume relationship described above [14]. As was shown
above, decreased compliance with elevated ICP leads to
increased pressure pulsatility. However, an additional
factor which must be considered is the transfer of pulsa-
tions out of the cranium through either venous or CSF
outflow pathways; while usually not considered as a fac-
tor which affects intracranial compliance, this is another
way in which pulsatility is modified in the brain. Thus,
intracranial pulsatility can also be affected by restriction
of these flow pathways (which can manifest itself as a
change in either pressure or flow pulsatility), such as
with venous hypertension or a blockage in the outflow
CSF pathways at the craniocervical junction (e.g., in
Chiari malformation or Dandy-Walker variant).

How pulsatility is measured and key elements of
the pulse wave
Before proceeding to discuss the pre-clinical and clinical
uses of pulsatility measures, it is important to under-
stand the techniques for measuring pulsatility in the
brain. Three primary techniques have been used to
quantify aspects of intracranial pulsatility: continuous
ICP monitoring, transcranial Doppler ultrasound (TCD),
and magnetic resonance imaging (MRI). ICP monitor-
ing, which is invasive, is used to measure pressure pulsa-
tility and requires placement of a pressure sensor within
the brain, either in parenchyma, ventricle, epidural
space or the spinal CSF space. In comparison, TCD and
MRI provide measures of flow pulsatility and have the
distinct advantage of being non-invasive: TCD measures
the velocity of blood flow in the large arteries using a
transducer placed against the skull, while MRI measures
the net flow waveform over the cardiac cycle, within the
large intracranial arteries or veins or within well-defined
CSF pathways (e.g., the cerebral aqueduct or at the cra-
niocervical junction (CCJ)). Thus, ICP is a pressure-
based measure of pulsatility, while TCD and MRI are
flow-based. Accordingly, it is important to keep in mind
that comparing pulsatility measures across modalities is
not always valid, because the methods are not equivalent
and assess different aspects of cardiac pulsatility. Exam-
ples of single cycle pulse waves using these three meth-
ods are illustrated in Figure 3.

Intracranial pressure
Monitoring of ICP waves requires placement of a sensor
within the skull (either in the brain parenchyma or
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within a ventricle), or in the spinal compartment. While
this technique has been used by many investigators in
pre-clinical work, there are only a few centers studying
and using pressure pulsatility clinically. To some extent,
this is due to the requirement of an invasive, implanted
sensor, but it is also likely due to the difficulty of
obtaining artifact-free pressure measurement in a clini-
cal setting. As opposed to TCD and MRI, which are
taken as one-time measurements with direct patient-
operator interaction and good cooperation, ICP moni-
toring is typically done over a long time period with
limited interaction between the patient and the operator.
Thus, pressure signals are often corrupted by artifacts
such as patient motion and heart rate variability. In
addition, standard ICP monitoring software is only
equipped to accurately measure mean ICP and is not
easily accessed to extract the pressure waveform. Soft-
ware for automatic identification of cardiac induced ICP
waves and for dealing with artifacts has not been readily
available (although the Sensometrics software package
from dPCom has CE-mark for use in Europe). Thus,
clinical examples in the literature using pressure pulsati-
lity are limited.
The primary amplitude measure of pressure pulsatility

is the absolute pulse amplitude, that is, the nadir-to-
peak variation in pressure. This can be assessed either
in the time domain, by measuring the nadir-to-peak
(i.e., diastolic to systolic) amplitude of the pressure wave
over one cardiac cycle, or in the frequency domain, by
measuring the amplitude of the fundamental cardiac
component (and possibly the first few harmonic compo-
nents as well). Investigators have used the pulse pressure

amplitude in the time domain as an indicator of intra-
cranial compliance [15-20], and thus as a good indicator
of HC severity and prognosis, but this never gained
widespread clinical use, most likely due to the technical
expertise required (e.g., accurately identifying cardiac-
induced ICP waves) and the invasive nature of the
procedure. Eide recently introduced a reliable and auto-
mated method for reliable identification of pulse pres-
sure waves, incorporating three basic elements: (a)
automatic identification of cardiac beat-induced pressure
waves (in contrast to artifact-induced pressure waves),
(b) characterization of individual pressure waves based
on minimum diastolic pressure, maximum systolic pres-
sure, pulse amplitude (i.e., diastolic-to-systolic pressure
difference), rise time, and rise time coefficient (i.e., an
approximation of dP/dT), (c) and presentation of the
static pressure and pulse amplitude as a clinically useful
output (see Figure 4). Averaging over a six-second time
window, the pulsatility is represented by the mean wave
amplitude. By monitoring this amplitude over a long
period of time (e.g., many hours), a representative
picture of pulsatility is obtained. Such measures have
been used to show the importance of pressure pulsatility
in diagnosis and shunt prediction for pediatric [21,22]
and normal pressure hydrocephalus (NPH) [23-26], as
well as for prognosis following TBI [27].
An alternative method for determining pressure

pulsatility is in the frequency domain, using the fast
Fourier transform, which has been available since the
late 1960’s. After Fourier transformation, a pressure
waveform is broken down into its individual frequency
components, and the most prominent component is

Figure 3 Single pulse waves using the three primary methods reviewed in this paper. Most noteworthy are the morphological differences
between these waveforms, with the ICP pulse illustrating significant inter-pulse variations (known as P1, P2 and P3), mostly a result of pressure
changes from the opening and closing of the cardiac valves, which are missing or attenuated in the middle cerebral artery blood flow waveform
measured with transcranial Doppler ultrasound (middle panel), or in the aqueductal CSF flow waveform measured with phase contrast MRI (right
panel). The marked reduction in temporal resolution with MRI as compared to ICP or TCD is also evident, and is due to the fact that MRI
information is image-based and therefore much slower than single-point measurement techniques; the flow waveform data are acquired over
many minutes and a single pulse wave is generated by averaging over many cardiac cycles.
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usually at the heart rate, due to cardiac-induced pulsa-
tility. Portnoy and Chopp did extensive testing of pulse
amplitude in the frequency domain, investigating
changes in pulse amplitude in dogs with changes in
physiology [28-30]. Czosnyka et al developed a method
for determination of the amplitude of single pressure
waves in the frequency domain. Using this approach,
the frequency spectrum is determined using a small
time window of the pressure waveform and the ampli-
tude of the single waves is derived from the first har-
monic component [31]. Figure 5 highlights the
differences between time-domain and frequency
domain measurements.
This approach has been implemented in software,

which is used clinically (a commercial package, ICM+, is
based on these methods [32]). The main advantage of
the frequency domain approach is that it does not
require identification of individual cardiac-induced
waves. Although one group has shown measurable dif-
ferences between time-domain and frequency-domain
analyses [33], these might be improved by incorporating
the higher harmonics in frequency-domain analysis.
Indeed, a number of groups have used several harmo-
nics of the spectrum to assess pulsatility [34-36], and
shown promising results in TBI. Of course, frequency-

domain techniques face the same technical dilemmas
noted above, and have also not found widespread clini-
cal acceptance.

