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Abstract

Background: The chemokine CCL2 is a critical mediator of neuroinflammation in diseases such as multiple sclerosis
(MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). CCL2 drives mononuclear cell
infiltration into the central nervous system (CNS), alters expression and distribution of microvascular endothelial
tight junction proteins, and disrupts the blood–brain and blood-spinal cord barriers. Immunohistochemistry has
consistently revealed astrocytes to be a source of this chemokine during neuroinflammation, while providing less
uniform evidence that CNS endothelial cells may also express CCL2. Moreover, the relative contributions of these
cell types to the CNS pool of CCL2 during MS/EAE are unclear and the aim of this study was to investigate this
further.

Methods: CCL2 gene expression was determined by qRT-PCR in different populations of CNS cells at different times
following EAE induced by immunization with MOG35–55 peptide and adjuvants, or after injection with adjuvants
alone. CNS cells types were isolated by two different protocols: bulk isolation to yield crude microvascular and
parenchymal fractions (containing astrocytes, other glia, and neurons), or laser capture microdissection (LCM) to
acquire more precisely microvascular endothelial cells, astrocytes or other parenchymal cells.

Results: Both CNS microvessel and parenchymal populations prepared by crude bulk isolation showed up-regulation
of CCL2 mRNA following MOG immunization or injection of adjuvants alone. More exact dissection by LCM revealed
microvascular endothelial cells and astrocytes to be the specific sources of CCL2 gene induction
following MOG immunization, while only astrocytes showed elevated CCL2 mRNA in response to just adjuvants.
Astrocytes displayed the greatest degree of stimulation of CCL2 gene expression following EAE induction.

Conclusions: High-precision LCM affirmed both microvascular endothelial cells and astrocytes as the major CNS
sources of CCL2 gene expression during EAE. Given the high accessibility of the CNS microvascular endothelium,
endothelial-derived CCL2 could prove a viable target for therapeutic intervention in neuroinflammatory disease.
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Background
Numerous human and animal studies have highlighted
the chemokine CCL2 (formerly known as MCP-1 [1]) as a
critical mediator of the neuroinflammatory disease mul-
tiple sclerosis (MS) and its animal model experimental
autoimmune encephalomyelitis (EAE) [2-4]. While long
recognized for its chemotactic properties in guiding
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leukocyte migration, CCL2 has also been shown to
destabilize tight junctions between microvascular endo-
thelial cells that comprise the blood–brain and blood-
spinal cord barriers [5-8]. This multifunctional status un-
derscores CCL2’s value as a potential therapeutic target.
However, for therapeutic measures to be most effective
the sources of CCL2 in the central nervous system (CNS)
have to be defined and the timing of CCL2 expression
during neuroinflammation elaborated. While astrocytes
are widely recognized in reviews as a major CNS source
of CCL2 during MS and EAE, brain microvascular
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endothelial cells (BMEC) have received only limited ac-
knowledgement for expressing this chemokine [9-11].
The scarce recognition of BMEC as a critical CCL2
source in situ may, in part, stem from the routine use
of conventional immunohistochemistry to confirm ex-
pression. This technique may not be sufficiently sensi-
tive to detect reliably perhaps smaller, vesicular quanta
of endothelial CCL2 [12]. The use of adjuvants to in-
duce EAE, e.g., Complete Freund’s Adjuvant (CFA) and
pertussis toxin (PTX), can affect CCL2 expression in
some endothelial cell types [13,14], and might further
contribute to ambiguity of BMEC-derived CCL2 during
neuroinflammatory disease. Previous reports have not
examined the adjuvant issue. The status of BMEC
CCL2 gene expression in neuroinflammation thus re-
mains equivocal.
Herein, we report use of two highly-sensitive, qRT-PCR-

based approaches to clarify the relative contributions of
the parenchymal and vascular compartments to CNS
CCL2 gene expression during the evolution of EAE in-
duced by immunization with myelin oligodendrocyte
glycoprotein (MOG) peptide35–55 along with adjuvants.
One approach used a crude separation of CNS parenchy-
mal and microvessel fractions, based on a common pre-
parative method from homogenized CNS tissue. The
other employed the laser capture microdissection (LCM),
to more precisely retrieve separate BMECs, astrocytes and
other parenchymal cell types. Additionally, we assessed
CCL2 expression levels following MOG immunization as
well as after injection of these adjuvants alone, to highlight
the effects due to MOG immunoreactivity.

