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Abstract

Background: Alzheimer's disease (AD) is characterized by the deposition of beta-amyloid (AB)
peptides in the brain extracellular matrix, resulting in pathological changes and neurobehavioral
deficits. Previous work from this laboratory demonstrated that the choroid plexus (CP) possesses
the capacity to remove AP from the cerebrospinal fluid (CSF), and exposure to lead (Pb)
compromises this function. Since metalloendopeptidase insulin-degrading enzyme (IDE), has been
implicated in the metabolism of A3, we sought to investigate whether accumulation of A following
Pb exposure was due to the effect of Pb on IDE.

Methods: Rats were injected with a single dose of Pb acetate or an equivalent concentration of
Na-acetate; CP tissues were processed to detect the location of IDE by immunohistochemistry.
For in vitro studies, choroidal epithelial Z310 cells were treated with Pb for 24 h in the presence or
absence of a known IDE inhibitor, N-ethylmaleimide (NEM) to assess IDE enzymatic activity and
subsequent metabolic clearance of Af. Additionally, the expression of IDE mRNA and protein
were determined using real time PCR and western blots respectively.

Results: Immunohistochemistry and confocal imaging revealed the presence of IDE towards the
apical surface of the CP tissue with no visible alteration in either its intensity or location following
Pb exposure. There was no significant difference in the expressions of either IDE mRNA or protein
following Pb exposure compared to controls either in CP tissues or in Z310 cells. However, our
findings revealed a significant decrease in the IDE activity following Pb exposure; this inhibition was
similar to that seen in the cells treated with NEM alone. Interestingly, treatment with Pb or NEM
alone significantly increased the levels of intracellular AP, and a greater accumulation of Af was
seen when the cells were exposed to a combination of both.

Conclusion: These data suggest that Pb exposure inhibits IDE activity but does not affect its
expression in the CP. This, in turn, leads to a disrupted metabolism of AP resulting in its
accumulation at the blood-CSF barrier.
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Background

Studies in literature have shown that more than 90% of
Alzheimer's disease (AD) cases are sporadic in nature [1],
suggesting the involvement of environmental triggers in
addition to genetic mutations. Amongst occupational and
environmental factors, exposure to toxic metal lead (Pb)
has been associated with severe memory deficits and AD-
like pathology as indicated by studies on Pb-exposed
workers [2,3]. The deleterious effects of Pb were docu-
mented as early as in 1975, when a patient who survived
severe Pb encephalopathy at 2 years of age, died of severe
mental deterioration at the age of 42; neurofibrillary tan-
gles and senile plaques, two hallmarks of AD pathology,
were detected in his forebrain with significant hippocam-
pal degeneration [4]. Other evidence linking Pb exposure
and memory deficits stems from recent studies conducted
on cohorts of workers who have been occupationally
exposed to Pb. When their brains were examined by mag-
netic resonance imaging (MRI), extensive brain atrophy
was seen in the cortical, hippocampal and ventricular
regions that is typical of AD patients. The brain atrophy
and neurobehavioral deficits in these workers appeared to
persist several years post Pb exposure and correlate with a
high tibia Pb concentration, a marker often used to esti-
mate cumulative Pb exposure [2,3,5-7]. In animal models,
developmental exposure to Pb has been associated with
an early transient and delayed over-expression of amyloid
precursor protein (APP) and its amyloidogenic product,
B-amyloid (AB) [8]. These studies and others [9,10], pro-
vide evidence to support a linkage between Pb exposure
and the pathogenesis of AD.

One of the target regions in the brain where Pb has shown
to accumulate substantially is the choroid plexus (CP), a
tissue lining the brain ventricles and separating the blood
from the CSF. This finding is supported by evidence from
an autopsy study which showed an age-related accumula-
tion of Pb in the CP of the brains of 51 human subjects
who had lived in New York City [11]. This observation
was later confirmed by another independent human
autopsy study revealing a 100-fold increase of Pb in the
CP compared with the brain cortex [12]. These findings
were corroborated by studies in rodents demonstrating a
dose-dependent and time-related accumulation of Pb in
the CP at concentrations 57 and 70 fold greater than the
brain cortex and CSF, respectively [13,14].