Transcranial Doppler ultrasound
TCD is used to non-invasively measure flow in the
major arteries entering the brain, most commonly the
middle cerebral artery, although other cerebral arteries
are accessible [37,38]. The major advantages are that it
is relatively inexpensive and quick to perform, and can
be done successfully in most subjects with good coop-
eration. This technique provides two important mea-
sures: a) mean blood flow velocity, a relative measure of
the integrity of arterial perfusion, and b) pulsatility
index (PI) [39], a value reflecting cerebrovascular resis-
tance and intracranial compliance. The main disadvan-
tage of this technique is that insonation of the cerebral
arteries of interest is not possible in a certain percentage
of patients due to suboptimal insonation angle (10-20%
of patients, [40]). The measure of blood flow is only a
relative measure of perfusion integrity because velocities
are measured, not absolute flow. Also, it is important to
keep in mind that PI obtained with TCD is a measure
of vascular velocity pulsatility, which is certainly related
to the pressure pulsatility measures obtained with

Figure 4 Examples of pressure wave recordings. An example of mean wave amplitude measurements taken from a clinical case at Oslo
University Hospital, and showing simultaneous intracranial pressure (upper) and radial artery pressure (lower) waveforms. Automatic detection of
pressure peaks and valleys allows for automated calculation of mean pressure, pulse amplitude (mean wave amplitude), and pulse latency
(relative to the radial artery pulse pressure, 80 ms in this case).
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invasive pressure monitoring, but the relationship is not
necessarily simple or linear.
The output of a TCD measurement is a velocity wave-

form as a function of time, for the entire recording per-
iod which is typically many cardiac cycles. This
waveform can then be quantified in terms of the ampli-
tude of the waveform, which is generally expressed as
the PI, calculated as (peak systolic velocity - peak diasto-
lic velocity)/mean velocity. Because it is normalized to
the mean velocity, this is a measure of relative vascular
pulsatility. A relative measure is used because of the dif-
ficulty of quantifying absolute velocity in a vessel; the
velocity measured can vary dramatically depending on
the size of the vessel, and the angle between the trans-
ducer and the vessel. PI, however, is insensitive to these
experimental details and is a good gauge of changes in
arterial pulsatility. One potential issue with PI measures,
as compared to absolute pulsatility measures, is the
dependence on both pulsatility and mean velocity; an

increase in PI may not be strictly due to an increase in
pulsatility but may also arise due to a decrease in mean
velocity (e.g., decreased blood flow). Another measure
frequently used clinically which is related to the PI is
the resistive index (RI), defined as (peak systolic velocity -
peak diastolic velocity)/peak systolic velocity. The advan-
tage of RI is that it does not require integration of the flow
parameter to determine mean velocity. RI has been asso-
ciated with the probability of requiring a shunt in neonates
with post-hemorrhagic hydrocephalus [41], although it is
virtually certain that the PI would have made similar
predictions in this setting.

Magnetic resonance imaging
The technique of phase contrast MRI, in which quanti-
tative velocity information is extracted from the MRI
image, led to the non-invasive investigation of flow pat-
terns in the brain [42]. Furthermore, by synchronizing
the acquisition of the images to the cardiac cycle, it is
possible to obtain velocity information as a function of
the cardiac cycle - so-called cine phase contrast [43-46].
One important distinction of MRI, as compared to TCD
and ICP, is that the MRI measurement is not taken in
real-time; instead, the image must be collected over
many cardiac cycles, so that the resultant velocity wave-
form is an average measure over many cycles. Thus, the
MRI measure only generates a waveform consisting of
one cardiac cycle (i.e., the waveform depicted in Figure 2
is the entire acquired dataset for MRI), while the
real-time TCD and ICP measures generate waveform
information over multiple cycles (i.e., the ICP and TCD
waveforms depicted in Figure 2 are only a small fraction
of the entire acquired dataset).
This new technology enables measurement of either

CSF or blood flow pulsatility. While this technique is
similar to TCD in providing absolute velocity informa-
tion, it has the added MRI-specific advantage that image
information is two or three-dimensional and net flow
measurements can be extracted. Thus, quantitative mea-
sures of both velocity and flow pulsatility are obtained.
Numerous vascular structures can be evaluated in a sin-
gle image, with the only limitation being the size of the
vessels (typically limited to vessels > 2 mm in diameter)
[47]. By varying the velocity sensitivity of the technique,
called the encoding velocity or Venc, CSF flow regions
can also be assessed [48,49].
Most MRI-derived amplitude measures are absolute

measures such as stroke volume, flow rate, peak systo-
lic flow, and peak diastolic flow (see Figure 6 for
examples). Stroke volume, an appropriate outcome for
flow but not for pressure measurements, is a gauge of
the net volume of fluid pulsating back and forth over
the cardiac cycle [50], and is typically reported in μl
or ml. This is the predominate measure for CSF flow

Figure 5 Example of time- and frequency-domain pressure
recordings. In most clinical applications, data are presented, and
analyzed, in the time domain (upper panel). In this case, the
pressure is plotted as a function of time. In this example, the mean
pressure (5.9 mmHg) as well as the pulse pressure (2.7 mmHg) can
be extracted from the plot, although there can be confounding
modulation of the pulse pressure from other sources such as
respiration. Timing information can be extracted from the difference
in timing of the peaks or troughs of the signal compared to the
reference waveform (PPG, photoplethysmograph, in this case). In
comparison, pressure data analyzed in the frequency domain is
represented as a function of frequency (lower panel), and the signal
now has well defined cardiac components which are easily
separated from the low frequency components such as respiration
and can be analyzed independently. Additional information
available with frequency-domain analysis is the phase, the
frequency-domain analog of timing in the time-domain (not
shown). The phase plot allows analysis of timing differences
between the ICP and the reference waveform for each identified
frequency component.
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measurements [50-55], with the exception of cervical
CSF flow in Chiari malformation studies where the
anatomical pathology often creates localized jets of
CSF flow and peak flow measures are more representa-
tive of the disease [56-58]. Flow rate, or mean flow, is
the average flow in one direction (or for unidirectional
flow, average flow above the mean) and is related to
stroke volume, except that flow rate is affected by
heart rate; to rough approximation, stroke volume and
flow rate are related by stroke volume = flow rate/
heart rate/2. While not as commonly used a measure
as stroke volume, it has been used by various groups
for diagnostic [59,60] and prognostic [61-64] applica-
tions in HC.
Peak systolic or diastolic flow (or velocity) can also

be extracted from the flow (or velocity) waveform and
has been used as another amplitude measure from
MRI data, although examples are rare [65-67]. In parti-
cular, peak velocity measurements should be carefully
scrutinized due to the potential for error. This concern
arises mainly with respect to measurements in the
aqueduct, where changes in measurement location can
have a profound effect on peak velocity. Consistency of
technique (e.g., positioning of the imaging slice) is cru-
cial in such studies to ensure reliable results. A limited
number of MRI phase contrast studies have reported
results using PI [68,69], but in general this is not the
preferred measure since PI includes effects of pulsati-
lity and mean flow, both of which can be altered with
disease.

Other aspects of the pulse wave: pulse wave timing
A more subtle feature of the pulsatility waveform (and
more difficult to extract) is its timing. Figure 7 illus-
trates the elements of pulse wave timing. The timing of
a pressure or flow waveform in the cranium is most
affected by intracranial compliance; a “loose” or more
compliant cranium will transmit pulses more slowly
than a “tight” or less compliant one. The most impor-
tant consideration for collecting this information is that
timing is relative, and a “reference” waveform is usually
needed. For example, the pressure from an arterial line
may be used as a reference for the ICP waveform. The
arterial pulse waveform is the most appropriate refer-
ence, because it is the arterial blood flow which drives
intracranial pulsations, but is also the most invasive and
difficult to collect and has generally only been used in
pre-clinical studies [70-74]. A non-invasive pressure
reference can be obtained from the systemic blood pres-
sure, but is considered less reliable (due to timing differ-
ences between brachial and carotid waveforms).
Nonetheless, Piper et al used the non-invasive blood

Figure 6 Example of MRI flow waveforms in the cerebral
aqueduct. A typical MRI-derived flow waveform, demonstrating the
possible measures extracted for quantification. Stroke volume is the
most common parameter used, and is a measure of the net flow
through the vessel/region of interest, in one direction (i.e., over
approximately half the cardiac cycle). Flow rate has also been used
frequently, and is the mean flow rate for flow in one direction. Peak
flow is used less frequently, and is a measure of the highest (i.e.,
systolic, or lowest for diastolic) flow rate over the entire cardiac
cycle.

