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Abstract

immunoassay (ELISA).

0.80 ng/ml).

Background: Aquaporin-4 (AQP4) is a water channel mainly located in the ventricular ependymal cells (brain-CSF
barrier), the sub-ependymal glia, glia limitans and in end-feet of astrocytes in at the blood—brain barrier (BBB).

Methods: In the present work, the expression of AQP4 in the cerebrospinal fluid (CSF) in control and congenital
human hydrocephalus infants (obstructive and communicating), was analysed by Western-blot and enzyme

Results: AQP4 was found to be high compared to the control in the CSF in congenital hydrocephalus patients.
Western-blot showed higher values for AQP4 than controls in communicating hydrocephalus (communicating:
38.3%, control: 6.9% p < 0.05) although the increase was not significant in obstructive hydrocephalus (obstructive:
14.7%). The AQP4 quantification by ELISA also showed that, the mean concentration of AQP4 in CSF was
significantly higher in communicating hydrocephalus (communicating: 11.32 + 0.69 ng/ml, control: 861 +

0.31 ng/ml; p < 0.05). However, there was no increase over control in obstructive hydrocephalus (obstructive: 8.65 +

Conclusions: AQP4 has a modulatory effect on ependyma stability and acts in CSF production and reabsorption.
Therefore, the increase of AQP4 in the CSF in congenital hydrocephalus could be due to the fact that AQP4 passes
from the parenchyma to the CSF and this AQP4 movement may be a consequence of ependyma denudation.
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Introduction

Aquaporin-4 (AQP4) is the principal water channel of
the central nervous system [1,2] which is located in the
pia mater, the glial limiting border of the cortical sur-
face, the glial end-feet of the subependymal ventricular
layer, the basolateral membrane of the ventricular epen-
dyma, the astrocytic end-feet at cerebral blood vessels
[1-3]. This specific distribution of AQP4 suggests that it
plays a crucial role in water transport at brain—cerebro-
spinal fluid (CSF) and brain— blood barriers [4,5].
Hydrocephalus is a central nervous system disorder as-
sociated with defective CSF turnover, and AQP4 is a
water channel located in the areas described above asso-
ciated with the elimination of cerebral edema [3,6].
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Many studies report that there is an up-regulation of
AQP4 in animal hydrocephalus models which suggest
that this up-regulation may be due to a compensatory
effect of hydrocephalus [7-9]. However, this fact has
never been verified in human hydrocephalus. Neverthe-
less, recent studies support the hypothesis that AQP4
participates in the development and integrity of epen-
dyma although the underlying mechanisms have not
been clarified [10]. Furthermore, AQP4 is located in the
proximity of connexin-43 (Cx43) which is the main
component of the gap junctions between ependymal
cells [11-14]. Subsequently, authors have reported that
AQP4 KO mice presented a significant reduction in the
expression of Cx43, a disruption of the gap-junctions in
ependymal cells and ependymal disturbance [10]. In
addition, AQP4 is functionally linked to Cx43 not only
in in vitro conditions but also in in vivo [10]. Moreover,
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the abnormal expression of Cx43 could produce epen-
dymal denudation and affect CSF flow [15,16].

Therefore, AQP4 could participate in the physiopa-
thology of the water channels in CSF production, in the
adequate formation of the gap-junctions and conse-
quently in the ependyma denudation during ventricular
dilation. The aim of the present work is to examine the
expression of AQP4 in the CSF in patients with congeni-
tal obstructive and communicating hydrocephalus.

