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Abstract 

Background Blood–brain barrier (BBB) dysfunction has been viewed as a potential underlying mechanism of neuro-
degenerative disorders, possibly involved in the pathogenesis and progression of Alzheimer’s disease (AD). However, 
a relation between BBB dysfunction and dementia with Lewy bodies (DLB) has yet to be systematically investigated. 
Given the overlapping clinical features and neuropathology of AD and DLB, we sought to evaluate BBB permeability 
in the context of DLB and determine its association with plasma amyloid-β (Aβ) using dynamic contrast-enhanced 
magnetic resonance imaging (DCE-MRI).

Methods For this prospective study, we examined healthy controls (n = 24, HC group) and patients diagnosed 
with AD (n = 29) or DLB (n = 20) between December 2020 and April 2022. Based on DCE-MRI studies, mean rates 
of contrast agent transfer from intra- to extravascular spaces (Ktrans) were calculated within regions of interest. Spear-
man’s correlation and multivariate linear regression were applied to analyze associations between Ktrans and specific 
clinical characteristics.

Results In members of the DLB (vs HC) group, Ktrans values of cerebral cortex (p = 0.024), parietal lobe (p = 0.007), 
and occipital lobe (p = 0.014) were significantly higher; and Ktrans values of cerebral cortex (p = 0.041) and occipital 
lobe (p = 0.018) in the DLB group were significantly increased, relative to those of the AD group. All participants 
also showed increased Ktrans values of parietal ( β = 0.391; p = 0.001) and occipital ( β = 0.357; p = 0.002) lobes that were 
significantly associated with higher scores of the Clinical Dementia Rating, once adjusted for age and sex. Similarly, 
increased Ktrans values of cerebral cortex ( β = 0.285; p = 0.015), frontal lobe ( β = 0.237; p = 0.043), and parietal lobe ( β = 
0.265; p = 0.024) were significantly linked to higher plasma Aβ1-42/Aβ1-40 ratios, after above adjustments.

Conclusion BBB leakage is a common feature of DLB and possibly is even more severe than in the setting of AD 
for certain regions of the brain. BBB leakage appears to correlate with plasma Aβ1-42/Aβ1-40 ratio and dementia 
severity.
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Introduction
Dementia with Lewy bodies (DLB) is the second most 
common type of neurodegenerative dementia, follow-
ing Alzheimer’s disease (AD) [1–6], with the prevalence 
of 1% in individuals aged 60  years or older [3, 4], and 
the clinical prevalence of 0–30.5% of all dementia cases 
in clinical studies [7, 8]. DLB is defined by the pres-
ence of intracellular a-synuclein aggregates, but there 
are similarities to AD with regard to clinical manifes-
tations, genetic risk factors, and neuropathologic hall-
marks (ie, Lewy bodies [LBs], amyloid-β [Aβ], and tau) 
[9]. Although the underpinnings of DLB are controver-
sial, several lines of evidence have implicated blood–
brain barrier (BBB) [10] or deposition of co-pathology 
[11].

The BBB is a selective barrier to diffusion, separat-
ing the central nervous system (CNS) from circulat-
ing peripheral blood. CNS homeostasis is subsequently 
maintained by regulating ion balance, facilitating nutri-
tional transport, and preventing influx of potentially 
neurotoxic molecules within the circulation [12]. Factors 
impacting BBB integrity in neurodegenerative dementia 
include old age [13], sex [14], the apolipoprotein E gene 
(APOE) ɛ4 allele [15], elements of chronic vascular risk 
[16], Aβ, tau protein, and α-synuclein [17]. Breakdown of 
the BBB is known to reduce Aβ clearance and trigger Aβ 

deposition by inducing inflammation, oxidative stress, 
microglial activation, synaptic dysfunction, and synaptic 
loss; and the interaction of BBB dysfunction and Aβ dep-
osition promotes the occurrence and progression of AD 
[18]. Moreover, increased BBB permeability seemingly 
bears a relation to disease phase. Current studies have 
shown that the cerebrospinal fluid (CSF)/serum albumin 
quotient (Q-Alb), a standard and ideal biomarker for BBB 
permeability, increases during the course of disease and 
mirrors the Clinical Dementia Rating (CDR) in patients 
with AD [19]. Our systematic review summarized that 
Q-Alb was significantly elevated in patients with Lewy 
body disease than healthy controls (HC) [20], and this 
finding was consistent with the results of several studies 
in DLB patients [21–23]. In addition to postmortem [24] 
and biofluid markers [10], dynamic contrast-enhanced 
magnetic resonance imaging (DCE-MRI) is considered 
to be the most advanced method for noninvasively and 
quantitatively investigating subtle BBB failure regionally 
in the living human brain [25]. DCE-MRI images have 
revealed regional increases of transfer rate of contrast 
agent from intra- to extravascular spaces (Ktrans) in nor-
mal elderly adults [13]. Increased BBB permeability is 
also common in cognitively impaired patients, affecting 
global cortex [26], median temporal lobe or hippocampus 