Figure 7 Timing aspects of the intracranial and arterial
pressure waveforms. Single-pulse intracranial and arterial blood
pressure waveforms, showing the elements of pulse wave timing.
Timing can either be calculated intrinsically within the intracranial
pulse wave, such as with the systolic/diastolic timing difference (dT)
or the slope of intracranial pulse wave (dP/dT), or it can be
measured relative to a reference pulse wave, such as the latency
between the peaks of the ICP and the ABP waves.

Wagshul et al. Fluids and Barriers of the CNS 2011, 8:5
http://www.fluidsbarrierscns.com/content/8/1/5

Page 7 of 23



pressure waveform as a reference in both animal and
patient TBI studies, and were able to show significant
differences in timing between mild and severely
impaired patients [35,75]. The electrocardiographic
waveform can also serve as a reference [76]. In an
attempt to bypass the need for a reference waveform,
Eide used the latency between the diastolic and systolic
peaks as a timing measure, but was unable to show dif-
ferences between patients based on improvement follow-
ing shunting [77] (even though a more recent study
found measurable differences between groups when
using the arterial blood pressure (ABP) waveform as a
reference [78]). A vascular timing reference is more
readily obtained in MRI studies where flow can be mea-
sured in both CSF and in intracranial arteries or veins
[54,68,79-81]. Such studies have successfully shown tim-
ing differences between arterial and venous flow in
hydrocephalic patients compared to age-matched
controls [79,80].
Information on the relative timing between intracra-

nial and reference waveforms can be extracted either in
the time-domain or in the frequency-domain. In the
time-domain, the peak-to-peak difference in timing is
used, such as the arteriovenous delay [79]. The main dif-
ficulty with reliability of this information is that, while
the two waveforms being compared are cardiac-driven,
they are often measured differently (e.g., using different
measurement techniques, or in different parts of the
body) resulting in waveforms with different morpholo-
gies. This results in different degrees of waveform dis-
tortion and considerable variability in the peak
locations, particularly when comparing different patient
populations. On the other hand, this distortion may be
of clinical relevance: Takizawa et al showed that the
normal distortion of ICP waves is reduced during intra-
cranial hypertension [82].
The frequency-domain approach effectively solves this

distortion issue. The individual frequency components
of the Fourier transformation each consists of a pure,
distortion-free sine wave, so by looking only at indivi-
dual components, distortion-free timing measurements
are possible. For the cardiac-driven waveform of inter-
est, the primary component is usually at the heart rate
frequency, and the timing information (called “phase” in
methods such as Fourier transformation and time-vary-
ing transfer function analysis) at this frequency can be
compared between the primary and reference wave-
forms. This method has been used in both pre-clinical
models [70,72,83] as well as in clinical investigations of
TBI [34,35,84-86] and HC [81,86-88].
The parameters discussed above relate to the real-time

variation of the pulsatile waveform within the cardiac
cycle. However, there is another element of timing
which can be considered in waveform analysis, that is,

long-term variations in pulsatility over many minutes or
hours. Such an assessment is only possible with ICP,
since indwelling catheters can monitor pressure waves
continuously. Interestingly, it has been found that even
under pathological conditions pulsatility is not necessa-
rily elevated all the time. Criteria for determining dis-
ease severity and prognosis, based on the percentage of
time during which the pulse pressure amplitude is ele-
vated, have led one group to develop a highly predictive
model for guiding shunt surgery in HC [77].

Other aspects of the pulse wave: Pulse wave shape
Intracranial pressure or flow waveforms have a unique
morphology, and changes in the morphology have also
been used as a clinical marker of disease. At normal
ICP, the pressure waveform exhibits characteristic peaks
and dips, mostly due to changes in pressure and flow
with opening and closing of the myocardial valves. Pre-
clinical [74,89] and clinical studies [90-92] have shown
that these features are smoothed out and ultimately dis-
appear with intracranial hypertension, a result similar to
those of Takizawa et al noted above [82]. One group
has developed intricate mathematical algorithms to
detect changes in these peaks and dips, correlating them
with changes in ventricular size in HC [93]. Utilizing
this type of information, they were recently able to pre-
dict episodes of elevated ICP twenty minutes before they
occurred [94].

Systems analysis vs. raw data methods
All of the analyses described above are, for the most
part, based on a raw data analysis philosophy. That is,
they make the assumption that the pulse wave is inde-
pendently related to intracranial physiology and changes
in the pulse wave can be related to disease pathophysiol-
ogy and to patient prognosis. However, these analyses
do not make any assumptions about how this pulse
wave is generated and how the arterial pulse responsible
for intracranial pulsations might vary from patient to
patient and, more importantly, how it might be altered
in disease. In contrast, a systems analysis approach
attempts to look at intracranial pulsations as part of a
complete pulsatile system, and the main goal of the ana-
lysis is to describe how the system transforms the input
(e.g., the arterial blood pressure waveform) into the out-
put (e.g., the ICP waveform). The input and output are
then collected over time. In engineering terms, these
time-series are called signals, and a function which gen-
erates one signal from another is called a system. In our
case, the real analogue for the system is the cranial cav-
ity, vessels, brain, and CSF. With enough data, we can
mathematically characterize how the system transforms
one signal into another. This is called systems identifica-
tion. An advantage of the systems approach is that
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formal mathematical approaches exist for evaluating
changes in the system itself (as in the time-varying
transfer function method [73]), as well as the extension
to multiple inputs or multiple outputs of the system. By
considering how the system changes with a disease pro-
cess or a proposed treatment, quantitative understand-
ing of an intervention becomes possible.
As an example, systems analysis has been used to

identify a pulsation absorber mechanism in the pulse
wave response of the cranium to CSF volume loading in
canines [73] (see Figure 8 for further explanation of the
transfer function concept). The identification of an
absorber mechanism specifically at the cardiac frequency
indicates an important role for CSF pulsations in pre-
venting strong arterial pulsations from entering the cra-
nium and having potentially damaging effects on the
cranial microvasculature. Similar methodology was

recently implemented in a canine model of obstructive
HC, showing the deterioration of the pulsation absorp-
tion mechanism in chronic HC [95]. These results
highlight the importance of complex data analysis tech-
niques with a systems approach in interpreting intracra-
nial pulsatility measurements, and their changes with
disease.