Material and methods
Animals
Female C57BL/6 mice, age 8–10 weeks were obtained from
Charles River Laboratories, Inc. (Wilmington, MA, USA)
and were euthanized by CO2 inhalation, following Animal
Care and Use Guidelines of the University of Connecticut
Health Center (Animal Welfare Assurance # A3471- 01).
All the experimental procedures conducted have been ap-
proved under IACUC protocol #100346-1214.

EAE induction
Mice were immunized with MOG35–55 peptide (MEVG-
WYRSPFSRVVHLYRNGK; W. M. Keck Biotechnology
Resource Center, Yale University) as detailed previously
[14]. Briefly, on day 0 (D0), female mice 7–9 weeks of
age were injected subcutaneously with 300 μg of MOG
peptide in Complete Freund’s Adjuvant (CFA) (DIFCO,
Detroit, MI, USA) containing 1 mg/ml Mycobacterium
tuberculosis. Mice were also injected intraperitoneally
with 200 ng pertussis toxin (List Laboratories, Campbell
CA, USA) in phosphate buffered saline (PBS) on D0 and
D2 following MOG immunization. Mean clinical scores
were calculated as the animals were monitored for clinical
disease severity using the following: 0 = normal; 1 = tail
limpness; 2 = limp tail and weak-ness of hind legs; 3 = limp
tail and complete paralysis of hind legs; 4 = limp tail,
complete hind leg and partial front leg paralysis; and
5 = death. The time-points selected for analysis, D9,
D15 and D23, represent early EAE (score 0–0.5), acute
EAE (score 2–2.5) and chronic EAE (score 2.5-3.5),
respectively.

Bulk isolation of parenchymal and microvessel fractions
Bulk isolations were prepared from each naïve, control
and EAE group at all the time-points assessed, n = 3
mice for each group and time point. Separate parenchy-
mal and microvessel fractions were obtained in bulk
from freshly-dissected brain and spinal cord using a
modification of previously described methods [15]. After
removal of meninges and large blood vessels, one half of
the brain and spinal cord tissue was homogenized in ice-
cold PBS using a 7 mL Dounce tissue grinder (Kimble/
Kontes, Vineland, NJ, USA). Brain and spinal cord tissue
were combined for bulk isolation of parenchymal and
microvessel fractions, in keeping with other reports detail-
ing CNS CCL2 expression during EAE [16-18]. The other
half spinal cord tissue was snap-frozen in dry ice-cooled
2-methylbutane (Acros; Geel, Belgium), and stored at
− 80°C until used for LCM. The bulk homogenate was cen-
trifuged at 400 × g for 15 min, and the resulting pellet re-
suspended in 18% (w/v) dextran (mwr 60,000 – 90,000)
and centrifuged at 4,500 × g for 10 min to sediment the
crude “microvessel” fraction. The dextran supernatant and
floating layer of myelinated axons were collected together
to generate the crude “parenchymal” fraction and diluted
in PBS; microvessels were resuspended in PBS and both
fractions were washed twice by sedimentation at 720 × g
for 10 min and rinsed in PBS. Microvessels were washed of
blood cells by filtering through a 40 μm cell strainer
(Becton Dickinson Labware, Franklin Lakes, IN, USA) and
eluting with PBS. This procedure eliminated a significant
fraction of the smaller capillaries, which passed through in
the filtrate, while retaining the vast portion of larger ve-
nules on the filter [19]. The filter-bound microvessels were
then solubilized with lysis buffer from the RNeasy Mini kit
(QIAGEN, Valencia, CA, USA).