Fig. 1 Representative precontrast T1-weigthed images and Ktrans maps of AD, DLB and HC groups. This figure showed the representative 
precontrast T1-weigthed images and Ktrans maps of the global cerebral cortex in AD (a 72-year-old man with mild AD), DLB (a 75-year-old woman 
with mild DLB) and HC (a 72-year-old man with no cognitive impairment). AD Alzheimer’s disease, DLB dementia with Lewy bodies, HC healthy 
control, Ktrans transfer rate of contrast agent from intra- to extravascular spaces
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[27], and white matter [28] is common in patients with 
cognitive impairment.

However, there have been few investigations of BBB 
permeability in patients with DLB, and the volume of 
available clinical data from DCE-MRI assessments of 
BBB is meager. Clinical studies targeting associations 
between BBB and Aβ in patients with DLB are lacking 
as well. We have therefore chosen to use DCE-MRI for 
evaluating BBB permeability in the context of DLB and 
exploring related clinical characteristics. Our findings 
will hopefully aid in understanding disease mechanisms, 
yielding precise biomarkers that serve for prevention and 
management of DLB.

Materials and methods
Study participants
This prospective study took place between December 
2020 and April 2022 at Tianjin Huanhu Hospital in Tian-
jin, China. Selected subjects were healthy controls (HC 

group, 24) or patients with dementia (AD group, 29; DLB 
group, 20). Those diagnosed with AD met criteria of the 
National Institute on Aging and the Alzheimer Associa-
tion workgroup (NIA-AA 2011) [29], whereas patients 
with probable DLB satisfied stipulations of the DLB 
consortium established in 2017 [30]. The following were 
grounds for patient disqualification: (1) No diagnosis of 
AD or DLB; (2) inability to undergo DCE-MRI, periph-
eral blood collection, or neuropsychological assessment; 
(3) history of mental disorders or illicit drug abuse; or (4) 
acute or chronic liver or kidney dysfunction, malignant 
tumors, or other serious comorbidities. The HC group 
was populated by friends or relatives of these patients 
who had no histories of psychiatric or neurologic illness 
or evidence of cognitive decline.

All participants underwent comprehensive clinical 
interviews and neuropsychological assessments con-
ducted by physicians with expertise in impaired cogni-
tion. Various demographics (i.e., sex, age, and education) 

Table 1 Demographic and clinical characteristics for the HC group, AD group and DLB group

Data are expressed as mean ± SD or median (IQR)

HC healthy controls, AD Alzheimer’s disease, DLB dementia with Lewy bodies, APOE Apolipoprotein E, MMSE Mini-Mental State Examination, MoCA the Montreal 
Cognitive Assessment, CDR the clinical dementia rating, RBD REM sleep behaviour disorder, Aβ amyloid-β
a For the comparison between the HC and AD (Bonferroni-corrected p < 0.05)
b For the comparison between the HC and DLB (Bonferroni-corrected p < 0.05)
c For the comparison between the AD and DLB (Bonferroni-corrected p < 0.05)

HC (n = 24) AD (n = 29) DLB (n = 20) p-value

Age, years 68.9 ± 5.5 71.7 ± 7.3 71.7 ± 7.1 0.118

Sex, n (%) 0.493

 Men 10 (41.7%) 15 (51.7%) 7 (35.0%)

 Women 14 (58.3%) 14 (48.3%) 13 (65.0%

Education, years, n (%) 0.715

 0 0 (0.0%) 2 (6.9%) 1 (5.0%)

 1–6 6 (25.0%) 5 (17.2%) 5 (25.0%)

 ≥ 7 18 (75.0%) 22 (75.9%) 14 (70.0%)