The intracranial pulse wave - preclinical studies
The earliest investigations into intracranial pulse waves,
their origin and their changes with disease, date back to
the work of Bering in the 1950’s [96,97] and later to
Dunbar in the 1960’s [98]. Most of this early work was
performed in dogs, and led to the conclusion that the
intracranial pulse wave is a product of the arterial pulsa-
tions entering the cranium, and is only influenced sec-
ondarily (e.g., in morphology) by venous pulsations.
Hamer was one of the first to look at physiological mod-
ifications of the pulse pressure wave, also concluding
that the arterial pulse wave predominately determines
the pulse wave, except under conditions of cardiac
insufficiency and increases in central venous pressure,
when it can take on more venous character [99]. Inter-
estingly, this work was one of the first to suggest that
alterations in brain tissue compliance could have a dele-
terious effect on the pulse wave and might affect “vascu-
lar damping” of the arterial pulse wave with subsequent
transmission of the pulse wave into the cerebral capil-
lary bed.
Portnoy and Chopp continued this work throughout

the 1980’s, and were the first to use systems analysis of
the ICP wave [29,30,70]. While their basic conclusion
may have been similar to prior work, i.e. that the ampli-
tude of the pulse wave generally increases with changes
in physiology from normal conditions, the use of sys-
tems analysis allowed them to add the important finding
that most of this increase occurs at the fundamental
cardiac frequency. This observation was thus the first to
show that there are frequency-dependent changes in the
pulse pressure wave which may have relevance to nor-
mal brain function and its change with disease. Further-
more, in contrast to the earlier work, they concluded
that the intracranial pulse wave is primarily venous in
nature: the transfer function between the intracranial
wave and the pulse wave in the sagittal sinus was close
to 1, while the arterial/intracranial transfer function was
much different from 1 (this conclusion is not generally
accepted and the source of the intracranial pulse wave is
assumed to be mostly arterial. According to this
assumption, the similarity of the venous and intracranial
pulse wave would then be due to the transfer of pres-
sure waves from the parenchyma into the veins, rather
than vice-versa). More recent work has further sup-
ported the importance of frequency-dependent changes

Figure 8 Systems analysis of the intracranial pulse pressure
and the concept of transfer function. Because the intracranial
pressure wave is a complex result of both the shape of the
incoming arterial pressure wave, as well as the biomechanics of the
intracranial compartment, additional analysis is needed to extract
information about the biomechanics of the intracranial system
independent of pressure waveform morphology. In systems analysis,
the concept of transfer function is used to accomplish this. In these
experiments, both arterial and intraparenchymal pressure were
measured. The frequency-domain transfer function relates these two
waveforms, i.e. how does the system (the cranium) transform the
input (arterial pressure) into the output (parenchymal pressure)? This
work showed the existence of a “notch” in the transfer function
specifically in the vicinity of the heart rate (dip in signal seen in the
lower right-hand corner) indicating minimal transmission of the
fundamental cardiac frequency from the arterial pressure into the
parenchymal pressure. However, under conditions of raised ICP
through CSF volume loading, this notch disappears (reddish area
just above the lower right corner, coincident with the increase in
ICP seen in the blue curve) because of the increase in the
fundamental cardiac frequency component of the intracranial
pressure wave (figure reproduced with permission, with
modifications, from Zou et al [73]).

Wagshul et al. Fluids and Barriers of the CNS 2011, 8:5
http://www.fluidsbarrierscns.com/content/8/1/5

Page 9 of 23



showing that the unique response transfer function at
the cardiac frequency is similar to a resonant notch fil-
ter, a response which may serve to prevent the primary
component of the arterial pulse pressure wave from
being transmitted into the intracranial pulse wave under
normal conditions [73,74]. The frequency dependence of
a difference in gain (how the input amplitude is trans-
lated to the output amplitude) or phase, suggests that
the concept of a unique, single-value “compliance”
which would relate any shape of input to the output
(i.e., regardless of frequency) is an oversimplification.
Systems analysis using transfer functions, however,
allows consideration of a multi-value compliance as a
function of input frequency–and the specific behavior of
this function near the observed heart rate is of particular
interest for probing the ability of the cranium (i.e., the
system) to absorb the pulsatile energy due to the cardiac
pulsations.
Intracranial pulsatility has also been investigated in

animal models attempting to mimic diseases of impaired
intracranial compliance, such as intracranial hyperten-
sion (e.g., via CSF volume loading) and hypercapnia.
Portnoy and Chopp showed that while conditions of
hypercapnia, hypoxia and volume loading all produced
increased pressure pulsatility (as measured by the arter-
ial-to-CSF transfer function), the latter condition pro-
duced less of a change at any given mean ICP [29]. In
addition, these conditions all produced a “rounding” of
the pulse wave, similar to that noted by other authors
[74,82,100] (in the frequency domain, this is consistent
with increased pulsatility primarily in the fundamental
cardiac component). This effect is illustrated in Figure 9
(data reproduced from [74]). Using extensive systems
analysis of pulsatility of the ICP wave, Piper and collea-
gues also showed that intracranial and arterial hyperten-
sion as well as hypercapnia produce increases in the
pulse wave, with most of the change again occurring at
the fundamental frequency [75]. Intracranial compliance
was dramatically reduced during intracranial hyperten-
sion, but only marginally with hypercapnia. Unique to
this study was the added use of phase information;
while their finding of a negative phase shift (i.e., delay of
the pulse wave) with reduced compliance during volume
loading is not surprising, the positive phase shift (i.e., an
earlier pulse wave) seen post arterial hypertension is an
unexpected finding and highlights the importance of
considering both compliance and blood volume in mod-
els of intracranial dynamics.
In work more directly related to disease pathology, Di

Rocco and colleagues showed that manipulation of the
ventricular pulse pressure wave could lead to ventricular
enlargement [101]. They mechanically enhanced the
ventricular pulse wave with an intraventricular balloon
in sheep, and showed that the size of the manipulated

ventricle increased compared to the contralateral one.
This was the first demonstration of the importance of
CSF pulsatility with respect to ventricular dilation.
Throughout the 1980’s, investigators continued to show
the importance of the CSF pulse wave, in particular in
animal models of HC, mostly involving kaolin injection
into the cisternum magnum [16,18,83,102-105]. Foltz
and colleagues demonstrated a marked increase in rest-
ing state pulsatility as well as in the pulsatility response
to increases in mean pressure [16]. Again using systems
analysis methods, Portnoy and Chopp showed a marked
increase in the amplitude of the pulse wave with HC
induction, although there was no correlation with ven-
tricle size [83]. By observing arterial (systemic pressure),
CSF (ventricular) and venous (sagittal sinus) pressure
waveforms, they were able to investigate the effect of

Figure 9 Rounding of the intracranial pulse wave as a result of
increased ICP. Elevated ICP leads to decreased intracranial
compliance, which investigators have found to result in
amplification of the lower harmonic content of the intracranial
pulse pressure wave, relative to the higher harmonic component.
This behavior appears as a rounding of the pulse wave
demonstrated here by CSF volume loading in the dog (upper panel:
normal ICP levels, lower panel: raised ICP condition). The data also
illustrate the timing, or phase, difference between the ABP and ICP
waveforms, and the phase change with changes with mean ICP
(figure reproduced with permission from Wagshul et al [74]).
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both arterial and venous pulsatility on the CSF pulse
wave. The primary conclusion was that pulse wave
changes in HC are very similar to those due to intracra-
nial hypertension and are not unique to HC.
More recently, Penn and colleagues used a dog model

of HC to show that there is no transmantle gradient
(i.e., difference in pressure between ventricle and corti-
cal subarachnoid space), either in mean pressure or in
the pulse pressure [106]. This result held both during
the acute development phase of the disease, with mark-
edly increased mean and pulsatile pressure, and in the
chronic phase with normalized mean and pulsatile pres-
sures. The existence of a transmantle gradient (either in
mean or pulse pressure) has been hypothesized as one
possible explanation for ventricular dilation in HC
[107,108], although a recent study by Eide and Saehle in
NPH patients showed no evidence of pulsatile trans- or
intra-mantle pressure gradients [2].
All of the studies considered above used direct mea-