Recent studies from this laboratory have demonstrated
that Pb accumulation in the CP results in a marked
increase of Ap within the tissue [15]. Since the CP plays a
significant role in AP transport and clearance from the CSF
[16], the objective of this study was to investigate the
mechanism by which Pb interferes with the metabolic
clearance of AP, specifically its degradation by insulin-
degrading enzyme (IDE).
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IDE, a 110-KD zinc metallopeptidase, is known to partic-
ipate extensively in the clearance of insulin, glucagon and
AB [17-21]. The common physicochemical characteristics
shared by IDE substrates include hydrophobicity and the
substrate's ability to aggregate readily to form fibrils
[18,22,23]. IDE is known to be present in the cytosol, per-
oxisomes as well as in the mitochondria of neuronal and
non-neuronal cells in the brain [24-26]. It has also been
detected in the human CSF of both normal and Alzheimer
subjects [20,21,27]. Noticeably, a decrease in IDE has
been associated with impaired neuronal regulation of AP
as well as deficits in spatial memory in both rats and AD
patients [28-31]. Other studies involving genetic deletions
of IDE in mice have shown a significant elevation in both,
brain AB and plasma insulin [25,32]. Interestingly, an up-
regulation of IDE in neurons has been shown to prevent
against AD-like pathology in transgenic mice which over-
express APP [25,33]. Recently, IDE has been identified in
the CP by our group, although its exact role in AR meta-
bolic clearance remains unclear [34].

Considering the substantial accumulation of Pb and the
abundant presence of IDE in the CP, there was sound rea-
son to hypothesize that accumulation of Pb may alter the
enzymatic activity or expression levels of IDE in the CP,
leading to alterations in A metabolism at the blood-CSF
barrier (BCB). Thus, the purpose of this study was to (1)
identify the subcellular location of IDE in the CP, (2)
determine whether Pb exposure in vivo affected the subcel-
lular distribution of IDE, (3) investigate whether Pb expo-
sure altered the IDE activity and/or the expression of
mRNA or protein levels in the CP, and (4) determine
whether altered IDE function led to the abnormal accu-
mulation of A in the BCB. The outcomes of this study
will establish the role of IDE in the metabolic clearance of
AP at the BCB and illustrate a mechanism by which Pb
alters AP homeostasis in the CSF, potentially contributing
to the etiology of AD.

Methods

Materials

Chemicals and assay kits were purchased as follows:
ELISA kit and ultra purified A (1-40) (#KHB-3841 and
#03-136, Biosource, Carlsbad, USA); mouse anti -IDE
antibody (#MMS 282R, Covance Inc, Princeton, USA);
IDE activity kit (# CBA079, Calbiochem Gibbstown,
USA); Alexa-labeled secondary anti- mouse antibody
(Molecular Probes, Eugene, USA); enhanced chemilumi-
nescene reagent (ECL) and ECL films (Amersham Bio-
sciences, Piscataway, USA); Dulbecco's modified essential
medium (DMEM), fetal bovine serum (FBS), penicillin,
streptomycin, and gentamycin (Gibco, Grand Island,
USA); PCR buffer, ANTP, Oligo dT and MuLV reverse tran-
scriptase (Applied Biosystems, Foster City, USA); the
ABsolute QPCR SYBR green Mix kit (ABgene, Rochester,
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USA); the primers for real time RT-PCR (Integrated DNA
Technology Inc., Coralville, USA); B-actin, 2-mercap-
toethanol, phenylmethylsulfonyl fluoride (PMSF), poly-
acrylamide, tetramethyl-ethylenediamine (TEMED), n-
ethylmaeimide (NEM) and all other chemicals (Sigma
Chemicals, St. Louis, USA). All reagents were of analytical
grade, HPLC grade or the best available pharmaceutical
grade.

Animals and treatment

Male Sprague-Dawley rats were purchased from Harlan
Laboratories (Indianapolis, USA) and were 8-9 weeks old
(250-300 g) at the time they were used. The animals were
housed in a temperature-controlled, 12 h:12 h light/dark
room, and were allowed free access to tap water and food.
Rats received an i.p. injection of 50 mg/kg Pb acetate (i.e.,
27 mg Pb/kg) or an equivalent molar concentration of Na-
acetate (i.e., 15 mg acetate/kg) as control. Twenty-four h
post injection, the rats were anesthetized with an injection
of ketamine/xylazine (75:10 mg/mL, 1 mL/kg body
weight) and euthanized by exsanguination to remove
excess blood. The lateral ventricle CP was then isolated for
further experimentation. Animal protocols pertinent to
this study were approved by the Purdue University Animal
Care and Use Committee.