Time since diagnosis, years – 3.0 (3.0, 6.6) 3.0 (2.0, 4.0) 0.503

Hypertension, n (%) 7 (29.2%) 7 (24.14%) 10 (50.0%) 0.363

Type 2 diabetes mellitus, n (%) 3 (12.5%) 6 (20.7%) 3 (15.0%) 0.711

Cardiac-cerebral vascular disease, n (%) 2 (8.3%) 4 (13.8%) 6 (30.0%) 0.137

Habits of smoking and/or drinking, n (%) 9 (37.5%) 5 (17.2%) 7 (35.0%) 0.207

APOE ε4 carriers, n (%) 4 (16.7%) 12 (41.4%) 12 (60.0%) 0.012b

MMSE 29.0 (27.8, 29.0) 18.5 ± 3.6 15.1 ± 5.4  < 0.001a,b

MoCA 25.7 ± 2.2 14.1 ± 4.5 10.7 ± 25.7  < 0.001a,b

CDR 0.0 (0.0, 0.0) 2.0 (1.0, 2.0) 2.0 (1.0, 1.8)  < 0.001a,b

Visual hallucinations, n (%) 0 (0.0%) 0 (0.0%) 16 (80.0%)  < 0.001b,c

Fluctuations, n (%) 0 (0.0%) 0 (0.0%) 12 (60.0%)  < 0.001b,c

Parkinsonism, n (%) 0 (0.0%) 0 (0.0%) 12 (60.0%)  < 0.001b,c

RBD, n (%) 0 (0.0%) 0 (0.0%) 17 (85.0%)  < 0.001b,c

Aβ1-40, pg/ml 100.77 (90.63, 163.48) 118.60 (98.36, 156.31) 182.85 (153.98, 204.85)  < 0.001b,c

Aβ1-42, pg/ml 13.75 (9.40, 22.98) 13.44 (8.80, 21.94) 24.09 (17.89, 26.54) 0.009b

Aβ1-42/Aβ1-40 0.13 (0.10, 0.16) 0.11 (0.09, 0.14) 0.13 (0.12, 0.13) 0.200
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and clinical parameters, including course of disease, 
comorbidities (such as hypertension, type 2 diabetes 
mellitus [T2DM], cardio- and cerebrovascular disease), 
and smoking/drinking habits, were contributed by close 
caregivers. All subjects were tested for global cognitive 
function by administering the Mini-Mental State Exami-
nation (MMSE) [31] and the Montreal Cognitive Assess-
ment (MoCA) [32], using the CDR scale [33] to gauge 
severity of cognitive impairment. These assessments took 
place on same days as MRI studies.

Sample collection and measurements
Before providing samples, we mandated a 12- to 14-h 
overnight fast for all participants, withholding anti-AD 
drugs during this time. Smoking, alcohol consump-
tion, and vigorous activity were also prohibited for 
24  h. On the day of or day after visitation, each par-
ticipant submitted to venipuncture, filling 6-mL EDTA-
coated collection tubes with peripheral blood. Within 
a 2-h window, each sample was centrifuged (2200 rpm, 
10 min) to separate plasma for storage (at -80° C) and 
later use.

The APOE genotyping procedure is detailed else-
where, in a previous publication [34].

ELISA kits (PK101 and PK102; Beijing 7D Biotech 
Inc, Beijing, China) served to assay plasma levels of 

Aβ1-40 and Aβ1-42. The specified detection range of 
Aβ1-40 was 0–300  pg/mL, with limit of blank (LoB), 
limit of detection (LoD), and limit of quantitation 
(LoQ) values of 0.9  pg/mL, 1.5  pg/mL, and 2.2  pg/
mL, respectively. Intra- and interassay variabilities 
were < 3% and < 10%, respectively. Each sample was ana-
lyzed twice on the same plate, all concentrations falling 
within the kit’s detection linearity range (22–252  pg/
mL). The detection range of Aβ1-42 was 0–160  pg/
mL (LoB, 0.6  pg/mL; LoD, 1.6  pg/mL; LoQ, 2.3  pg/
mL). Intra- and interassay variabilities again were < 3% 
and < 10%, respectively. Analyzed twice on the same 
plate (as before), concentrations obtained were within 
the kit’s detection linearity range (34–215 pg/mL).

MRI data acquisition
All participants were scanned using a 3T MRI system 
(Magnetom Prisma, Siemens Healthcare, Erlangen, 
Germany) equipped with a 64-channel head coil. Prior 
to DCE-MRI acquisition, precontrast T1 mapping was 
achieved using a 3D variable flip-angle sequence. B1 
mapping was also obtained to correct for B1 field inho-
mogeneity. DCE-MRI studies were acquired using 3D 
T1-weighted spoiled gradient-echo sequences as follows: 
repetition time/echo time (TR/TE), 5.2/1.8  ms; field of 