surements of ICP and the pressure pulse. The advent of
transcranial Doppler ultrasound allowed the non-inva-
sive study of intracranial pulsatility in vascular flow.
Before proceeding to review these studies, however, a
word of caution is in order, as noted above. TCD stu-
dies look at flow in intracranial blood vessels, while
invasive pressure measurements typically observe par-
enchymal or ventricular pressure. While ICP pulsatility
and intravascular flow pulsatility are certainly related,
they are measures of different aspects of pulsation in
the brain and distinct differences can be expected. The
number of studies investigating changes in TCD-based
pulsatility in an animal model is quite limited, presum-
ably due to the ease with which TCD can be done clini-
cally and its non-invasive nature. Clinical studies will be
reviewed in detail below. Nonetheless, as with pressure
monitoring investigations, the few studies that exist gen-
erally found an increase in flow pulsatility with intracra-
nial hypertension, again an indication of the reduced
intracranial compliance [109-113]. Czosnyka et al used
TCD in rabbits to observe changes in PI with intracra-
nial hypertension, and concluded that PI can be a good
indicator of cerebrovascular resistance, but only under
conditions of intact perfusion pressure [110].
The relatively new technology of MRI has also only

been applied to animal models in a few instances, likely
because of the expense of MRI technology and its ready
availability in clinical studies. Wagshul et al found
markedly increased aqueductal CSF flow pulsatility in a
rat model of HC [114], a result which has been well
documented in communicating HC patients, and
Alperin et al have shown elevated CSF flow pulsatility at
the CCJ by volume loading [115] in a baboon model.
A unique dog model of Chiari malformation, a condi-
tion in which jet-like pulsatile CSF flow occurs at the

CCJ, has been used to document pulsatility changes
with this condition [116].
In summary, numerous studies over the last three dec-

ades, mostly using invasive pressure monitoring, have
led to the general conclusion that pressure pulsatility
serves as a sensitive indicator of intracranial compliance,
with the increase in pulsatility in HC being an indication
of reduced intracranial compliance due to raised ICP
and compression from the enlarged ventricles. Studies
have also shown that there are important frequency-
dependent factors which affect the way the pulse wave
is transmitted into the cranium and how it is changed
with disease. However, no study has clearly demon-
strated the importance of intracranial pulsatility as a
causative factor in the development of the disease
process in either HC or TBI.

The intracranial pulse wave - clinical studies
Clinical applications: ICP
Intracranial pulsatility has been measured clinically for
years, ever since the report of Bering in 1953 [97], and
until the advent of transcranial Doppler, the only evi-
dence of these pulsations was from invasive pressure
monitoring. Foltz reported that the intracranial pulse
pressure was 2-3 times higher than normal in communi-
cating HC, with “an even more striking pulse pressure
increase” in obstructive HC cases [16]. They also noted
that the peak of the pulse wave occurred earlier than nor-
mal in these patients; in our view, another indication of
the reduced intracranial compliance. Avezzat and collea-
gues showed a marked increase in pulse pressure in a
various etiologies (e.g., HC, brain tumors and intracranial
hypertension), and demonstrated a linear relationship
between increased pulse pressure and the pressure-
volume response, yet another clear indication of altered
intracranial compliance [17]. However, they also noted a
word of caution in using such pulse pressure as a reliable
measure of intracranial compliance: changes in pulse
pressure also depend on changes in cerebral blood
volume which are usually unknown. There are, however,
some studies which contradict these general conclusions
of elevated pulse pressure in HC. Matsumoto et al, for
example, “could not find high pulse pressure of the ICP
pulse wave” in their communicating HC patients [18].
It may be that some of the variability in results is

related to the period of time over which ICP and pulse
pressure are monitored. For example, it was recently
shown that the relationship between mean ICP and
pulse amplitude is dynamic and non-linear; the expected
finding of high pulse amplitude when mean ICP is high
and vice versa was only seen 60% of the time [117].
Moreover, shunt-responsive NPH patients (with so-
called “normal” pressure) nonetheless have elevated
pulse pressure, with amplitudes comparably high to
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those in stroke patients in the intensive care unit [118].
These observations may indicate that it is the reduction
of intracranial compliance, and not necessarily raised
ICP, which causes the elevated pulse pressure
amplitudes.
To quantify these temporal effects, Eide and collea-

gues developed a method for analyzing single wave pul-
satility in the time domain [119]. While the pulse
pressure measured with this technique is very similar to
that used in other studies, the authors used a very dif-
ferent philosophy in analyzing their data. Long-term
monitoring was used, typically 6-12 hours, and the pulse
pressure then categorized based on the percentage of
time it remained above a certain critical value. For
example, in one study there was a clear demarcation
between patients who improved following shunting
compared to those who did not, based on the percen-
tage of time windows for which pulse pressure was
above 4 mmHg (85% for improved vs. 45% for unim-
proved) [22]. In another study, pulse pressures before
and after shunting were clearly differentiated based on
the percentage of time above 4 mmHg (80% before vs.

30% after) [25] (see Figure 10). This technique highlights
the dynamic nature of the pulse pressure, showing that
even under pathological conditions the pulse pressure is
not necessary always high.
One major advantage of invasive monitoring as com-

pared to non-invasive techniques is the ability to simulta-
neously monitor the pulse wave in different intracranial
regions, providing the opportunity of comparing pulse
pressure in different compartments. While the mean ICP
varies between locations, because of differences in base-
line pressure (e.g., related to sensor calibration) and
hydrostatic pressure gradients, cardiac-induced pulsatility
would appear to be independent of sensor location
[1,2,120] (although there are differences between cranial
and spinal spaces, with amplitudes about 2 mmHg lower
in the lumbar space [121]). A recent study, however,
showed that some HC cases are associated with pulse
pressure gradients, and these gradients may be related to
the disease process [122]. More studies are needed to
confirm this important finding.
Because of the obvious significant risk of marked ele-

vation of ICP following TBI, this is another field which

Figure 10 The effect of shunting on mean pulse wave amplitude. Mean amplitude of the pulse pressure wave has been used both as an
indication of disease severity and as an indicator of the likelihood of shunt success in hydrocephalus. In this patient, it can be seen that not
only is the mean wave amplitude dramatically reduced following shunting (leftmost vs. rightmost column, middle row), but that it is also a
sensitive means of adjusting the shunt valve opening pressure (four central columns, middle row, figure reproduced with permission from Eide
and Sorteberg [25]).
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has seen increased interest in using pulse pressure wave-
forms for clinical diagnosis. While ICP monitoring has
been used for decades in this population, it was not
until the mid 1980’s that investigators began to utilize
the pulse pressure for diagnostic purposes. Czosnyka
et al used frequency domain analyses and introduced
the concept of AMP or amplitude of the fundamental
frequency component, and showed a close correlation
with ICP [31]. Interestingly, they also noted that by
using only the fundamental harmonic component of the
pulse wave for their calculation of AMP, as opposed to
the peak-to-peak amplitude of the waveform, a much
better correlation to mean ICP was obtained. In this
work, they also introduced the concept of pulse pressure
variability (denoted RAP) as a measure of compensatory
reserve of the craniospinal compliance, and showed that
this measure can be used to distinguish patients who
will recover from those who will not [84]. Figure 11

illustrates the elements of the RAP technique. One
disadvantage to this approach is the use of lumbar infu-
sion, which the authors argue is necessary in order to
manipulate the ICP in a controlled manner, as com-
pared to most other work which relies on observation of
the natural course of the intracranial pulse pressure.
Nonetheless, this work has shown important results;
more recent studies with these techniques have explored
the potential benefits of decompressive craniectomy and
its effect on ICP dynamics [123]. These techniques have
also been applied to HC patients, and can be used to
distinguish ventricular dilation in HC from brain atro-
phy, although there is some overlap between these
populations [88].
Systems analysis of the pulse pressure waveform has