Methods

Patients and samples

Samples of CSF were taken from the lateral ventricle
during first five days of life of thirteen term-pregnancy
infants: nine with communicating hydrocephalus and
four with obstructive hydrocephalus. Samples of CSF
were taken by lumbar puncture at 1, 1, 3, 7 days of age
from four control patients with suspected meningitis or
encephalitis (Tables 1 and 2). The CSF samples were
obtained at the University Hospital of the Canary
Islands (La Laguna, Tenerife) and were kept in the
Department of Anatomy at the University of La Laguna.
CSF samples were collected over the last ten years,
centrifuged at 2500 rpm to remove cells and stored
at —80°C. One of the samples was excluded due to blood
contamination. Parents had given verbal informed con-
sent. The medical ethical committee of the University of
La Laguna and the University Hospital of the Canary
Islands approved the study. The CSF was always ex-
tracted for diagnostic and / or therapeutic motives.
The diagnosis of the hydrocephalus was determined by
ultrasound methods during pregnancy and not con-
trolled by pelvicephalometry just before birth. The
type of the hydrocephalus was established by ultra-
sound methods: tetraventricular hydrocephalus of un-
known origin was considered to be communicating
hydrocephalus; Dandy-Walker syndrome and Sylvian
aqueduct obstruction were considered to be obstruct-
ive hydrocephalus (Tables 1, 2).
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Western blot analysis

Western blots were performed on the CSF of four com-
municating hydrocephalus, three obstructive hydroceph-
alus samples and two control samples. Analysis was
performed in triplicate on 35 pl of CSFE. Proteins were
denatured in a SDS-containing sample buffer (100 mM
Tris—HCl pH 6.8, 4% SDS, 2% bromophenol blue, 20%
glycerol) and reduced using -mercaptoethanol. Samples
were heated to 95°C for 5 min and run on a SDS-PAGE
gel (10% polyacrylamide) for 2 h at 80 V and the pro-
teins were then blotted to a PVDF membrane (Millipore,
USA) at 400 mA for 2 h in blotting buffer (39 mM gly-
cine, 48 mM tris-base pH 8.3, 0.037% SDS, 20% metha-
nol). After 1 h blocking (Tris buffer saline-3% BSA),
samples were incubated with target antibody at a dilu-
tion of 1:1000 for AQP4 (Sigma-Aldrich, USA) in
blocking buffer at 4°C overnight. Detection was
performed by enhanced chemiluminescence (Amersham
Biosciences, UK) after an hour’s incubation with horse-
radish peroxidase-conjugated anti-rabbit 1:20,000 (Jack-
son, USA). The primary antibody was omitted to control
for the method specificity.

Densitometric analysis was completed in Image J (v.
1.43 u, NIH, Bethesda, MD, USA). The 'Mean Gray
Value' was measured on all Western-blot samples. This
value gives the average stain intensity in greyscale units
for all threshold pixels. The data for triplicate samples
were averaged. A non-parametric Kruskal-Wallis test
was used for data comparison between the control and
hydrocephalus groups, which was conducted using the
IBM SPSS statistic 19 software where data were consid-
ered as statistically significant at p < 0.05.

ELISA assays

In order to give a more accurate quantification of the
AQP4 in the CSF of hydrocephalus and control patients,
seven additional samples were added to those used for
Western blot (Table 2); four communicating hydroceph-
alus (J,H,M,P), one obstructive hydrocephalus (L) and

Table 1 Aquaporin-4 in CSF from nine term infants measured by Western-blot

Patient diagnosis Western-blot analysis (grey scale units%) Age (days) Gender
COM(A) 41.65 1-5 M
OBS SAO(B) 1.92 1-5 M
COM(@Q) 34.38 1-5 M
CONT(D) 6.75 1 F
COM(E) 1037 1-5 M
CONT(F) 724 1 M
OBS SAO(G) 2124 1-5 F
OBS SAO(H) 21.20 1-5 M
COM() 73.07 1-5 M

COM communicating hydrocephalus, OBS SAO obstructive hydrocephalus (Sylvian aqueduct), CONT control. Patients A,CE, and | = communicating hydrocephalus
(tetraventricular hydrocephalus of unknown origin); B, G and H = obstructive hydrocephalus (Sylvian aqueduct obstruction); D and F = control.
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Table 2 Aquaporin-4 in CSF from fifteen term infants measured by enzyme-linked immunoassay (ELISA)
Patient Diagnosis AQP4 ELISA analysis (ng/ml) Age (days) Gender
COM(A) 11.41 1-5 M
OBS SAO(B) 731 1-5 M
COM(©) 11.24 1-5 M
CONT(D) 8.26 1 F
COM(E) 9.22 1-5 M
CONT(F) 8.66 1 M
OBS SAO(G) 9.06 1-5 F
OBS SAO(H) 10.75 1-5 M
COM()) 1215 1-5 M
COM(J) 9.70 1-5 F
COM(K) 14.82 1-5 F
OBS DW(L) 747 1-5 M
COM(M) 10.67 1-5 M
CONT(N) 9.46 3 M
CONT(O) 8.06 7 M
COM(P) 9.71 1-5 F