Fig. 2 The BBB permeability in different brain regions among AD, DLB and HC groups. DLB group had the higher BBB permeability constant Ktrans 
in cerebral cortex, frontal lobe, temporal lobe, parietal lobe and occipital lobe compared AD group or HC group. While AD group had higher BBB 
permeability constant Ktrans in the hippocampus than DLB group and HC group. Boxplots represent the median (thick horizontal line), with the box 
representing the 25th and 75th percentiles. “*” means the Bonferroni-corrected p < 0.05 and “**” means the Bonferroni-corrected p < 0.01, all 
significance by ANOVA tests. BBB blood brain barrier, AD Alzheimer’s disease, DLB dementia with Lewy bodies, HC healthy control, Ktrans transfer rate 
of contrast agent from intra- to extravascular spaces
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view (FOV), 230 × 187  mm2; matrix size, 192 × 156; slice 
thickness, 3 mm; number of slices, 56; and imaging time, 
30 × 11.7  s. Coincident with the sixth dynamic scan, an 
intravenous bolus (0.1 mmol/kg) of gadopentetate dime-
glumine (Gd-DTPA, Magnevist; Bayer HealthCare Phar-
maceuticals, Whippany, NJ, USA) was injected at 2 mL/s, 
followed by a 12 mL flush of saline at same rate.

MRI data analysis
The global cerebral cortex and areas pertinent to DLB 
and AD (ie, frontal, temporal, parietal, and occipital 
lobes and hippocampus) were regarded as regions of 
interest (ROIs) owing to their critical roles in cognitive 
function [35]. ROIs were manually delineated on precon-
trast DCE-MRI images by two experienced radiologists 
blinded to patient information and analytic results. DCE 
images were analyzed using the Patlak model [36] (1):

where C(t) denotes the concentration of contrast agent in 
a selected ROI (calculated from DCE-MRI signal intensi-
ties and precontrast T1 mapping data), Ktrans represents 
the rate of contrast agent transfer from the intra- to the 
extravascular space, Cp(t) is the vascular input function 
(derived from superior sagittal sinus) [37], and Vp signi-
fies fractional plasma volume. The kinetic model was fit-
ted pixel by pixel, using least squares method, and then 
averaged within each ROI. All delineations and analy-
ses relied on conventional software (MATLAB; Math-
Works, Natick, MA, USA). Representative precontrast 
T1-weighted images and Ktrans maps of AD, DLB, and HC 
groups were shown in Fig. 1.

Statistical analysis
All continuous variables were assessed for normal-
ity via Shapiro–Wilk test and then were described as 
mean ± standard deviation (SD) or median with inter-
quartile range (IQR). The comparisons between two 
groups were conducted by Student’s t-test or Mann–
Whitney U test, and three-way comparisons were 
achieved through analysis of variance (ANOVA) or 
Kruskal–Wallis H test. Categorical qualitative variables 
were presented as proportions and compared using 
the chi-squared test. Spearman’s correlation served to 
examine the correlations between Ktrans and clinical 
characteristics. Parameters of significance in univari-
ate analysis were retested, conducting stepwise multiple 
linear regression (with Bonferroni correction) to adjust 
for age and sex. All computations were driven by stand-
ard software (IBM SPSS, v26.0; IBM Corp, Armonk, NY, 
USA), setting significance at p < 0.05.

Results
Characteristics of participants
Demographic and clinical characteristics of participat-
ing subjects were shown by group (HC, AD, or DLB) 
in Table  1. There were no significant group differences 
in age, sex, years of education, various comorbidities 
(hypertension, T2DM, cardiovascular disease), or habits 
of smoking/drinking. Although we observed more APOE 
ε4 carriers in the DLB (vs HC) group, the AD and HC 
groups did not differ significantly in this regard. However, 
AD and DLB group members scored significantly lower 
on MMSE and MoCA tests and ranked higher on the 
CDR scale than did HC group members. In patients with 
DLB, 80% experienced visual hallucinations, 60% showed 
cognitive fluctuations, 60% displayed parkinsonism, and 
85% exhibited REM sleep behavior disorder (RBD).

(1)C(t) = Ktrans

t∫

0

Cp(τ )dτ + VpCp(t),

Table 2 Correlations between MMSE, MoCA and BBB 
permeability in different brain regions in AD, DLB and HC groups

Spearman correlation analysis was used to evaluate the correlations between 
MMSE, MoCA and BBB permeability in different brain regions in AD, DLB and HC 
groups, the Correlation Coefficients (R) and p-values were shown. There were no 
significant correlations between MMSE, MoCA and BBB permeability in different 
brain regions in DLB

MMSE Mini-Mental State Examination, MoCA the Montreal Cognitive 
Assessment, BBB blood brain barrier, AD Alzheimer’s disease, DLB dementia with 
Lewy bodies, HC healthy controls, Ktrans  transfer rate of contrast agent from intra- 
to extravascular spaces