Culture of choroidal epithelial Z310 cells

The methods and characteristics of immortalized rat
choroidal epithelial Z310 cells have been described previ-
ously [35]. Briefly, cells were maintained in DMEM (high
glucose) medium supplemented with 10% FBS, 100 U/
mL penicillin, 100 pg/mL streptomycin, and 40 pg/mL of
gentamycin in a humidified incubator with 95% air-5%
CO, at 37°C and were passaged twice a week. The cells
were seeded at a density of 1 x 10°in a 100-mm culture
dish. Twenty-four h after initial seeding, the cells were
treated with 0 or 10 uM Pb for 24 or 48 h, and the follow-
ing studies were performed.

Immunohistochemistry

Immunohistochemistry was performed on both rat CP tis-
sues and the Z310 cells following Pb exposure. For fresh
tissue studies, the CPs were isolated from the rat following
the exposure condition described above and transferred to
a 35-mm glass bottomed dish containing PBS. For in vitro
studies, Z310 cells were seeded on a 35-mm dish, and
treated with 10 uM Pb for 24 or 48 h. At the end of Pb
treatment, the culture medium was removed and replaced
with 0.5-1 mL PBS. The tissues or cells were washed with
PBS three times, fixed with 3% paraformaldehyde/0.25%
glutaraldehyde in PBS for 10 min, and permeabilized with
0.5% Triton X-100 for 30 min at room temperature, fol-
lowed by 3-5 washes of PBS. After blocking with 1%
bovine serum albumin (BSA) in PBS for 30 min at room
temperature, the tissues or cells were double-immunos-
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tained with mouse anti-IDE (1:500) in 1% BSA overnight
at4°C, washed the next day with PBS in 1% BSA, and then
incubated with goat anti- mouse Alexa-488 conjugated
secondary antibody (1:7500) in 1% BSA at 37°C for 60
min. After further washing in PBS with 1% BSA, the tissues
or cells were observed using an inverted confocal fluores-
cent microscope. Negative controls were treated similarly
except that they were not exposed to any of the primary
antibodies.

Confocal immunofluorescence microscopy

To acquire images, the dish containing the CP specimen
was mounted on the stage of an Olympus, FV1000
inverted confocal laser-scanning microscope and viewed
through a 40x water-immersion objective (numeric aper-
ture = 1.2), with a 488-nm laser line for excitation (Ar-ion
laser). Low laser intensity was used to avoid photo bleach-
ing. The CP was examined under a reduced transmitted-
light illumination. An area containing undamaged epithe-
lium with underlying vasculature was selected. For each
image acquired (512 x 512 x 8 bits, 4 frames averaged),
four areas of the specimen were selected for image collec-
tion. Data reported, unless otherwise stated, are represent-
ative of 3-4 replicate experiments.

Assay of IDE enzymatic activity

To screen for a suitable NEM concentration at which cell
death was minimal, Z310 cells were seeded at a density of
1 x 10°in 100-mm plates for 24 h; they were then incu-
bated with 0, 5, 10, 25 or 50 uM of NEM overnight for 16
h and the cell viability was determined using the methyl-
thiazolyldiphenyl-tetrazolium bromide (MTT) assay.
Based on our results and previously published data [21],
a concentration of 10 pM NEM was selected as an appro-
priate concentration for the IDE activity experiments
described below.

To assess the IDE activity, the cells were seeded at a density
of 1 x 10%and treated with Pb for 24 or 48 h in the pres-
ence or absence of NEM. The four treatment conditions
were as follows: Group 1 served as an untreated control
(Pb-/NEM-), group 2 was treated with 10 uM Pb for 24 h
in the absence of NEM (Pb+/NEM-), group 3 was treated
with only 10 uM NEM for 16 h in the absence of Pb (Pb-/
NEM+), and group 4 with 10 pM NEM for 16 h followed
by 10 uM Pb for 24 h (Pb+/NEM+).