COM communicating hydrocephalus, OBS SAO obstructive hydrocephalus (Sylvian aqueduct) OBS DW obstructive hydrocephalus (Dandy Walker), CONT control.
Patients A,CE,l,JKM and P = communicating hydrocephalus (tetraventricular hydrocephalus of unknown origin); B, G, and H = obstructive hydrocephalus (Sylvian
aqueduct obstruction); L = obstructive hydrocephalus (Dandy-Walker Syndrome) D,F,N and O = control.

two control samples (N,0). A commercial enzyme im-
munoassay (ELISA) was performed (USCN life Science
Inc., Wuhan, China) according to the manufacturer’s in-
structions. Briefly, micro titer plates precoated with
AQP4-antibodies were filled with diluted AQP4 standard
such as 40 ng/mL, 20 ng/mL, 10 ng/mL, 5 ng/mL, 2.5 ng/
mL, 1.25 ng/mL, 0.625 ng/mL. Samples diluted 1:20, were
incubated for 2 h at 37°C. After removing the samples
and standard, a biotin-conjugated polyclonal antibody
preparation specific to AQP4 was added and the plates
were incubated for 1 h. After washing cycles, the plates
were incubated with avidin conjugated to horseradish
peroxidase for 1 h at 37°C. After washing cycles, 3.3'5.5-
tetramethylbenzidine (TMB) was added and incubated at
37°C for 20 min. The enzyme-substrate reaction was
terminated with H2SO4. The optical density was mea-
sured immediately at 450 nm. According to the manu-
facturer, no significant cross-reactivity or interference
between human AQP4 and other AQP analogues was
observed. The non-parametric Kruskal-Wallis test was
used for data comparison between the control and
hydrocephalus groups. Data were considered as statisti-
cally significant at p < 0.05 which was conducted using
the IBM SPSS statistics 19 software.

Results

The Western blots showed only one AQP4 band of 34
KDa in all samples. The mean grey value in CSF was
higher in both types of hydrocephalus; obstructive (14.7%
mean grey value) and communicating hydrocephalus

(38.3% mean grey value) when compared to the control
CSF (6.9% mean grey value) (Figure 1A, B, Table 1). The
increase over control was significant for communicating
hydrocephalus only, p < 0.05.

ELISA also, showed (Figure 2 A and Table 1) that
AQP4 was also greater in communicating hydrocephalus

A WB-CSF

- QJ 34 kDa

A B C D E F G H |

60.0

- [ICONT
50.0 EmO0BS
EmCOM

40.0
30.0

20.0

Mean grey value

10.0
0

Figure 1 Western blot for aquaporin-4 for nine CSF samples
from control (CONT, n =2), obstructive hydrocephalus (OBS,

n =3) and communicating hydrocephalus (COM, n =4) in one
to five day old term-pregnancy infants; B: Histogram of mean
grey value obtained by densitometry of aquaporin-4 by
Western blot analysis of the CSF. * is significantly different from
control and obstructive hydrocephalus, p < 0.05. Patients A,CE, and

| = communicating hydrocephalus (tetraventricular hydrocephalus of
unknown origin); B, G and H = obstructive hydrocephalus (Sylvian
aqueduct obstruction); D and F = control.
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Figure 2 Histogram of aquaporin-4 in CSF measured by ELISA
in control infants (CONT, n = 4), infants with obstructive
hydrocephalus (OBS, n=4) and communicating hydrocephalus
(COM, n =8). * is significantly different from control and obstructive
hydrocephalus, p < 0.05.

when compared to the control (x% =7.14 p <0,05) and
when compared to obstructive hydrocephalus (x% = 4.32
p <0.05). The average concentration of the controls was
8.61+0.31 ng/ml, of obstructive hydrocephalus was
8.65 £ 0.80 ng/ml and of communicating hydrocephalus
was 11.32 + 0.69 ng/ml.