Laser capture microdissection (LCM) of parenchyma,
astrocytes and BMEC
Frozen spinal cords were embedded in cryomatrix com-
pound (Thermo Fisher Scientific, Waltham, MA, USA), and
7 μm-thick frozen sections obtained. Immunohistoche
mstry-guided LCM was performed using a PixCell IIe laser
capture microscope (Life Technologies Inc., Foster City, CA,
USA), as previously described by this laboratory [20]. Signifi-
cantly, this LCM approach has been shown to yield highly
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purified populations of microvascular endothelial cells and
astrocytes, respectively. Tissue was captured from within
the dorsolateral columns along the entire length of the
spinal cord, as pathology in this EAE model proceeds up the
CNS axis in a caudal-to-rostral direction [21], with lesions
prominent in the spinal white matter. Briefly, anti-CD31
was used to label endothelial cells, along with alkaline phos-
phatase detection employing NBT-BCIP as chromogenic
substrate. The endothelial cells of venules (10–50 μm in
diameter) were specifically acquired [22] as these micro-
vascular tributaries are the preferred sites of leukocyte ex-
travasation [23], and were thus reasoned to have the highest
CCL2 expression. This further allowed for a more equitable
comparison with the bulk-isolated microvessels, which were
enriched in venules. Anti-GFAP immunofluorescence was
carried out to identify astrocytes in the same tissue sections.
Areas of “other” parenchymal cells selected for LCM were
those that did not stain with CD31 or GFAP, and thus
contained neurons, oligodendrocytes and/or microglia.
LCM tissue was solubilized in Cell Lysis Buffer® (Signosis;
Sunnyvale, CA, USA).

RNA isolation, cDNA synthesis and qRT-PCR
Total RNA was isolated from bulk microvessel and paren-
chymal fractions using the RNeasy Mini kit (QIAGEN), and
CFA/PTX
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Figure 1 CCL2 gene expression in CNS microvessel and parenchymal
(A, C) and parenchymal (B, D) fractions were prepared by bulk isolation fro
PTX (A, B) or immunized with MOG-CFA/PTX (C, D). Analyses were perform
and relative CCL2 mRNA levels are plotted on a log scale. Comparisons we
been presented as mean +/− SEM. For each experiment, bulk isolations we
(CFA/PTX) and EAE (MOG-CFA/PTX) group, and experiments were conduct
treated with Turbo DNAse (Ambion, Austin, TX, USA).
cDNA was generated using SuperScript III (Invitrogen,
Carlsbad, CA, USA) and relative CCL2 RNA level deter-
mined by qRT-PCR using SYBR green (AB Applied Biosys-
tems, Foster City, CA, USA) as described previously [24].
LCM tissue was subjected to DNAse treatment using Turbo
DNAse followed by reverse transcription, using SuperScript
III. LCM-derived cDNA was then pre-amplified using Taq-
Man PreAmp Master Mix and a PreAmp Pool containing
all primers for detection by the Mouse Immune Panel Taq-
Man Low Density Array (TLDA; Life Technologies Corp.,
Foster City, CA, USA) and probed for CCL2 by qRT-PCR
using a single-plex gene expression assay [14]. An ABI
7900HT fast real-time PCR System (Life Technologies
Corp.) was used to detect amplicon amount for both bulk
and LCM preparations. RPL-19 was used as a reference for
relative CCL2 gene expression for bulk isolation as detailed
previously [24] and GAPDH for LCM preparation [14], both
genes having been shown to be largely invariant during
EAE. Relative quantitation was performed using the 2-[Δ]
[Δ] Ct method of Fleige et al. [25]. Results were ana-
lyzed using a one-way non-parametric Kruskal-Wallis
test followed by Dunn’s post-test analysis using Graph-
Pad Prism 5 (GraphPad, La Jolla, CA, USA). Results
were considered significant at P ≤ 0.05.
MOG- CFA/PTX
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m combined brain and spinal cord tissue of mice injected with CFA/
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Results and discussion
CCL2 expression levels were first evaluated in separate
parenchymal and microvessel fractions prepared by bulk
isolation from brain and spinal cord tissue of either MOG-
CFA/PTX-treated (EAE) or CFA/PTX-treated (Control)
mice. Analysis was performed at different days after initial
injection, which represented onset (D9), peak (D16) and
chronic (D23) phases of clinical EAE disease (Figure 1). As
determined by qRT-PCR, relative expression of CCL2 by
microvessels was significantly higher in both treatment
groups (CFA/PTX and MOG-CFA/PTX) compared to
naïve animals at D9 and D16, with a return to naïve level
by D23 (Figure 1A, C). The parenchymal fraction showed
a similar trend of significantly increased CCL2 expression
in both treatment groups compared to naïve animals at D9
and D16 (Figure 1B, D).
Next, we performed a time-course analysis with CNS tis-