The principle of the assay is based on measuring the IDE
activity using a fluorescence resonance energy transfer
(FRET) substrate which is cleaved by IDE to release the
fluorophore from the quenching molecule, resulting in an
increase in fluorescence. The activity was determined as
per manufacturer's protocol (Calbiochem, catalog #
CBAO079). Briefly, Z310 cells were lysed with RIPA buffer
and centrifuged at 10,000 rpm for 10 min and the super-
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natant was used for analysis. Total protein (80 pg/well)
was loaded into in a 96-well plate, which contained an
affinity-purified polyclonal antibody that recognizes
human, mouse, and rat insulysin; the antibody was
immobilized on the plate in order to capture the IDE
enzyme. Following 1 h incubation, the plate was washed
with sample buffer, and an aliquot (100 pL) of substrate
was added and incubated for 2-4 h at 37°C in the dark.
The fluorescence was measured using an excitation wave-
length of 320 nm and an emission wavelength of 405 nm.
The results are reported as IDE fluorescence intensity in
arbitrary units (a.u.)/mg of total proteins in the cells.

Quantification of Af;_49 accumulation in Z310 cells
following Pb exposure by ELISA

Cells were grown on 24 well plates at a density of ~4 x 104
cells/well and treated as the four groups described above.
The cells were washed with PBS and incubated with 200
pL of 2 puM ultrapure AP, ,, solution in serum free
medium for 1 h. The medium was then removed, cells
washed 3 times with PBS, and fresh serum-free medium
added for an additional hour to allow for metabolic clear-
ance of AB by IDE. The cells were then washed with PBS,
scraped and lysed using 60 pL of RIPA buffer. The intrac-
ellular Ap was determined using a colorimetric ELISA kit
(Invitrogen KHB3481). All data reported from the ELISA
were normalized to the total amount of protein in the
cells as determined by the Bradford assay.

Quantification of IDE mRNA expression by real-time (RT)-
PCR

The transcription of the gene encoding IDE was quantified
using RT-PCR as described in [36]. Briefly, the total RNA
was isolated from Z310 cells or plexus tissue using TRIzol
reagent, following the manufacturer's instructions. An
aliquot of RNA (1 pg) was reverse-transcribed with MuLV
reverse-transcriptase and oligo dT primers. The forward
and reverse primers for target genes were designed using
Primer Express 3.0 software. The ABsolute QPCR SYBR
green (Mix kit, ABgene) was used for RT-PCR analyses.
The amplification was carried out in the MX 3000P real-
time PCR System (Stratagene, La Jolla, USA). Amplifica-
tion conditions were 15 min at 95°C, followed by 40
cycles of 30 s at 95°C, 1 min at 55°C and 30 sat 72°C. A
dissociation curve was used to verify that the majority of
fluorescence detected could be attributed to the labeling
of specific PCR products, and to verify the absence of
primer-dimers and sample contamination. All RT-PCR
reactions were done in triplicate. Primer sequences for rat
IDE used for real-time RT-PCR were: forward primer 5'
GGTITGGAGAGTTCCCCTCTCA-3' and a reverse primer 5'
AGGCCGCGCTTGAATTC-3' (Genbank Accession No
NM_013159) and rat glyceraldehydes-3-phosphate dehy-
drogenase (GAPDH) used as an internal control, had a
forward primer 5'-CCT GGA GAA ACC TGC CAA GTA T-
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3' and a reverse primer 5'-AGC CCA GGA TGC CCT TTA
GT-3' (Genbank Accession No. NM_017008).