Groups Ktrans (×  10−3  min−1) MMSE MoCA

R P – value R p-value

AD Cerebral cortex − 0.169 0.382 − 0.275 0.148

Frontal lobe − 0.287 0.131 − 0.303 0.110

Temporal lobe − 0.054 0.780 − 0.154 0.425

Parietal lobe − 0.271 0.155 − 0.379 0.043

Occipital lobe 0.050 0.797 − 0.149 0.441

Hippocampus − 0.225 0.240 − 0.233 0.223

DLB Cerebral cortex − 0.260 0.268 − 0.197 0.404

Frontal lobe − 0.255 0.279 − 0.176 0.457

Temporal lobe − 0.116 0.627 − 0.148 0.535

Parietal lobe − 0.237 0.314 − 0.193 0.415

Occipital lobe − 0.408 0.074 − 0.340 0.143

Hippocampus − 0.163 0.492 − 0.139 0.558

HC Cerebral cortex 0.105 0.627 − 0.001 0.995

Frontal lobe 0.163 0.446 0.281 0.183

Temporal lobe 0.060 0.781 0.072 0.739

Parietal lobe 0.113 0.598 0.081 0.708

Occipital lobe 0.039 0.858 − 0.307 0.144

Hippocampus − 0.009 0.966 0.275 0.194
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We also found the highest median level of Aβ1-40 in 
the DLB group (182.85  pg/mL, IQR: 153.98–204.85), 
significantly surpassing levels in both HC (100.77  pg/
mL, IQR: 90.63–163.48; p < 0.001) and AD (118.60  pg/
mL, IQR: 98.36–156.31; p = 0.002) groups. The plasma 
concentration of Aβ1-42 in the DLB group was sig-
nificantly higher than that of the HC group (p = 0.012), 
while appearing similar to that of the AD group 
(p = 0.058). There were no significant differences 
in Aβ1-42/Aβ1-40 ratios among HC, AD, and DLB 
groups.

The BBB permeability in HC, AD and DLB groups
As depicted in Fig. 2, the DLB group demonstrated a sig-
nificantly higher Ktrans for cerebral cortex, compared with 
HC (p = 0.024) and AD (p = 0.041) groups. In particu-
lar, the Ktrans values of parietal (p = 0.007) and occipital 
(p = 0.014) lobes were significantly higher for the DLB (vs 
HC) group, with similar values observed for frontal lobe 
(p = 0.193), temporal lobe (p = 0.229), and hippocampus 
(p = 0.662). Compared with the AD group, the DLB group 
registered a significantly higher Ktrans for occipital lobe 

(p = 0.018). Still, the Ktrans value for hippocampus proved 
significantly higher (p = 0.006) in the AD (vs HC) group.

The correlation between BBB permeability and clinical 
characteristics
Spearman’s correlation analysis was used to evaluated 
the correlation between BBB permeability and scores of 
MMSE, MoCA and CDR. It indicated no correlations 
between scores of MMSE, MoCA and Ktrans of cerebral 
cortex, frontal lobe, temporal lobe, parietal lobe, occipital 
lobe and hippocampus in DLB and HC groups (Table 2). 
There was no relation between Ktrans of cerebral cortex 
and CDR score, whereas elevated Ktrans values for pari-
etal (p = 0.025) and occipital (p = 0.037) lobes were sig-
nificantly linked to higher CDR scores in all participants 
(Fig.  3). These two brain regions were then subjected 
to multivariate linear regression analysis, with age and 
sex as covariates, respectively. Significant associations 
between increased Ktrans values of parietal (β = 0.391; 
p = 0.001) and occipital (β = 0.357; p = 0.002) lobes and 
higher CDR scores emerged as a result. Values of Ktrans in 
differing brain regions and CDR scores for AD and DLB 
groups are delineated in Supplementary Figs. 1, 2 and no 
significant correlations were found.