Discussion

Aquaporins (AQPs) are membrane proteins that facili-
tate water and small solute movement in tissues. Hydro-
cephalus is the main central nervous system disorder
associated with defective CSF turnover [3,6]. Aquaporin-
4 (AQP4) is a water channel mainly located at the
blood—brain barrier (BBB) and is associated with the
elimination of cerebral edema via this route [3]. AQP4
levels are significantly altered in kaolin-induced hydro-
cephalus, suggesting that AQP4 could play an important
neurodefensive role in hydrocephalus and CSF disorders
[17,18]. Biphasic AQP1 expression in the choroid plexus
with increased AQPs 1 and 4 at the brain-fluid interfaces
may indicate compensatory mechanisms to regulate
choroidal CSF secretion and increase parenchymal fluid
absorption in high-pressure hydrocephalus [19].

A study [20] detecting AQP1 and AQP4 in CSF deter-
mined that the mean concentration of AQP1 in CSF was
significantly higher in patients with bacterial meningitis
(BM), AQP4 was also greater but not significantly so [20].
One can see that most of these studies, in hydrocephalus
cases, used animal models (AQP4-knockout mice, H-Tx
rats, and kaolin and L-a-lysophosphatidylcholine stearoyl-
injection models of hydrocephalus), which indicate that
there is an up-regulation of AQP4 expression at the BBB
interface. Only one study reported sporadic cases of ob-
structive hydrocephalus in a subgroup of AQP4-knockout
mice [3]. But few publications have studied the association
between aquaporins and congenital hydrocephalus.
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Therefore, all existing studies using animal models
propose an adaptive and protective role of AQP4 to re-
solve hydrocephalic edema at the brain barriers in the
pathophysiology of hydrocephalus [3].

Thus, despite their inherent relationship in the pro-
cesses of water transport in the previously mentioned
conditions (edema reabsorption, meningitis, hydroceph-
alus), AQP4, by means of connexin-43 (Cx43) regula-
tion, is also a modulator of the formation and
development of the gap junctions in the ependymal
basolateral membrane and astrocyte feet. It has been
reported that knockdown and knockout AQP4 mice
downregulate the expression of Cx43 in different in vitro
studies [10,21,22]. Furthermore, AQP4 not only regu-
lates the expression of Cx43, but also secondarily inter-
venes in the ependyma denudation, given that the
decrease of gap junctions, in which Cx43 is the main
protein [15,16].

The CSF protein concentration is compartmental re-
lated, thus in the lumbar compartment the protein con-
centration is higher than in the ventricular compartment
[23]. Despite that, in results presented here the AQP4
was increased in the CSF of the hydrocephalus samples
taken from the lateral ventricle compared to control
CSF taken from lumbar puncture. This increase in CSF
AQP4 in hydrocephalus may occur as a consequence of
the loss of communication between ependymal cells and
subsequent denudation of ependyma, when AQP4 would
pass into the CSF. This ependymal loss is accompanied
by a microglial and astroglial cell reaction; the
subependymal astroglial cells respond by proliferation in
such a way that they form a glial scar-like covering of
the ventricular surface to replace the ependyma [24,25].
At that time, if cellular death or disruption occurs, the
AQP4 could be in contact with the ventricular lumen
and may pass into the CSF. Furthermore, the occurrence
of various stages of ependymal denudation within full-
term spina bifida aperta (SBA) fetuses, suggests that
there may be continuation of the process after birth and
that cases of communicating hydrocephalus could soon
develop into non-communicating hydrocephalus [16].
Therefore, the increase of CSF AQP4 may be a conse-
quence of the ependymal denudation and the level of
AQP4 in the CSF could be an indicator of the ependyma
status and the hydrocephalus stage.

Conclusion

We have shown that the AQP4 concentration is higher
in the CSF of communicating hydrocephalus infants
than in the CSF of non-communicating hydrocephalus
patients or controls. It is possible that AQP4 may freely
leak from the parenchyma to the CSF during the early
stages, when ependymal denudation is occurring and the
hydrocephalus remains communicating. The leaking of
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AQP4 to the CSF may decrease as a glial scar-like layer
covers the ventricular surface and subsequent stenosis
and obstruction occurs.
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