sue that was more precisely dissected into endothelial cells
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Figure 2 CCL2 gene expression in CNS microvascular endothelial cells
Endothelial cells (A, D), astrocytes (B, E), and other parenchymal cells (C, F
injected with CFA/PTX (A-C) or immunized with MOG-CFA/PTX (D-F). Anal
regime and relative CCL2 mRNA levels are plotted on a log scale. Comparis
Data has been presented as mean +/− SEM. For each experiment, LCM wa
control (CFA/PTX) and EAE (MOG-CFA/PTX) group.
(CD31), astrocytes (GFAP) and “other” parenchymal cells
(selected areas devoid of CD31 and GFAP immunostaining)
by LCM. As was the case with bulk preparation of micro-
vessels, endothelial cells showed elevated CCL2 expression
in MOG-CFA/PTX-treated mice at D16 compared to naïve
mice (Figure 2D). However, corresponding endothelial sam-
ples from CFA/PTX-treated mice did not show a similar in-
crease (Figure 2A). Astrocytes exhibited significantly
elevated CCL2 expression at both D9 and D16 in the
MOG-CFA/PTX-treated group (Figure 2E), and a significant
increase at D9 in the CFA/PTX-treated cohort (Figure 2B).
In contrast to that observed with the bulk parenchymal
preparations, other parenchymal cells isolated by LCM
failed to display an increase in CCL2 expression either in
MOG-CFA/PTX-treated (Figure 2F) or CFA/PTX-treated
(Figure 2C) mice compared to naïve mice at any time-point.
These findings underscore several points. Expression of
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endothelial cell populations in the MOG-induced EAE
paradigm. The fact that CCL2 mRNA level appeared
higher in endothelial cells than in astrocytes in naïve mice
may reflect the capture of some circulating leukocytes
along with endothelial cells, as the mice were not perfused
prior to LCM. Interestingly, while CFA/PTX injection re-
sulted in elevated CCL2 expression in isolated microves-
sels, it did not do so in LCM-acquired endothelial cells.
This suggests that sources other than endothelial cells
contributed to the altered CCL2 mRNA level in the bulk
microvessel fraction. As astrocytes lie in close proximity
to endothelial cells within the neurovascular unit (NVU)
[26,27] and can contaminate microvessel preparations
[28,29], a priori these particular glial cells may be a signifi-
cant source of CCL2 mRNA detected in bulk-isolated
microvessels. This caveat reinforces LCM as a critical
technology to resolve more effectively sources of gene ex-
pression in situ.
Our LCM results further suggest astrocytes are the pre-

eminent parenchymal sources of induced CCL2 gene ex-
pression during EAE, since the other parenchymal cells
acquired by this technique showed no significant stimula-
tion of CCL2 mRNA. As increased immunostaining of
CCL2 in microglia has been reported in EAE [30], this
may represent up-regulation at the protein rather than the
RNA level. It may also be that the percentage contribution
of microglia in the other parenchymal cells acquired by
LCM, was not high enough to show overall elevation of
CCL2 gene expression in these samples from diseased
mice. CCL2 mRNA detected in other parenchymal cells
from naïve mice could possibly also reflect a low level of
constitutive CCL2 expression by neurons [31].
Lastly, CFA/PTX alone can stimulate CCL2 expression in

astrocytes (Figure 2B), possibly providing a priming func-
tion for supernumerary stimulation due to MOG effects
(Figure 2E). This is consistent with reports that peripheral
inflammation induced by CFA or Mycobacterium resulted
in CNS glial activation [32,33]. Previous results from this la-
boratory indicated CFA/PTX injection also up-regulated
expression of CCL2 by choroid plexus capillary endothelial
cells. Thus, it is imperative that any measure of gene ex-
pression following the typical MOG immunization protocol
be compared to effects seen after injection of CFA/PTX
alone, to discern what gene changes are associated specific-
ally with MOG-induced pathogenesis.
These results reinforce the CNS microvascular endothe-

lium as a significant source of CCL2 [9,10,12], as well as
spotlight LCM as a critical tool for the selective enrich-
ment of vascular or other CNS cell types for gene expres-
sion studies [14,20,22]. Moreover, given the microvascular
endothelium is highly accessible from the circulation as
compared to the astrocyte population which lies behind
the BBB and BSCB, endothelial-derived CCL2 may be a
“druggable” target in neuroinflammatory disease [24,34].
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