also been used in TBI [34,35,75,124,125]. As compared
to other studies, however, this work has focused not on
the fundamental cardiac frequency, but on the higher
harmonic components. Following up on earlier work
with volume loading in dogs [72], it was shown that
there exists a high frequency resonance which is a nat-
ural characteristic of the intracranial cavity and highly
dependent on intracranial compliance. The systems ana-
lysis approach can be a very powerful tool in that differ-
ent portions of the frequency spectrum may be
indicative of various aspects of the pathophysiology. For
example, Piper et al showed that TBI patients could be
categorized into four different characteristic frequency-
domain patterns, which they associate with changes in
cerebrovascular tone (low frequency region) and intra-
cranial compliance (high frequency region) [35]. Lin
et al similarly used systems analysis to show the exis-
tence of a high frequency component which was only
present in TBI patients with good outcome. This feature
disappeared in patients with moderate or poor outcome,
which the authors interpret as a pathological increase in
cerebrovascular resistance, not as a change in intracra-
nial compliance as is usually assumed [125]. This work
also highlights the advantage of using systems analysis
over more straightforward waveform analysis; only the
systems analysis approach was able to differentiate
patients with good from those with intermediate out-
come. Unfortunately, these techniques have never devel-
oped into a viable tool for predicting TBI outcome,
possibly due to the technical complexity and the high
variability of results with changes in heart rate [126].
Studies beginning in the late 1990’s began to attempt

to utilize invasive pulse pressure monitoring for guiding
HC therapy. As with the studies noted above, all showed
increased pulse pressure with disease, but there has been
much disagreement as to whether or not this increase
can be correlated with successful therapy. In idiopathic
NPH patients, Barcena et al showed that the pattern of
increased pulse pressure was well correlated with

Figure 11 Correlation between pressure and pulse amplitude
(RAP). The RAP concept can best be understood through this
figure showing the expected pulse amplitude behavior with
increasing ICP. Under normal ICP conditions (left), the shallow slope
of the pressure-volume curve leads to a weak relationship between
pulse amplitude and pressure; RAP is close to zero. As ICP rises
(middle), and with it the slope of the pressure-volume response,
there is a clear positive correlation between pulse amplitude and
mean pressure; as pressure rises, so does pulse pressure, resulting in
an RAP close to 1. This relationship indicates a loss of compensatory
reserve in the pressure-volume response. Finally, when ICP reaches a
critical point (right), the slope of the pressure-volume curve
decreases sharply resulting in a negative pulse amplitude-pressure
relationship; RAP becomes negative. In TBI, negative RAP has been
shown to predict patients who are unlikely to recover (figure
reproduced with permission from Czosnyka and Pickard [200]).
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decreased pulse wave latency (both an indication of
decreased intracranial compliance), and that this pattern
was clearly distinct from the pattern seen in healthy
subjects as well as in cases of brain atrophy, where
increased pulse pressure was correlated with increased
latency [20]. However, within the shunted group, they
were unable to differentiate improved and unimproved
patients based on either amplitude or latency of the
pulse wave; one other study found similar results [127].
On the other hand, a number of recent studies have

shown promise. Brean and Eide showed pre-surgical
pulse pressure to be “highly related” to shunt response,
although they had a 16% false negative rate [24]. In
another study by the same group of 130 idiopathic NPH
patients, clinical response to shunting could be antici-
pated in 93% of patients with elevated pulsatile ICP
(determined by mean pulse amplitude ≥4 mmHg on
average over-night and >5 mmHg in ≥10% of observa-
tions), while only 10% of patients with low pulse ampli-
tude improved [128]. A very recent study showed
excellent separation of responders and non-responders
using an intracranial elastance index [129], derived from
the slope of pulse pressure vs. mean ICP curve during
intraventricular infusion (elastance is the inverse of
compliance, see Figure 12). Using a systems analysis
approach, Eide et al were able to separate responders
from non-responders based on both pulse amplitude
and phase information (relative timing difference
between the ICP and ABP pulse waves, which was smal-
ler in responders) [78].
In summary, recent advances using quantitative mea-

sures extracted from the pulse pressure waveform have

shown very promising results and all would appear to
support the view that intracranial compliance and its
effect on the intracranial pulse amplitude can play a cri-
tical role in HC and TBI management.

Clinical applications: TCD
TCD flow velocity measurements follow the same trend
as pre-clinical studies discussed above, most indicating
an increase in PI with pathology [130-141], and good
correlation with clinical condition [139,142]. Using a
technique similar to that of Eide described above,
Splavski et al showed good correlation between the
degree of elevated PI and the duration of time (in hours
per day) for which the mean ICP was elevated (ICP > 25
mmHg) [138]. Others have used more straightforward
PI measurement and found good correlation with raised
ICP [131,143,144]. One study, however, found very weak
correlations and concluded that the technique was not
adequately sensitive [132].
With respect to prognosis, PI has been found to fall

following various surgical interventions, such as shunt-
ing [131,132,135,137,140], CSF drainage [145] and endo-
scopic third ventriculostomy [134] in HC and surgical
decompression for TBI [146,147]. However, the same
word of caution noted above is needed when consider-
ing these studies. While increased PI is often regarded
as a measure of reduced intracranial compliance (i.e., a
shift from the normal pressure-volume curve), because
PI is a ratio of absolute pulsatility to mean flow, in
many of these cases the increase in PI may result from
decreased cerebral blood flow rather than to an increase
in absolute pulsatility. In our view, this may explain the
wide variability in a recent study of PI following shunt-
ing in HC [137]. Nonetheless, these authors concluded
that TCD may be a valuable tool when used in conjunc-
tion with other clinical information.

Clinical applications: MRI
Clinical MRI studies of flow pulsatility have mainly
focused on measurements in the cerebral aqueduct
because of the high flow velocities, although there are a
limited number of studies of flow in the prepontine cis-
tern [51], at the CCJ [53,148], and in the cervical and
intracranial vasculature [79,81,115,149-151]. The very
early MRI evidence of pulsatile flow in the aqueduct
was actually not obtained through quantitative mea-
sures, but deduced from a flow artifact leading to
decreased CSF signal which is accentuated with
increased flow velocities [152-155]. The application of
the phase-contrast technique to quantify pulsatile CSF
flow was developed in the early 1990’s. Greitz [156] and
Naidich et al [49] extensively documented CSF flow and
brain motion using phase contrast MRI. These studies
demonstrated the ability to quantify CSF flow through

