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Abstract 

Background Structural and functional changes of the choroid plexus (ChP) have been reported in Alzheimer’s 
disease (AD). Nonetheless, the role of the ChP in the pathogenesis of AD remains largely unknown. We aim to unravel 
the relation between ChP functioning and core AD pathogenesis using a unique proteomic approach in mice 
and humans.

Methods We used an APP knock‑in mouse model,  APPNL‑G‑F, exhibiting amyloid pathology, to study the association 
between AD brain pathology and protein changes in mouse ChP tissue and CSF using liquid chromatography mass 
spectrometry. Mouse proteomes were investigated at the age of 7 weeks (n = 5) and 40 weeks (n = 5). Results were 
compared with previously published human AD CSF proteomic data (n = 496) to identify key proteins and pathways 
associated with ChP changes in AD.

Results ChP tissue proteome was dysregulated in  APPNL‑G‑F mice relative to wild‑type mice at both 7 and 40 weeks. 
At both ages, ChP tissue proteomic changes were associated with epithelial cells, mitochondria, protein modification, 
extracellular matrix and lipids. Nonetheless, some ChP tissue proteomic changes were different across the disease 
trajectory; pathways related to lysosomal function, endocytosis, protein formation, actin and complement were 
uniquely dysregulated at 7 weeks, while pathways associated with nervous system, immune system, protein degrada‑
tion and vascular system were uniquely dysregulated at 40 weeks. CSF proteomics in both mice and humans showed 
similar ChP‑related dysregulated pathways.

Conclusions Together, our findings support the hypothesis of ChP dysfunction in AD. These ChP changes were 
related to amyloid pathology. Therefore, the ChP could become a novel promising therapeutic target for AD.
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Background
Alzheimer’s disease (AD) is characterized by the accu-
mulation of amyloid-beta (Aβ) plaques, followed by the 
accumulation of neurofibrillary tangles [1–3]. Increas-
ing evidence suggests choroid plexus (ChP) dysfunction 
in AD [4, 5]. The ChP is a highly vascularized structure, 
located inside all four brain ventricles, and composed of 
a monolayer of tight-junction-bound epithelial cells on 
a basement membrane [6–8], which expresses amyloid 
precursor protein (APP). The ChP is involved in the pro-
duction of CSF, transport of ions, proteins, lipids, nutri-
ents and metabolic precursors across the epithelium 
to the CSF, and clearance of proteins such as Aβ, toxic 
substances, and metabolites from the CSF. It is also a 
gateway for immune cell entry into the brain [4, 6–12]. 
However, the involvement of the ChP in AD pathophysi-
ology remains largely unclear.

Morphological and functional changes of the ChP have 
been reported in both AD patients and mouse mod-
els [4, 5]. Morphological changes in AD include flat-
tening and atrophy of epithelial cells and thickening of 
the basement membrane and the vessel wall [5, 13–16]. 
Decreased CSF production and turnover by the ChP have 
also been reported in AD patients [4, 17], which might 
lead to impaired CSF Aβ clearance [18–20]. Dysregula-
tion of protein synthesis by the ChP is also observed in 
AD patients, such as increased production of Aβ [4, 21, 
22] and decreased production of transthyretin (TTR) 
[14], which is protective against cortical Aβ toxicity [23]. 
Several ChP transcriptomic and proteomic studies in 
AD patients have been performed, which have indicated 
dysregulated CSF production and barrier integrity [24], 
alongside changes in metabolic, immune, and lipids-
related pathways [25, 26]. CSF proteomic analysis in AD 
patients has shown post-mortem abnormal inflammatory 
signals and protein accumulations, associated with sig-
nificant remodeling of the ChP [27]. A recent in vivo CSF 
proteomic study identified a subgroup of persons with 
AD showing mainly ChP dysfunction [28].

Animal models of AD are critical to understanding 
disease pathogenesis and pathophysiology, and can offer 
insights into early stages of disease. Several years ago, 
new AD knock-in (KI) mouse models were generated 
including the  APPNL-G-F model [29, 30]. These AD KI 
models offer a new opportunity to study AD pathology 
in  vivo as they closely represent the physiological accu-
mulation of Aβ, without the potential risk of artificial 
phenotypes associated with the transgenic overexpres-
sion of the Aβ precursor protein (APP) present in the 
first-generation AD models [31]. This  APPNL-G-F mouse 
model presents early and severe Aβ pathology, but does 
not manifest neurofibrillary tangles or neurodegenera-
tion [32], which makes it an excellent model to study the 

earliest stages of AD. Moreover, proteomics allows the 
identification and quantification of proteins in tissues 
or biological fluids and is a core technique to study the 
pathophysiological mechanisms underlying a disease [33, 
34]. Currently, there are no reports available investigating 
the ChP tissue proteomic profile in an AD mouse model, 
while this would be relevant for understanding the mech-
anisms underlying ChP changes in relation to amyloid 
pathology in early stages of AD.

