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Abstract

Background: There is mounting evidence that spinal fluid absorption takes place not only at the
arachnoid villi, but also at several extracranial sites, which might serve as a reserve mechanism for,
or be primarily involved in the absorption of CSF in hydrocephalus.

Methods: We compared the nasal lymphatic pathway in congenital Hydrocephalus-Texas (H-Tx)
rats in unaffected and affected hydrocephalic (HC) siblings with that of control Sprague Dawley
(SD) rat pups. The animals were examined after immediate post mortem injection of Evan's blue dye
into the cisterna magna at 6 and 10 days of age. The specimens were evaluated for amount of dye
penetration into the nasal passages.

Results: We found more dye visualization in the olfactory regions of control SD (14/16 at P6, 14/
16 at P10) and unaffected H-Tx (13/17 at P6, 13/16 at P10) compared with HC animals (0/14 at P6,
3/15 at P10). This difference was more pronounced at 10 days of age. The dye was not visualized
in the cervical lymph nodes or venous channels in these acute experiments.

Conclusion: The results of this study suggest that nasal lymphatic cerebrospinal fluid absorption
is reduced in the H-Tx rat hydrocephalus model.

Background

Hydrocephalus is a lifelong condition of cerebrospinal
fluid (CSF) imbalance, leading to seizures, neurological
and cognitive dysfunction, or death if left untreated. The
condition is not a single pathologic entity, nor is it a sim-
ple, well-defined disease process; rather, it encompasses a
diverse group of clinical situations sharing a common fea-
ture of increased intracranial pressure (ICP) resulting
from an imbalance of CSF secretion and absorption. A
better understanding of these as yet undiagnosed mecha-

nisms may offer therapeutic options for rebalancing CSF
dynamics before fluid accumulation occurs.

We must reconsider the conventional wisdom that pri-
mary CSF absorption occurs through the arachnoid gran-
ulations, since there is limited evidence concerning
fibrosis or anatomic obstruction at these sites in hydro-
cephalus [1-4]. Yet there is increasing evidence for com-
munication between the CSF pathways and the
extracranial lymphatic system, mostly by the nasal lym-
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phatics or the optic nerve sheath into the facial venous
system, elegantly described by Johnston et al to be func-
tional in most mammals, including humans [5-9]. This
group found that approximately 50% of CSF is cleared
from the cranial compartment by the nasal lymphatic ves-
sels, which play a major role in bulk flow of spinal fluid
into the venous system. Other studies confirm that CSF
drains along cranial nerves eventually into the lymphatic
channels [10-13]. Accumulation of excessive spinal fluid,
especially under increased pressure, could implicate a
problem in these mechanisms. [14-19].

We hypothesize that obstruction of CSF flow via the cri-
briform plate into the facial lymphatic pathways is related
to hydrocephalus in the Hydrocephalus-Texas (H-Tx) rat
model. We investigated nasal lymphatic pathways in
hydrocephalus by injecting Evan's blue dye into the cis-
terna magna of Sprague Dawley (SD) rats, unaffected H-
Tx rats, and their affected hydrocephalic (HC) siblings at
post natal days P6 and P10, and studied the amount of
dye penetration in the nasal regions.

Methods

Animals

The H-Tx rat was initially identified in 1981 by Kohn, et al.
[20], and a colony from animals originally from the Uni-
versity of Florida is maintained at our institution by
brother-sister mating. Although the genetic cause of the
H-Tx mutation is unknown, it is a widely recognized ani-
mal model that mirrors the human condition. Hydro-
cephalus occurs in approximately 20-40% of each litter,
with obstruction of the aqueduct on day E18 [21,22]. The
ventricular system dilates rapidly, as evidenced by an
enlarged, domed dorsal cranium evident by 1-2 days of
age [20]. Most hydrocephalic rats die at 4-5 weeks of age
if not treated by shunting procedures, which confer a nor-
mal life span [23,24].

The Sprague Dawley rats were purchased from Charles
River Laboratories (Cary, North Carolina). All experi-
ments were performed under the guidelines of the Animal
Care Committee at the University of Central Florida. The
animals were housed under 12-hr day-night cycles and
had free access to food and water. A total of 112 rat pups
were used for this study (Table 1).