Fig. 3 Correlations between Ktrans and CDR scale in all participants. The correlation analysis of BBB permeability constant Ktrans and CDR scale 
in all participants showed positive correlation trends in cerebral cortex, frontal lobe, temporal lobe, parietal lobe, occipital lobe and hippocampus. 
Increased BBB permeability constant Ktrans in the parietal lobe and occipital lobe were significantly correlated to higher CDR score. CDR the clinical 
dementia rating, BBB blood brain barrier, HC healthy control, AD Alzheimer’s disease, DLB dementia with Lewy bodies, Ktrans transfer rate of contrast 
agent from intra- to extravascular spaces
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When analyzing the association between Ktrans and 
plasma Aβ1-42/Aβ1-40 ratio, Fig. 4 demonstrated a sig-
nificant correlation between increased Ktrans of cerebral 
cortex and plasma Aβ1-42/Aβ1-40 ratios in all partici-
pants (p = 0.003). Specifically, increased Ktrans values of 
frontal lobe (p = 0.004), temporal lobe (p = 0.042), and 
parietal lobe (p = 0.008) were significantly related to 
higher plasma Aβ1-42/Aβ1-40 ratios. Upon subjecting 
these four brain regions to multivariate linear regres-
sion analysis (with age and sex as respective covariates), 
significant associations between increased Ktrans of cer-
ebral cortex (β = 0.285; p = 0.015), frontal lobe (β = 0.237; 
p = 0.043), and parietal lobe (β = 0.265; p = 0.024) and 
higher plasma Aβ1-42/Aβ1-40 ratios emerged.

Specifically, there was no significant correlation 
between plasma Aβ1-42/Aβ1-40 ratios and Ktrans in the 
AD group (Fig. 5). While in the DLB group, correlation 
analysis showed that increased Ktrans of cerebral cor-
tex and parietal lobe was significantly associated with 
higher plasma Aβ1-42/Aβ1-40 ratios (Fig. 6). These two 
brain regions were included in multiple linear regres-
sion analysis with age and sex as covariates, respectively, 
and the results showed that increased Ktrans of parietal 
lobe (β = 0.441, p = 0.031) was significantly associated 

with higher plasma Aβ1-42/Aβ1-40 ratios after adjust-
ing for age and sex. In the HC group, correlation analy-
sis showed increased Ktrans of frontal lobe, parietal lobe 
and hippocampus was significantly associated with 
higher plasma Aβ1-42/Aβ1-40 ratios (Fig. 7). These brain 
regions were included in multiple linear regression analy-
sis with age and sex as covariates, and the results showed 
that increased Ktrans of frontal lobe (β = 0.615, p = 0.008), 
parietal lobe (β = 0.482, p = 0.030) and hippocampus 
(β = 0.468, p = 0.040) were significantly associated with 
higher plasma Aβ1-42/Aβ1-40 ratios after adjusting for 
age and sex.

Discussion
For the present study, we used DCE-MRI studies of 
test patients (with AD or DLB) and healthy individu-
als to compare BBB permeability (Ktrans), investigating 
its relation to clinical symptoms and plasma Aβ lev-
els. Our findings confirm a greater disruption of BBB 
within cerebral cortex (especially occipital lobe) of the 
DLB group, compared with HC and AD groups. More-
over, it was apparent that both CDR scores and plasma 
Aβ1-42/Aβ1-40 ratios were associated with BBB 

Fig. 4 Correlations between Ktrans and plasma Aβ1-42/Aβ1-40 ratio in all participants. The correlation analysis of BBB permeability constant Ktrans 
and plasma Aβ1-42/Aβ1-40 ratio in all participants showed positive correlation trends in cerebral cortex, frontal lobe, temporal lobe, parietal lobe, 
occipital lobe and hippocampus. Increased BBB permeability constant Ktrans in the cerebral cortex, frontal lobe, temporal lobe, and parietal lobe 
were significantly correlated to higher plasma Aβ1-42/Aβ1-40 ratio. Aβ amyloid-β, BBB blood brain barrier, HC healthy control, AD Alzheimer’s 
disease, DLB dementia with Lewy bodies, CDR the clinical dementia rating, Ktrans transfer rate of contrast agent from intra- to extravascular spaces
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permeability, offering new insights into the evolution of 
BBB pathology and disease severity.

Initially, we utilized DCE-MRI to assess patients 
with multiple neurodegenerative dementias, discov-
ering increases in Ktrans for patients with either AD 
or DLB. An earlier investigation, based on DCE-MRI 
studies of patients with AD, has already ascertained a 
correlation between increased Ktrans and elevated CSF 
levels of soluble platelet-derived growth factor recep-
tor β, reflecting BBB damage [38]. In another currently 
conducted study, patients with DLB similarly showed 
BBB dysfunction, suggesting a common pathophysi-
ologic mechanism for these two types of dementia. A 
recent systematic review and meta-analysis [10] had 
also disclosed significantly higher Q-Alb ratios and 
blood neurofilament light chain levels in patients with 
DLB (vs healthy controls), providing evidence that BBB 
disruption is involved. Notably, the DLB (vs AD) group 
showed a higher Ktrans for cerebral cortex, implying a 
BBB dysfunction of relatively greater magnitude. This 
result was aligned with that of a prior analysis revealing 

an increased Q-Alb ratio in patients with DLB (vs AD) 
[39].