Quantification of IDE protein expression by western blot
The plexus tissues or Z310 cells were homogenized (1:10,
wt/vol) on ice in a buffer containing 20 mM Tris (pH 7.5),
5 mM EGTA, 1% TritonX-100, 0.1% SDS, 50 uM phenyl-
methylsulphonylfluoride (PMSF), 15 mM 2-mercaptoeth-
anol and a protease inhibitor cocktail containing 500 pM
4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochlo-
ride (AEBSF), 150 nM aprotinin, 1 uM E-64, 0.5 mM
EDTA, 1 uM leupeptin (Calbiochem). Samples were soni-
cated using a Model 500 Sonic Dismembrator (Fisher Sci-
entific) at duty cycle 20% and output 4-6 for 30 pulses.
Following centrifugation at 10,000 g at 4°C for 10 min,
aliquots of supernatants were assayed for protein concen-
trations by the Bradford method. A volume of protein
extract (40 pg of protein) was mixed with an equal vol-
ume of 2x sample buffer (0.35 M Tris-Cl, 10% SDS, 30%
glycerol, 0.6 M DTT, and 0.012% bromophenol blue),
loaded onto a 10% SDS-polyacrylamide gel, electro-
phoresed, and then transferred to a PVDF membrane. The
membrane was blocked with 5% dry milk in TBST (tris-
buffered saline) at room temperature for 1 h and immu-
noblotted with an antibody directly against IDE (1:250).
The membrane was stained with a horse-radish peroxi-
dase (HRP)-conjugated goat anti-mouse IgG antibody
(1:5000) at room temperature for 1 h and developed
using ECL reagent. The exposure time varied from 30 sec
to several min depending on the signal strength. B-actin
(42 kD) (1:2000) was used as a loading control; the cor-
responding secondary antibody (1:2000) for B-actin was
HRP-conjugated goat anti-mouse IgG. All band intensities
were quantified using Scion Image software (Frederick,
USA).

Determination of Pb-induced cellular toxicity in Z310 cells
To determine the Pb concentration at which it altered AB
metabolism in the CP in the absence of nonspecific cyto-
toxicity, three general cytotoxicity assays were conducted
including the MTT cell viability assay, cell membrane per-
meability assessment (lactate dehydrogenase or LDH
assay), and cellular oxidative stress estimation (superox-
ide dismutase or SOD assay). The MTT assay was per-
formed by culturing Z310 cells at a density of 15,000
cells/well in a 96 well plate for 2-3 days until they reached
70% confluence. The medium was then replaced with
fresh medium containing different concentrations of Pb
as Pb-acetate (0, 1, 5, 10, 50, 100 uM). The cells were incu-
bated for an additional 24 h, followed by adding an alig-
uot of MTT stock solution (2 mg/mL in PBS) to each well.
The absorbance of the converted dye was measured at a
wavelength of 570 nm. To determine the LDH activity,
Z310 cells were treated as described above and LDH
released into the culture medium was determined using
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the assay kit according to manufacturer's protocol. Finally,
to determine oxidative stress, the cells were exposed to Pb
(10 uM) for 24 h and SOD activity was determined
according to the instructions in the assay kit.

Statistical analysis

Statistical analyses were carried out by a one-way ANOVA
with post hoc comparisons using the Dunnett's test or
paired t-tests (Kaleidagraph 3.6). All data are expressed as
mean # SD. Differences between two means were consid-
ered significant when the p value was equal or less than
0.05.

Results

Subcellular localization of IDE in choroid plexus tissues,
choroidal epithelial Z310 cells and the effect of Pb
Immunostaining of normal rat lateral ventricle CP tissues
revealed a distinct staining of IDE in the choroidal epithe-
lia (Fig. 1). The IDE staining was primarily present in the
cytosol towards the apical membrane including micro-
villi. There was very little staining in the cytosol towards
the basement membrane facing the blood side (Fig. 1A).
Acute in vivo exposure to Pb did not alter the subcellular
localization of IDE, nor did it seem to affect the intensity
of IDE staining (Fig. 1B). As expected, there was no stain-
ing in the negative control, which was the group treated in

Figure |

Confocal immunofluorescence images showing intra-
cellular location of IDE in rat choroid plexus tissue
following in vivo acute Pb exposure. A: The plexus tis-
sues from a control rat. The IDE signals were present near
the apical membrane of the epithelia, facing the CSF. B: Rats
received a single ip injection of 27 mg Pb/kg. Twenty-four
hours post exposure, there was no apparent sub-cellular re-
localization of IDE following Pb exposure. C: Negative con-
trol without primary antibody. D, E, F: Transmission micros-
copy images. Note: The tissues in rats exposed to Pb (E) did
not exhibit morphological alterations compared with con-
trols (D). The images are representative of experiments run
in triplicate.
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the absence of primary antibody (Fig. 1C). Noticeably, the
corresponding transmission images revealed a normal
morphology of the CP tissues following acute in vivo Pb
exposure (Fig. 1D, E).