The primary aim of the current study was to investigate 
the ChP changes in relation to AD pathogenesis using 
ChP tissue proteomics in the  APPNL-G-F mouse model. 
Our secondary aim was to examine how proteomic 
changes in the mouse ChP were mirrored in the CSF 
and to compare this to human CSF proteomics findings 
in AD participants with amyloid but without tau pathol-
ogy (A+T−) or with amyloid and tau pathology (A+T+) 
across the clinical spectrum.

Methods
Mice
Female  APPNL-G-F mice (n = 10), a KI mouse model car-
rying Arctic, Swedish, and Beyreuther/Iberian muta-
tions [29], and female C57BL/6J mice (wild-type (WT) 
control; n = 10) were bred in the animal house of the 
VIB-UGent Center for Inflammation Research and were 
maintained in ventilated cages, under specific pathogen-
free conditions, with ad libitum access to food and water, 
and a 14-h light/10-h dark cycle.  APPNL-G-F and WT 
mice were sacrificed at 7 or 40 weeks old. The 7 weeks old 
 APPNL-G-F mice represent an early stage of AD; amyloid 
plaques, microgliosis and astrocytosis start to develop 
[29]. The 40 weeks old  APPNL-G-F mice represent a more 
advanced stage of AD with amyloid plaques, synaptic 
loss, microgliosis and astrocytosis [29]. Animal studies 
were conducted in compliance with governmental and 
EU guidelines and were approved by the ethical commit-
tee of the Faculty of Sciences, Ghent University, Belgium.

AD pathology in our mouse model was confirmed by 
immunohistochemistry and 3D image analysis (Addi-
tional file 1—Results and Additional Fig. 1A–E; Protocols 
in Additional file 1—Methods and materials) [29, 31, 35].

Mice CSF and tissue sample isolation
CSF was collected just before sacrifice via the cisterna 
magna puncture method as described previously [15, 16, 
36] and in the Additional file 1—Methods.

To isolate the ChP tissue, mice were transcardially per-
fused with D-PBS/heparin [0.2% heparin (5.000  IU/ml, 
Wockhardt)]. Next, both lateral and fourth ventricular 
ChPs were isolated, snap-frozen in liquid nitrogen and 
stored at -80 °C until further use [37].
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Mass spectrometry
For proteomic analysis, 5  µl of CSF per mouse and 
pooled lateral and fourth ventricular ChPs were pro-
cessed using the PreOmics iST Sample preparation 
kit (PreOmics Gmbh, Germany), as described by the 
manufacturer. Peptides were re-dissolved in 20 µl load-
ing solvent A [0.1% trifluoroacetic acid in water/ace-
tonitrile (ACN) (98:2, v/v)] of which 2  µl was injected 
for LC–MS/MS analysis on an Ultimate 3000 RSLC-
nano system in-line connected to a Q Exactive HF mass 
spectrometer (Thermo). More details on the mouse 
proteomic method can be found in the Additional 
file 1—Methods.

For the ChP tissue and CSF proteomic analysis respec-
tively, 8519 and 1358 proteins were identified. For further 
analysis, only the proteins that had at least 3 observations 
per group [38] were included resulting in 7696 proteins 
for the ChP tissue proteomics and 319 proteins for the 
CSF proteomic analyses.

Classification of ChP protein expression
We labelled the significantly dysregulated proteins in 
the mouse ChP tissue and CSF proteomic comparisons 
as being highly expressed in the ChP using published 
transcriptomic data providing expression levels of genes 
transcribed in ChP from adult normal mice under physi-
ological conditions [39]. We defined gene expression lev-
els above the 90th percentile as high expression [40].

Pathway enrichment analysis
Pathway enrichment analyses were performed separately 
for the decreased and increased significant proteins. 
QIAGEN Ingenuity Pathway Analysis (IPA) software 
(QIAGEN Inc., https:// digit alins ights. qiagen. com/ IPA) 
[41] was used to find the canonical pathways associ-
ated with the significant proteins. Gene Ontology (GO) 
enrichment analysis was performed using PANTHER 
(Protein ANalysis THrough Evolutionary Relationships, 
version 15.0, Los Angeles, CA, USA) [42] in order to 
identify the biological processes, cellular components 
and molecular functions related to the significant pro-
teins. The GO enrichment results were validated using 
ClueGO, a Cytoscape plug-in [43]. All tools use Fisher’s 
exact test with false discovery rate (FDR; Benjamini–
Hochberg procedure [34, 44]) and report only pathways 
with a FDR corrected p-value < 0.05. To reduce redun-
dancy and facilitate interpretation, we clustered related 
canonical and GO pathways in broader categories. Fur-
ther investigation on the functions of specific proteins 
were also performed using Uniprot [45] and the Human 
Protein Atlas (proteinatlas.org) [46].