Our efforts had likewise revealed that Ktrans values 
among HC, AD, and DLB populations differ for certain 
brain regions. Specifically, our DLB group demonstrated 
significantly higher Ktrans values for parietal and occipital 
lobes, compared with the HC group, and a higher Ktrans 
for occipital lobe, compared with the AD group. On the 
other hand, the AD group showed a significantly higher 
Ktrans for hippocampus than that found in the HC group. 
As a past report further attests, increased Ktrans in hip-
pocampus reflects a breakdown in BBB associated with 
cognitive impairment, so the hippocampus is a critical 
region in the progression of AD [38].

As for patients with DLB, previous structural imaging 
and flourine-18 fluorodeoxyglucose positron emission 
tomography (18F-FDG-PET) studies had documented 
structural atrophy and hypometabolism of occipital 
and parietal lobes [40, 41], indirectly supporting our 
findings. Hypometabolism of this sort had been a con-
sistent feature of DLB for decades, making this specific 
metabolic signature [42] a viable biomarker of DLB 

Fig. 5 Correlations between Ktrans and plasma Aβ1-42/Aβ1-40 ratio in AD patients. The correlation analysis of BBB permeability constant Ktrans 
and plasma Aβ1-42/Aβ1-40 ratio in AD patients showed positive but not significant correlation trends in cerebral cortex, frontal lobe, temporal lobe, 
parietal lobe, occipital lobe and hippocampus. Aβ amyloid-β, BBB blood brain barrier, AD Alzheimer’s disease, Ktrans transfer rate of contrast agent 
from intra- to extravascular spaces
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in diagnostic criteria [30]. Neuropathologic research 
directed at DLB also seems to indicate a reduced 
microvessel density within occipital lobe, accompanied 
by a significant decline in vascular endothelial growth 
factor. The latter was critical for formation and mainte-
nance of blood vessels and is a biomarker for BBB dam-
age [43]. Hence, Ktrans qualifies as a direct, non-invasive 
imaging biomarker for regional BBB deterioration.

We ultimately analyzed correlations between BBB 
permeability and clinical characteristics. No correla-
tions were found between scores of MMSE, MoCA and 
Ktrans of cerebral cortex and five brain regions in DLB 
and HC groups. The significant associations between 
increased Ktrans values in parietal and occipital lobes 
and higher CDR scores were apparent in all partici-
pants, once adjusted for age and sex by multiple lin-
ear regression, the significant findings still remained. 
Nation et  al. [44] had observed that CSF levels of 
soluble platelet-derived growth factor receptor β, a 
biomarker of pericyte and BBB damage, increased at 
higher CDR scores; and Lv et  al. [19] had determined 
a trend of increasing CDR scores as Q-Alb levels rose, 

although significance was not reached. Our data were 
in general agreement with previous investigations and 
suggest that Ktrans values derived through DCE-MRI 
were likely biomarkers for severity of BBB dysfunction 
and progression of dementia.

When analyzing the association between Ktrans values 
and plasma Aβ1-42/Aβ1-40 ratios, our multivariate linear 
regression model established significant links between 
increased Ktrans values of various brain regions (cerebral 
cortex, frontal and parietal lobes) and higher plasma 
Aβ1-42/Aβ1-40 ratios in all participants, after adjusting 
for age and sex. We also found the increased Ktrans values 
of frontal lobe, parietal lobes and hippocampus were cor-
related with higher plasma Aβ1-42/Aβ1-40 ratios in HC 
group, reflecting that higher Aβ deposition in the pres-
ence of BBB disruption as reported in previous studies 
[45, 46]. However, several studies suggested the increased 
BBB permeability in the hippocampus [13, 44], and the 
reduction of hippocampal volume might be related to Aβ 
deposition in old adults [47]. There is no more definitive 
study has elucidated the relationship between Aβ and 
BBB permeability in various brain regions. Indeed, the 