Magnetic resonance imaging

Ten-day old rat pups were anesthetized with isofluorane
and immobilized in plastic tube restraining devices, T2-
weighted 1 mm sagittal and coronal MR images were
obtained using a Siemens Somatom 1.5 T magnet (Sie-
mens, Berlin, Germany, Figure 1).
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Table I: Evan's blue dye penetration into olfactory turbinates of
control and hydrocephalic rats.

Post-mortem injection Live injection

SD H-TX HC SD H-TX  HC
Pé 14/16 13/17 0/14 - -
P10 14/16 13/16 3/15 6/6 6/6 0/6

Numbers of postnatal rats with Evan's blue in the olfactory turbinates
out of the total number of animals used. SD: Sprague Dawley, H-Tx:
unaffected H-Tx, HC: hydrocephalic H-TX.

Tracer injection and visualization

In order to compare experiments using anesthetized ani-
mals with those after CO, euthanasia, initial experiments
were performed using 10-day old pups (n = 18) anesthe-
tized using pentobarbital (20 mg/kg, i p). Evan's blue dye
(50 uL, 2% in PBS) was injected into the cisterna magna
subarachnoid space. The animals were sacrificed after 20
min by an additional injection of pentobarbital (50 mg/

kg).

Ninety four animals (47 at P6 and 47 at P10) were sacri-
ficed by CO, inhalation and underwent immediate post
mortem injection (30 pL at P6, and 50 pL at P10) of 2%
Evan's blue dye in PBS into the cisterna magna subarach-
noid space.

After dye injection, pups were kept in head-dependent
supine position at -20°C for 24 h prior to sectioning. Sec-
tions 1 mm thick were made by hand in coronal or sagittal
planes on dry ice, and images at 40x magnification were
obtained under a dissecting microscope (Zeiss, STEMI SV
11, Germany), and captured by a digital camera. These
images were used to examine for dye penetration from the
cribriform plate into the olfactory turbinates and nasal
pathways. Alpha Imager 2200 software was used to quan-
tify the amount of dye visualized in the nasal regions
between the 3 groups of animals (Alpha Innotech Corp.
CA). We arbitrarily assigned the average value of HC ani-
mals as reference (baseline of 1), and compared the SD
and H-Tx groups against this value for relative dye inten-

sity.

Results

The hydrocephalic pups were phenotypically different
with their characteristic domed shaped head (Figure 1),
decreased spontaneous activity, and limb stiffness. Ven-
tricular dilatation, which was confirmed by MR imaging
(Figure 1) and at sectioning, was more pronounced at the
older age (P10). In all groups, the Evan's blue dye was vis-
ualized in the subarachnoid spaces over the cerebral con-
vexities and at the skull base (Figure 2a, d, g). The Evan's
blue dye was visualized in the subarachnoid spaces, pene-
trating the nasal passages in the unaffected H-Tx and SD
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Figure |
Photographs and MR scans of unaffected H-Tx and hydrocephalic H-Tx rat pups at P10. Phenotype of H-Tx pups
at P10: A, unaffected H-Tx pup and D, hydrocephalic pup. Note the enlarged domed head, usually evident by 3 days of age in D.
Representative sagittal MR scans of unaffected H-Tx (B) and HC animal (E) showing enlargement of lateral ventricles, and nor-
mal sized cerebellum. Coronal T2-weighted slices confirm small lateral ventricles of unaffected H-Tx (C) and the large lateral

ventricles in the HC pup (F).

control animals, and less evident in the hydrocephalic rat
pups.

Eighteen animals at P10 were initially utilized for live
injection of Evan's blue dye under pentobarbital sedation
prior to sacrifice. Adequate visualization of dye within the
olfactory turbinates was seen in the six SD and six unaf-
fected H-Tx pups, but no visible dye was noted in the six
affected HC animals.

The larger series with 47 pups at P6 and 47 at P10 was per-
formed using post mortem injection after CO, euthanasia.
Evan's blue dye was visible within the nasal passages of
14/16 pups at P6 and P10 in the SD animals. Similarly, in
the unaffected H-Tx group, dye was visualized in 13/17 of
pups at P6 and 13/16 at P10. However, there was no dye
visible in the olfactory turbinates of 14 HC animals at P6
and only 3/15 had visible dye in the olfactory regions at
P10 (Table 1, Figure 2). The dye was not visualized in the
cervical lymph nodes or venous channels in these acute
experiments.