The IDE staining was also detected in choroidal epithelial
7310 cells with fluorescent signals evenly distributed in
the cytosol (Fig. 2A). Since these cells lack polarity, no
particular directional subcellular distribution of IDE was
expected. Treatment with Pb (10 uM) for 24 or 48h did
not change either the localization or intensity of IDE
staining in these cells (Fig. 2B, C). Transmission images
revealed a normal morphology of Z310 cells (Fig. 2D, E,
F).

Acute Pb exposure decreases IDE activity in choroidal
epithelial Z310 cells

Prior to analyzing the IDE activity, it was necessary to
ensure that the concentrations of Pb used in this study did
not cause any direct cytotoxicity to the cells. The MTT,
LDH and SOD assays were conducted for this purpose.
The MTT assay with Pb concentration ranging between 0-
150 puM revealed 95% viability at 10 uM Pb compared to
controls. The LDH assays revealed that a concentration of
Pb at or below 10 uM had no significant effect on LDH
release. Furthermore, results from the SOD assay did not
show any significant oxidative stress when the cells were
exposed to Pb at 10 uM. According to these findings,

Figure 2

Confocal immunofluorescence images showing intra-
cellular expression of IDE in rat choroidal epithelial
Z310 cells following Pb (10 uM) exposure. A: Z310 cells
from untreated, control group. B: Z310 cells exposed to Pb
for 24 h. C: Z310 cells exposed to Pb for 48 h. No apparent
subcellular re-localization of IDE was observed following Pb
exposure in any of these groups. Transmission microscopy
images indicate that the Pb treated cells (E, F) did not exhibit
any morphological alterations compared to controls (D). The
images are representative of experiments run in triplicate.

Page 5 of 10

(page number not for citation purposes)



Cerebrospinal Fluid Research 2009, 6:11

together with previously published data from this group
[37], a concentration of 10 uM Pb was selected for the fol-
lowing studies.

For the IDE activity study, NEM, an effective IDE inhibi-
tor, was used as a positive control in the presence or
absence of Pb exposure. Cells exposed to Pb for 24 h in the
absence of NEM (Pb+, NEM-) showed a significant
decrease of 17.6% in their IDE activity (p < 0.05) com-
pared to untreated controls (Pb-, NEM-) (Fig. 3). Treat-
ment with NEM alone (10 uM) (Pb-, NEM +) resulted in
a 17.5% decrease in the IDE activity (p < 0.05) and was
comparable to the group treated with Pb in the absence of
the inhibitor (Pb+, NEM-). When the cells were exposed
to a combination of Pb and NEM (NEM+, Pb+), the IDE
activity was reduced by a significant 29.3% (p < 0.001) rel-
ative to untreated controls (NEM-, Pb-), by 11.7% (p <
0.05) relative to the cells exposed to Pb alone (Pb+, NEM-
), and by 11.8% (p < 0.05) relative to the NEM alone
group (Pb-, NEM +). NEM did not cause any significant
cell death at the concentrations used, as determined by the
MTT assay. These results suggested that exposure to Pb (10
M) results in a decrease in IDE activity; the effect of Pb
on the enzymatic activity of IDE was exacerbated in the
presence of IDE inhibitor, NEM.

Inhibition of IDE activity by Pb increases intracellular A
accumulation

To determine if the inhibition of IDE activity led to cellu-
lar accumulation of AB, Z310 cells were incubated with A
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IDE activity following Pb exposure (10 1M, 24 h) in
rat choroidal epithelial Z310 cells in the presence (+)
or absence (-) of IDE inhibitor, NEM (10 uM). Data
represent mean  SD, n = 6-8 wells per group. Bars with dif-
ferent superscripts are significantly different from one
another, p < 0.05.
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(2 uM) following treatment with Pb and/or NEM. Analy-
sis using a one way ANOVA revealed an overall significant
difference between the groups (p < 0.01, Fig. 4). The cells
treated with Pb alone (Pb+, NEM-) showed a relatively
small (1.5 fold), yet statistically significant increase in
intracellular Af levels compared to untreated controls (p
< 0.05). Treatment with NEM alone (Pb-, NEM+) resulted
in a 7 fold increase in intracellular AR concentrations
compared to untreated controls (p < 0.01).

When both Pb and NEM (Pb+, NEM+) were added to the
culture system, the intracellular AP levels were increased
by nearly 12 fold (p < 0.01). This finding supports a syn-
ergistic effect between Pb and NEM; both may possibly
alter the IDE activity and subsequently decrease Ap metab-
olism in the CP.