Figure 12 The importance of intracranial compliance in
hydrocephalus management. In this work, intraventricular infusion
tests were used to measure the slope of the pressure-volume curve.
From this, the authors derive an intracranial elastance index - not
the absolute elastance because they use diastolic pressures rather
than mean pressure in the calculations - which is shown here to
provide excellent separation between patients who improved
(white) and those who did not improve (blue) following shunting.
The elastance index used here is proportional to the inverse of
intracranial compliance (figure reproduced with permission from
Anile et al [129]).
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the cerebral aqueduct, in the prepontine cistern and at
the craniocervical junction, as well as to identify pat-
terns of brain motion. Based on these studies, it was
concluded that pulsatility results in a funnel-like motion
of the brain, as if the brain were being pulled in systole
by the spinal cord. This motion was interpreted as due
to the venting of the brain and CSF through the tentor-
ial notch and foramen magnum during the systolic
arterial expansion [156].
These landmark studies were followed by measure-

ments of CSF flow in healthy controls, undertaken by
numerous groups and focusing mostly on aqueductal
flow and demonstrating reliable measurements
[44,45,49,51,156,157]. Normal flow values (i.e., stroke
volume) from these studies range from 30 - 50 μl
[52,53,150,156]. A typical flow image and waveform is
illustrated in Figure 13. Studies of CSF flow in the sub-
arachnoid spaces have been less common, and have con-
cluded that pulsatile CSF flow through the aqueduct is,
in healthy individuals, but a small fraction of net CSF
flow pulsatility, with normal aqueduct-to-CCJ flow ratios
ranging from 4 [158] to 11% [148]. MRI flow measure-
ments in the prepontine cistern can be used to charac-
terize the ratio of supra- to infra-tentorial flow

pulsatility, by quantifying the prepontine-to-CCJ flow
ratio, and range from 25 [51] to 35% [48,158]. MRI stu-
dies in healthy controls have also documented the nor-
mal temporal relationship between arterial or venous
pulsatile flow and CSF pulsations. In general, CSF flow
in the inferior subarachnoid spaces is synchronous with
arterial flow, while flow in the cerebral aqueduct lags by
15% of the cardiac cycle (i.e., 100-150 ms) [49,53,148].
MRI studies of flow pulsatility in disease have been

primarily in HC, spurred on by the well-known changes
in pressure pulsatility demonstrated with invasive moni-
toring methods discussed above. The primary finding is
a marked increase in pulsatile aqueductal flow
[50,52,59,61,62,67,156,159-167] with pathological values
often rising as much as ten times normal. Luetmer et al,
for example, used this measure to set a diagnostic criter-
ion for separating idiopathic NPH patients from healthy
controls (i.e., based on pulsatile flow rates either above
or below 18 ml/min) [59]. Greitz et al reported a corre-
sponding decrease in pulsatile flow through the CCJ
[51], but these findings were from a limited number of
patients, and one later study found no such change in a
group of 12 communicating HC patients [148]. Aside
from the amplitude of flow pulsatility, some investiga-
tors have also looked at temporal parameters as an indi-
cation of pathological dynamics. For example, Baledent
et al have shown a shorter systolic flow period com-
pared to healthy controls [148] and Miyati and cowor-
kers have used systems analysis to show a highly
significant correlation between the phase of the aque-
ductal pulse wave and pressure-volume response [162]
(i.e., a linear relationship between timing of the CSF
pulse wave and intracranial compliance).
MRI measurement of flow pulsatility at the craniocer-

vical junction has been studied extensively in Chiari
malformation. These studies have found increased het-
erogeneity in the flow pattern, consisting of both local
flow jets and bi-direction flow [168-172]. The occur-
rence of flow jets necessitates the use of peak velocity,
rather than net stroke volume, as the best indicator of
pathology. Pinna and colleagues [173] used the temporal
information from the flow waveform and found a
shorter systolic CSF pulse in the ventral subarachnoid
space of Chiari patients without a syrinx compared to
those who had developed a syrinx (as well as compared
to controls). In light of the discussions throughout the
paper of the relationship between CSF pulse wave tim-
ing and compliance, these results would appear to indi-
cate the important role of the intraspinal compliance
and pulse pressure gradients in Chiari and the formation
of spinal syrinxes [174]. In patients with syringomyelia
in the absence of an obvious cause (such as Chiari or
tumor), Mauer et al used phase contrast MRI to docu-
ment blockage of CSF flow in the subarachnoid space

Figure 13 Flow in the cerebral aqueduct from cine phase
contrast MRI in a healthy control. A typical MRI flow study, using
the phase contrast technique, consists of the magnitude (a,
anatomical) and phase (b, flow) image. In this example, cine images
were taken as a function of the cardiac cycle by gating the image
acquisition to a peripheral pulse signal. The image on the right
depicts flow velocities during one phase of the cardiac cycle with
caudal CSF flow (the bright dot in center of the image shows
caudal flow in the aqueduct during this phase of the cycle). By
summing over all pixels in the aqueduct, a net flow waveform is
obtained (c). Stroke volume in this instance was 25.7 μl.
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surrounding the syrinx, finding this technique to be
more sensitive compared to myelography [175]. Follow-
ing surgical decompression, peak velocities decrease and
flow waveforms change from “heterogeneous” to sinu-
soidal [56,171,176,177]. Alperin and colleagues used sys-
tems analysis to evaluate changes in intracranial
compliance in Chiari, concluding that there was abnor-
mal dynamics of the intracranial volume change over
the cardiac cycle, which returned to “more normal-
appearing dynamics” following decompression [178].
In comparison to these studies, which focus almost

exclusively on changes in CSF flow pulsatility, Bateman
and colleagues have studied changes in vascular flow
pulsatility as a measure of flow pathology in HC
[52,68,69,79,151], finding a significant decrease in the
arterial pulse wave in NPH patients compared to age-
matched controls. The change in arterial pulsatility,
coupled with a marked increase in the aqueductal CSF
pulse, led to a nearly two-fold decrease in the compli-
ance ratio, a relative measure of intracranial compliance
(the ratio of aqueduct to arterial pulse wave stroke
volume) [52]. They have also shown changes in venous
flow pulsation which may be an indication of the impor-
tance of venous pathology in HC [69,79]. Most signifi-
cantly, they found decreased cortical vein flow pulsatility
in patients, which reversed and surpassed control values
following ventricular shunting. These studies also
showed that vascular flow timing might be used as an
indication of intracranial compliance changes in HC,
with a marked drop in the arterial-venous delay (i.e., the
delay between the arterial and venous systolic peaks) in
patients, which reverses with shunting [79]. Unfortu-
nately, at the end of the day, a study of shunt respon-
siveness concluded that none of the measured pulsatile
flow parameters could reliably separate shunt surgery
responders from non-responders [151].
With respect to prognostic MRI studies, numerous

studies have investigated the association between aque-
ductal pulsatility and outcome from shunting
[50,54,61,62,67,159,161,163,167,179,180]. The first exam-
ple of a prognostic, MRI-based flow pulsatility measure
is the stroke volume measure; Bradley et al indicated
favorable outcome for patients with aqueductal stroke
volumes above 42 μl [50]. Other trials, mostly involving
NPH patients, however, have not been promising. Using
the same measure of stroke volume, but stratifying
patients into low, medium and high stroke volume
groups, Kahlon et al could find no statistically signifi-
cant improvement in either cognitive or motor function
in any of the pulsatility groups [163]. In another study
using mean aqueductal flow rate, Dixon et al also found
no significant association between CSF pulsatility and
improvements in gait, cognition or urinary continence
[62]. This same conclusion has been reached in a

number of other recent trials [67,166,180]. In our view,
scrutiny of these studies indicate that highly elevated
flow pulsatility is usually a very good predictor of favor-
able outcome, but patients with normal or mildly ele-
vated pulsatile flow levels will often also improve with
shunting, leading to high false negative rates. Of course,
some of the variability in results may be related to the
temporal variability in pulsatility noted above from pres-
sure monitoring studies [22,23,25,77], highlighting a dis-
tinct disadvantage of the MRI technique; because of the
expense, only one point in a dynamically changing pul-
satile system is captured. One unique recent study, in
which aqueductal pulsatility was followed over a two
year period in patients who refused a shunt, in our view
may shed some light on this controversy. Scollato and
colleagues showed that pulsatility can change over time
with the development and progression of the untreated
HC [165]. Aqueductal stroke volume was found to
increase over a period of 1-2 years, but then to decrease
over a similar timeframe (see Figure 14). Thus, it is also
possible that this long-term variability in pulsatility, the
source of which is still unknown, is one of the deter-
rents to accurately predicting shunt outcome using this
particular measure.
An alternative treatment for HC, primarily reserved for