Fig. 6 Correlations between Ktrans and plasma Aβ1-42/Aβ1-40 ratio in DLB patients. The correlation analysis of BBB permeability constant Ktrans 
and plasma Aβ1-42/Aβ1-40 ratio in DLB patients showed positive correlation trends in cerebral cortex, frontal lobe, temporal lobe, parietal lobe, 
occipital lobe and hippocampus. Increased BBB permeability constant Ktrans in the cerebral cortex and parietal lobe were significantly correlated 
to higher plasma Aβ1-42/Aβ1-40 ratio. Aβ amyloid-β, BBB blood brain barrier, DLB dementia with Lewy bodies, Ktrans transfer rate of contrast agent 
from intra- to extravascular spaces
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plasma Aβ1-42/Aβ1-40 ratio had proven to be a robust 
peripheral biomarker of cerebral amyloid pathology in 
conjunction with AD [48], AD patients with BBB dis-
ruption had low Aβ1-40 levels [49]. Currently, there was 
no evidence to support a direct connection between Aβ 
and BBB injury in patients with DLB, despite our initial 
finding that increased Ktrans values of cerebral cortex and 
parietal lobes were correlated with higher plasma Aβ1-
42/Aβ1-40 ratios. Aβ deposition had been encountered 
in roughly one-fourth of such patients, according to neu-
ropathologic data [50]. Aβ levels had correlated as well 
with levels of α‐synuclein and are associated with shorter 
survival and a heightened rate of cognitive decline [51]. 
This relation may be attributable to pathophysiologic 
mechanisms, such as impaired protein homeostasis, 
whereby compromised protein turnover pathways affect 
both proteins. In addition, metabolic changes, neuroin-
flammation, or impaired synaptic function are poten-
tial contributors to the accumulation of α‐synuclein 
and Aβ in the setting of DLB. Both Aβ and α-synuclein 
may independently or jointly play roles in AD and DLB, 
influencing disease progression or BBB breakdown. This 

particular realization underscores the potential utility of 
Ktrans in evaluating disease burden and cognitive decline 
for either form of dementia.

Conclusions
Herein, we have detailed the first-time usage of DCE-
MRI to directly assess BBB integrity in patients with 
DLB, while also investigating associations between BBB 
integrity and significant clinical characteristics. But 
there are still some limitations. Firstly, the sample size 
was relatively small, which may explain the fact that 60% 
DLB patients carried APOE ε4 allele in our data. APOE 
ε4 allele is a typical risk factor for AD [52], also a strong 
risk factor across the Lewy body disease spectrum with 
a proportion of 20–60% in DLB [53–56]. It can enhance 
the dysfunction of BBB in AD [45] and increase the 
severity of Lewy body pathology independent of Alzhei-
mer pathology [55, 56], while previous studies did not 
find significant association between APOE ε4 allele and 
BBB dysfunction in DLB [23, 57]. Current study showed 
a slightly higher frequency of APOE ε4 carriers in DLB 

Fig. 7 Correlations between Ktrans and plasma Aβ1-42/Aβ1-40 ratio in HC group. The correlation analysis of BBB permeability constant Ktrans 
and plasma Aβ1-42/Aβ1-40 ratio in HC group showed positive correlation trends in cerebral cortex, frontal lobe, temporal lobe, parietal lobe, 
occipital lobe and hippocampus. Increased BBB permeability constant Ktrans in the frontal lobe, parietal lobe and hippocampus were significantly 
correlated to higher plasma Aβ1-42/Aβ1-40 ratio. Aβ amyloid-β, BBB blood brain barrier, HC healthy control, Ktrans transfer rate of contrast agent 
from intra- to extravascular spaces
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patients than HC and AD patients, no significant correla-
tion was found between APOE ε4 allele and Ktrans values 
in DLB, which might due to the small sample size with 20 
DLB patients. Thus, further validation is needed, drawn 
from a larger sampling and multiple diagnostic subsets. 
Secondly, as we did not find a significant difference in 
plasma Aβ1-42/Aβ1-40 ratio among HC, AD, and DLB 
groups, suggesting that CSF Aβ1-42/Aβ1-40 ratio may be 
more accurate as an AD biomarker. The fact that plasma 
levels of tau or α- synuclein, and CSF testing were lack-
ing also limited our ability to directly and comprehen-
sively investigate the importance of BBB permeability or 
to pursue pertinent CSF biomarkers. Besides, since there 
were no subjects in prodromal phase, we must expand 
our scope of research scope going forward to explore 
the early diagnostic benefit of DCE-MRI in patients with 
DLB.

In conclusion, we have found that the BBB leakage 
within cerebral cortex was common feature of DLB, prov-
ing significantly more severe than in AD and HC patient 
groups (especially at occipital lobe). BBB permeability 
was also associated with plasma Aβ1-42/Aβ1-40 ratios 
and CDR scores, which reflect dementia severity. These 
findings support the potential use of DCE-MRI to moni-
tor patients with DLB in terms of disease progression and 
declining cognition. They also provide impetus for future 
investigations of DLB, exploring molecular mechanisms 
of BBB breakdown and evaluating the merits of targeted 
therapeutic interventions.
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