Pb exposure did not alter the expression of IDE mRNA and
protein in CP tissues or choroidal Z310 cells

The effect of Pb on IDE function could also be due to the
altered expression of IDE. To test this hypothesis, rats were
exposed to Pb by a single injection of 27 mg Pb/kg i.p. for
24 h. No significant difference was observed either in the
IDE mRNA expression level as quantified by real time RT-
PCR (Fig. 5A), or in the protein expression level as deter-
mined by western blot analysis (Fig. 5B, C). In addition,
there was an absence of a significant alteration in mRNA
(Fig. 6A) and protein (Fig. 6B, C) in choroidal Z310 cells
treated with 10 uM Pb for 24 or 48 h.

Discussion
Our data clearly demonstrate that (i) IDE is located
towards the apical membrane in CP tissues and the distri-
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Quantification of intracellular A levels by ELISA in

Z310 cells following Pb (10 uM, 24 h) exposure in the
presence (+) or absence (-) of NEM (10 nM). Data rep-
resent mean + SD, n = 6-8 wells per group. Bars with differ-

ent superscripts are significantly different from one another,
p < 0.05.
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IDE mRNA and protein expression following Pb
exposure in rat CP tissue. Rats received ip injection of
either Na acetate (control) or Pb acetate (27 mg Pb/kg) and
tissues were analyzed 24 h after Pb exposure. A: IDE mRNA
expression. No significant difference was observed between
Pb-exposed and control groups as indicated by the ratio of
IDE/GAPDH. B: Representative western blots of IDE protein
expression in controls and Pb-treated rats. C: IDE expres-
sion estimated from the corresponding band densities in (B)
and normalized to those of B-actin indicating. No significant
difference was observed in IDE protein expression between
Pb-treated and control rats. Data represent mean * SD, n =
4. The data are representative of triplicate experiments.

bution does not appear to be altered by Pb exposure; (ii)
Pb exposure results in a significant decrease in IDE activ-
ity; (iii) the decrease in IDE activity by Pb may lead to an
accumulation of A in the CP possibly due to a reduced
metabolic clearance at the BCB; and (iv) Pb exposure does
not alter the mRNA or protein expression of IDE.

The observation that the subcellular location of IDE was
concentrated towards the apical membrane has significant
implications. Earlier studies in our laboratory have dem-
onstrated that the direction of AB transport by the CP is
predominantly from the CSF to the blood [16]. The pres-
ence of IDE immediately beneath the apical membrane
would allow this enzyme to effectively metabolize the Af
molecules entering from the CSF. Hence, the immediate
breakdown of AB by IDE may facilitate the ability of the
CP to continuously attract extracellular AB; this may also
explain the large capacity of the CP to take up A from the
CSF [16].

Recent studies in our laboratory have shown that expo-
sure to Pb results in the accumulation of intracellular AB
[15]; the study employed the same Pb exposure dose reg-
imen as used in the current experiment. Under such a dose
regimen, the Pb concentrations in blood and CSF reach
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Figure 6

IDE mRNA and protein expression in Z310 cells fol-
lowing Pb exposure. Z310 cells were treated with 10 uM
Pb for 24 h or 48 h. A: IDE mRNA expression. No significant
difference was observed in the mRNA expression between
the Pb-exposed and control groups. B: Representative west-
ern blots of IDE protein expression in controls and cells
treated with Pb (10 uM) for 24 and 48 h. C: IDE expression
estimated from the corresponding band densities (B) and
normalized to those of B-actin. No significant difference in
IDE protein expression was found between Pb-treated and
control cells. Data represent mean + SD, n = 3. The data are
representative of triplicate experiments.

400 pg/dL and 32 pg/dL, respectively; the Pb concentra-
tion in the CP is about 22 ng/g of tissue, nearly 57 fold
greater than Pb in brain cortex [13]. Recently published
data by this group also demonstrate that incubating Z310
cells with 1-10 uM of Pb (about 20.7-207 pg/dL in the cul-
ture medium) produced a dose-time dependent increase
in cellular accumulation of Ap while not causing signifi-
cant cell damage (i.e., normal cell viability, normal LDH
and normal SOD) [15]. This basic finding could be
explained at least in part by Pb facilitating the uptake of
AB by the CP and/or Pb inhibiting Ap breakdown in the
CP. The data in the current study indicated that Pb may
directly act on IDE by inhibiting its activity rather than
altering its gene or protein expression.