obstructive cases, is endoscopic third ventriculostomy

Figure 14 Temporal changes in aqueductal stroke volume in
unshunted HC patients. Evidence that CSF flow can change over
time with untreated disease may explain the difficulty clinicians
have had using this measure for predicting shunt outcome. In this
study, nine patients who had refused a shunt were followed over
the course of four years (the time axis has been normalized for
each patient, so that 0 months corresponds to the time of the first
reported symptoms). The time at which MRI measurements are
taken may play a critical role in their prognostic use for predicting
shunt outcome. Normal stroke volume may only be indicative of
poor shunt-responsiveness if taken at later time when stroke
volume has decreased, perhaps due to irreversible atrophic changes
in the brain which cannot be remedied with shunting. Normal
stroke volume during the early development stages of the disease,
on the other hand, may simply be an indication that intracranial
compliance has not yet changed sufficiently to affect aqueductal
flow patterns, and shunting may still prove effective in this patient
group (figure reproduced with permission from Scollato et al [165]).
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(ETV). Cine phase-contrast imaging is an important ima-
ging modality for these cases; pulsatile flow through the
stoma is used postoperatively to verify patency [181,182].
A number of publications have surfaced in the last few
years, however, suggesting that ETV may also be an
appropriate treatment in certain communicating cases.
Greitz recently presented a hydrodynamic theory of com-
municating HC, arguing that ETV may be an appropriate
therapy for restoring pulsatile dynamics without shunting
[183]. Unfortunately, there are only a limited number of
case studies which have looked at CSF flow (other than
for stoma patency) before or after ETV. One study, in
which most patients had elevated aqueductal stroke
volume, showed only a small, non-significant decrease in
flow pulsatility after ETV [184]. A more recent study
found no association between ETV success and CSF flow
pulsatility in the basal cisterns or at the cervicomedullary
junction [185]. Thus, at present there is no obvious con-
nection between CSF pulsatility and the success of ETV
surgery.
In summary, the MRI techniques developed within the

last twenty years have proved invaluable for non-inva-
sive assessment of intracranial pulsatility in HC. Studies
have consistently shown that HC is associated with ele-
vated aqueductal flow pulsatility, as well as with changes
in pulsatility in other areas of CSF and vascular flow.
However, the strict association between pulsatile aque-
ductal flow and outcome from shunting remains an
open question. A distinct, and we might even say likely,
possibility is that flow pulsatility represents only a por-
tion of the pathophysiology of the disease and additional
non-invasive measures will need to be combined with
flow measurements in order to adequately predict shunt
responsiveness.

Future directions
With respect to future directions in pulsatility research
and its potential clinical use for both diagnosis and
prediction of outcome, we would suggest that large-
scale clinical trials are needed, with particular attention
paid to uniformity in the definition of pulsatility mea-
sures to be collected and acquisition methods to be
used. In particular with respect to MRI-based measures
of pulsatility, the lingering disagreement in the scienti-
fic community about its usefulness appears to stem
from the lack of consensus on imaging parameters/
methods and data analysis techniques. Given the suc-
cess of invasive pulsatility measurements in clinical
prognosis [77,128,186], studies which can provide a
link between changes in pulse pressure and changes in
non-invasive TCD- or MRI-based measures of pulsati-
lity will be particularly valuable. A careful considera-
tion of pulsatile dynamics may make possible a clearer
definition of when HC is adequately treated, which will

in turn yield new ways to compare the mechanism of
action of shunts, endoscopic fenestrations, and other
therapeutic options such as pharmacological or genetic
interventions, in the future. Consideration of the
mechanisms of how pulsations are generated and
received by brain and neurovascular tissue may also
help us understand and ultimately guide therapy in
headache or other mechanisms which resemble those
encountered in HC.
Given the importance of intracranial compliance in

conditions such as hydrocephalus and traumatic brain
injury, which we have shown is central to the existence
and changes in brain pulsatility, the ability to directly
measure compliance may also play an important role in
clinical decision making. Direct measurement of intra-
cranial compliance, however, is technically difficult and
usually invasive. Recently, Alperin et al have devised
noninvasive methods for inferring intracranial compli-
ance using MRI, based on the relative distribution of
arterial, venous and CSF pulsatility at the craniocervical
junction [115,187]. Such techniques may be the answer
for a noninvasive method of assessing compliance
changes with disease. For example, this technique has
recently been used to demonstrate reduced intracranial
compliance in NPH [188-190].
The studies we have discussed only imply a passive role

for intracranial pulsatility, as an indicator of changes in
brain compliance. More intriguing is the possibility that
intracranial pulsations may play an active role in intracra-
nial fluid dynamics, a hypothesis which has been sug-
gested by a number of investigators [73,74,95,183,
191,192]. By such a hypothesis, changes in the transfer of
arterial pulsations into the surrounding subarachnoid
spaces (e.g., in the basal cisterns) can lead to a redistribu-
tion of intracranial pulsations, with potential pathological
implications if increased pulsatility redistributes to the
capillary microvasculature. Indeed, a number of studies
have documented decreased capillary density and caliper
in experimental HC [193-196], and recent studies have
shown that excessive pulsatile stress forces can change
endothelial cell homeostasis and thus impair capillary
hemodynamics through the potent vasodilator nitric
oxide [197,198]. Whether or not such alterations at the
microvascular level are a result of, as opposed to a cause
of, the HC is still an open question, and is an ongoing
investigation in one of our labs (MEW, unpublished
results). The concept that adequate intracranial manage-
ment of the pulsatile energy of the arterial input by free
movement of CSF has been likened to the need for bal-
ance in net production and absorption of the fluid itself,
even as far as referring to the need for absorbing pulsa-
tions as a “fourth circulation” in the intracranial com-
partment, in homage to the description of the CSF flow
as the “third circulation” [199].
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Conclusions
The fact that everything within the cranial cavity pul-
sates with cardiac periodicity has been well established
and studied over the last fifty years. While there have
been numerous investigations of intracranial pulsatility,
focused both on understanding these pulsations as well
as on their relationship to neurological disease, these
have not yet had a major impact on our approach to
clinical diagnosis or treatment. We have shown a clear
link between intracranial pulsatility and the compliance
of the brain. This link certainly implies an important
diagnostic role for intracranial pulsatility in diseases
involving dramatic changes in the distribution of the
intracranial contents; hence its importance in TBI and
HC. While the search for noninvasive, prognostic tests
utilizing pulsatility information is still underway, inva-
sive monitoring of pulsatility is already being used at a
number of centers and demonstrating its reliable, prog-
nostic potential. Basic and clinical studies using nonin-
vasive techniques have suggested correlations of
pulsatile parameters with outcome, but the critical ques-
tion is whether management decisions, which could not
be made with already available time-independent mea-
sures, can be made on the basis of such analysis.
We have gained a tremendous amount of knowledge

in the last six decades of research into the origins and
significance of intracranial pulsatility in neurological dis-
ease. On the other hand, we are still in the early stages
of the development of clinically useful techniques based
on pulsatility-related measures. The validation of well-
accepted modalities for improving patient outcome,
using invasive and non-invasive modalities, as well as
the formulation and testing of hypotheses regarding the
many interesting pathophysiological questions, will
depend on future technical advances in how we measure
and analyze pulsatility, and our collective investigative
imagination in broadening this field of research.
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