The dye visualized in the hydrocephalic animals was arbi-
trarily assigned a baseline reference value of 1 (Figure 2h).
We then compared the relative dye intensity in the other
2 groups (unaffected H-Tx and control SD animals)
against this background value, to evaluate the relative
expression of blue dye within the nasal sinuses and olfac-
tory turbinates among the three subgroups (Table 2).
Semi-quantitative analysis of the blue dye between the

three groups at P6, identified an over 3-fold increase in
dye concentration in the SD control and unaffected H-Tx
siblings as compared with the hydrocephalic pups. This
difference was more pronounced at the older age (P10),
where the dye concentration was 5.7 times the HC values
in the SD animals and 5 times greater in the unaffected H-
Tx siblings (Figure 3).

Discussion

Initial concepts of hydrocephalus pathophysiology were
based on a limited understanding of CSF dynamics, alter-
native flow pathways, and the compensatory mechanisms
involved. While ongoing fundamental studies explore the
complex mechanisms of normal brain development,
those involved in the molecular basis of hydrocephalus
remain unexplained. Thus, medical management of this
lifelong condition remains elusive, with few research
efforts in this direction.

Anatomical and tracer studies have identified CSF flow in
the subarachnoid spaces surrounding the olfactory nerves
into the cribriform plate into a network of lymphatic
ducts in the olfactory turbinates [25-27]. The fluid is then
conveyed into progressively larger lymph channels and
ultimately deposited into the venous system in the cervi-
cal region [16,17,28]. In rodents, these associations are
not observed until four days after birth, when CSF produc-
tion significantly increases. Timing of this occurrence per-
haps suggests a pressure-dependent mechanism to open
and maintain these CSF outflow channels [10].
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P10SD P10 HTX P10 HC

Figure 2

Surface view of the frozen whole head showing distribution of 50 pl of 2% Evan's blue dye injected into the cis-
tern magna of rats post mortem at 10 days of age. Note blue dye in the subarachnoid spaces over the cortex
and the skull base in all 3 groups (white arrows). Top row: coronal views at level of lateral ventricles (a, d, g). Note
enlarged lateral ventricles in hydrocephalic animal (g). Middle row: Olfactory region in the sagittal plane of SD (b), H-Tx (e) and
affected hydrocephalic animals (h). The overlay grid indicates region of olfactory turbinates for semi-quantitative analysis
between groups. Note the dye is present in the subarachnoid spaces around the olfactory bulb (OB) in all animals. The blue
tracer passed through the cribriform plate (red arrows) into the olfactory turbinates (OT) of the SD (b) and H-Tx (e) pups.
Less dye was observed in the olfactory turbinates of hydrocephalic animals (h). Bottom row: coronal sections showing the
nasal regions, showing less dye in the hydrocephalic animal (i). White arrows indicate Evan's blue in subarachnoid spaces, red
arrows identify cribriform plate. Reference scales are provided as a ruler (mm) or as a longitudinal bar.

Recent studies by Nagra, et al. identified decreased flowin  obliteration of the arachnoid spaces near the olfactory
the nasal passages of rats with acquired hydrocephalus by  region may contribute to the diminished flow via these
kaolin injection, where intraventricular injection of Evan's ~ pathways in this induced hydrocephalus model. Evan's
blue dye did not penetrate the subarachnoid spaces and  blue dye was used for its ease of handling, and the ability
was not visualized in the nasal passages [29]. Scarring or  to assess the anatomic CSF localization in the post mortem
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Figure 3

Dye distribution in subarachnoid space of hydrocephalic animals after immediate post-mortem injection of 2%
Evan's blue dye into the cisterna magna. Anterior is to the right in each picture. a) Parasagittal view of P6 hydro-
cephalic rat showing dye posteriorly in subarachnoid spaces (arrows), with large lateral ventricle (dashed lines). b) Higher mag-
nification of frontal area in at P10, showing lack of dye penetration into the nasal passages. Note dye (red arrows) at skull base
anterior and posterior to the olfactory bulb (OB) (white arrows). Also visible is the large ventricle containing frozen CSF
(dashed lines). (I mm marker above). Red arrows — Evan's blue dye in subarachnoid spaces. White arrows — olfactory bulb

(OB).

animals [10]. Evan's blue dye in PBS was found to be very
effective in delineating the pathways and appears to be as
effective as dye linked to protein (Johnston, M, personal
communication).