Results from this study indicated that while Pb exposure
caused a 1.5 fold increase in AP, the group treated with
NEM alone caused a 7 fold increase in AB. This may be, in
part, due to a non-IDE-related effect of NEM, since NEM
action involves a general covalent binding to cysteine res-
idues. One strategy for future studies would be to knock-
down IDE using short interference RNA and to more spe-
cifically determine the contribution of IDE. Another
approach would be to up-regulate IDE in these cells and
analyze AP accumulation in the presence or absence of Pb
exposure. We would also like to point out that due to a
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small tissue mass, we were unable to assess the IDE activ-
ity in the CP tissue following in vivo Pb exposure. As a
future direction, it would be of interest to know how our
in vitro studies correlate with in vivo IDE activity in the CP.

The current study raises several interesting questions. By
what potential mechanism does Pb exert its effects on
IDE? Extensive literature suggests that Pb is capable of
binding to Zn finger proteins and subsequently altering
their function, specifically at the sp1 binding domain [38-
40]. IDE activity is shown to be metal or thiol-dependent
[19,41] and structurally comprises a Zn binding motif, as
well as an inverted metalloprotease motif named HxxEH
[24]. These, along with several cysteine-histidine clusters,
allow the enzyme to bind to substrates such as AB and
assist in its cleavage. At the same time, IDE could poten-
tially interact with DNA to regulate transcriptional events
[42]. Pb, being a divalent metal like Zn may compete with
and replace Zn in the Zn finger binding domain. At the
transcriptional regulatory level, this binding can alter the
upstream signaling pathways that are important to cell
function [43-45]. Since the structure of IDE contains a Zn
motif, we speculate that Pb may directly bind to the Zn
finger binding domain and inhibit IDE activity. However,
this is a preliminary speculation and further studies are
warranted to explore this mechanism.

Upstream of binding to the Zn finger, Pb might also influ-
ence the protein kinase C (PKC) pathway. Studies in liter-
ature suggest that IDE activity is decreased by an energy-
dependent ATP mechanism [46]. PKC is known to phos-
phorylate amino acids by ATP-driven reactions and has
been implicated in Pb toxicity in both animals and in
humans [47-51]. Specifically, findings reveal that expo-
sure to Pb results in PKC- mediated impairments in hip-
pocampal development, the brain area that is primarily
affected in AD [40]. Since Pb has shown to activate several
isoforms of PKC in the CP [52], it would be of interest to
explore whether and how activation of PKC may relate to
alterations in IDE activity.

Another question is how much of a role does IDE play in
Pb-mediated accumulation of Aa? We should point out
that this study does not imply that IDE is the single most
important factor in Ap regulation at the BCB. Other mech-
anisms, particularly receptor-mediated AP uptake and
clearance in the CP including the involvement of Aa
transporters such as low density lipoprotein receptor pro-
tein 1 (LRP1), receptor for advanced glycosylation end
products (RAGE) and p-glycoprotein must also be consid-
ered.

Finally, what is the consequence of AB accumulation in
the CP following Pb exposure? A build up of Af in the CP
could either be a result of overproduction of AB in the

http://www.cerebrospinalfluidresearch.com/content/6/1/11

CNS under the interference of Pb, or maybe due to a com-
promised function of the CP in clearing AP from the CSF.
Data from the current study indicate that Pb may alter the
AP breakdown mechanism at a critical site in the brain
that is often overlooked. A disruption in Af clearance, in
turn, might lead to elevated AP accumulation in the
brain's internal milieu. Although this study provides some
evidence for an IDE-mediated metabolic clearance, fur-
ther studies are warranted to explore this mechanism in-
depth.

Conclusion

In summary, our results provide evidence that Pb expo-
sure increases A} accumulation at the BCB at least in part,
by altering the activity of IDE and thereby potentially
decreasing the metabolic clearance of AB. In addition, we
provide evidence that IDE in the CP is localized towards
the apical membrane, which is consistent with the large
capacity of the CP to take up AP from the CSF. Finally, our
study suggests that Pb is a potential environmental trigger
in the dysregulation of Ap homeostasis, and may subse-
quently contribute to the etiology of AD.
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