In our animals, dye penetration was limited in the nasal
passages, despite adequate representation of dye within
the subarachnoid spaces in the basal cisterns and sur-
rounding the cribriform plate (Figure 3). We therefore
postulate that CSF in the hydrocephalic animals had
access to the cribriform plate and the nasal passage for
egress, suggesting a primary obstruction at these sites.
Studies to identify further delineate the anatomic sites of
blockage are necessary.

Table 2: Relative fold increase in Evan's blue dye concentration
into the olfactory turbinates of control rats compared to
hydrocephalic rats.

Age SD H-TX HC
Pé6 33 34 I*
Pl10O 57 5.0 I*

Evan's blue dye penetration of the olfactory turbinates was
determined by an overlay grid (in the sagittal plane) and colorimetric
values were analyzed. The dye concentration visualized in the HC
animals was arbitrarily assigned a baseline reference value of | (*). We
compared the relative amount of dye visualized in the H-Tx and SD
animals to this reference value. These two groups had several fold
increase of dye concentration in turbinates compared to HC animals.

Although these nasal pathways for CSF absorption are
known to exist in several species, this is the first study to
document their connection with congenital hydrocepha-
lus. Since hydrocephalus is a multifactorial condition,
perhaps diminished nasal lymphatic outflow tracts
increase the propensity to develop the condition. There
might be a triggering factor which cannot be overcome in
a certain number of animals leading to increased suscep-
tibility to a stimulus such as infection or subarachnoid
hemorrhage.

In animal experiments, obstruction of the cribriform plate
reduces CSF clearance and leads to increased ICP, but it is
unclear if it is involved in hydrocephalus [8,15,30]. Lude-
mann, et al. studied the ultra structure of CSF outflow
along the optic nerve and identified pore-like openings in
a thin neurothelial layer extending into the lymphatics,
which might respond to elevated CSF pressure [31]. Simi-
lar mechanisms might play a role in increased intracranial
pressure in mammals.

In H-Tx animals the hydrocephalus is associated with
aqueductal stenosis at E18, and the condition progres-
sively worsens until death at 5-6 weeks of age [21]. How-
ever, the nasal pathways for CSF absorption develop at
post natal day 4 in rats, which calls into question the pos-
sibility of a causal relationship between CSF drainage
pathways and hydrocephalus [10]. It is plausible that the
nasal lymphatic pathway is an outflow track dependent
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on pressure-driven mechanisms for proper development
and function. This submucosal CSF egress might serve as
a compensatory mechanism that fails when most needed.
We studied the H-Tx animals at 6 days of age and later
dates to assess the possibility of secondary, pressure-
driven recruitment of these pathways. Dye penetration
was more pronounced in normal animals at P10, and it
was better defined in deeper ethmoid sinus regions of the
older animals, suggesting some recruitment of these path-
ways over time. Evan's blue was not visualized in the cer-
vical lymph nodes in these animals.

The nasal passages may constitute another route for CSF
absorption that can be recruited either temporarily or per-
manently at times of increased intracranial pressure (such
as hydrocephalus). Drugs administered intranasally may
gain access to the brain via axonal transport along the
olfactory receptor cells extending through the cribriform
plate to the olfactory bulb [32]. We hypothesize that pore-
like openings responsible for extracranial olfactory CSF
drainage are obstructed in the affected (hydrocephalic) H-
Tx animal, and they may be reopened using newer thera-
peutic measures.

Conclusion

Our data suggest that the nasal lymphatic drainage path-
way of CSF absorption is present in normal SD and unaf-
fected H-Tx rat pups at 6 and 10 days of age and
diminished or absent in hydrocephalic rat pups. The nasal
lymphatic pathway is affected in rodents with congenital
hydrocephalus, and may very well present a target for
novel therapeutic agents in hydrocephalus. Future studies
along these lines are warranted.
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