Human CSF proteomics
To compare mouse findings to human CSF protein 
changes, we examined data from 496 participants (mean 
age 68.0 (SD 8.4) years, 54% women) from the European 
Medical Information Framework for Alzheimer’s Disease 
Multimodal Biomarker Discovery study (EMIF-AD MBD, 
n = 346 from 7 cohorts) [47], the Washington University 
Knight Alzheimer Disease Research Center (ADRC, n = 98) 
study [48] and the Maastricht BioBank Alzheimer Center 
Limburg cohort (BB-ACL, n = 52) memory clinic study 
[49]. We included individuals with availability of CSF Aβ42 
(A) and phosphorylated tau (p-tau, T) data, and centrally 
analysed CSF proteomics (3102 proteins identified; tan-
dem mass tag (TMT) technique). Methods are described 
previously [34, 50, 51] and provided in Additional File 1. 
Participants were classified as controls if they had nor-
mal cognition (NC) with normal A and T (n = 141). We 
included individuals across the clinical spectrum with AD 
pathology, defined as abnormal CSF Aβ1-42 (A+), with 
either abnormal p-tau (T+) or normal p-tau (T−), result-
ing in the following groups: NC A+T− [n = 65], mild 
cognitive impairment (MCI) A+T− [n = 40], Dementia 
A+T− [n = 17], NC A+T+ [n = 55], MCI A+T+ [n = 114], 
Dementia A+T+ [n = 64] (more details on participant clas-
sification are provided in the Additional File 1—Methods). 
We tested whether the significant proteins in the human 
proteomic comparisons were enriched for expression in 
the ChP using the online database Allen Brain Atlas [52] 
through Harmonizome [53]. Additionally, we performed 
expression enrichment analysis using the R package ABAE-
nrichment [34, 54].

Statistical analysis
For the mouse study, ChP tissue and CSF protein levels 
were normalized according to the mean and standard devi-
ation of the respective WT group and compared between 
groups using ANOVA.

For the human study, CSF protein levels were normalized 
according to the mean and standard deviation of the con-
trol group and compared between groups using ANCOVA 
corrected for age and sex. In addition, we used linear 
regression to study associations between human CSF Aβ42 
levels (predictors) and CSF levels of proteins associated 
with the ChP (outcome measures). To this end, Z-scores of 
local CSF Aβ42 levels were calculated for each centre.

Statistical analyses were performed using R 3.6.2, Graph-
Pad Prism 8.0 and IBM SPSS Statistics version 26.

Results
Choroid plexus tissue proteomic profile of the APPNL‑G‑F 
mouse model
To investigate how the ChP changes in relation to AD 
pathogenesis, we conducted ChP tissue proteomic 

https://digitalinsights.qiagen.com/IPA
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analysis in the  APPNL-G-F mouse model at two distinct 
ages, i.e., 7 weeks and 40 weeks old.

ChP tissue proteome analysis of 7  weeks old 
 APPNL-G-F mice showed 184 decreased proteins and 119 
increased in the ChP compared to the 7 weeks old WT 
mice (Fig. 1A, Additional Table 2). The decreased pro-
teins were associated with pathways linked with lipids, 
mitochondria and the energy metabolism, epithelial 
cells, immune system (complement), metabolism, lys-
osomes, and protein transport (Fig. 1B, C). Of the 184 
decreased proteins, 25 proteins had a high expression 
in the ChP based on published transcriptomic data [39] 
(Fig. 1A). The increased proteins were related to path-
ways associated with endocytosis, actin, protein for-
mation and modification, extracellular matrix (ECM), 
and epithelial cells (Fig.  1D, E). Of the 119 increased 
proteins, 14 proteins had a high expression in the ChP 
(Fig. 1A). The top 10 proteins with the lowest p-values 
and their main functions can be found in Table 1.

ChP tissue proteome analysis of 40  weeks old 
 APPNL-G-F mice showed 130 decreased and 107 
increased proteins compared to their respective con-
trols (40  weeks old WT mice; Fig.  1F, Additional 
Table  2). The decreased proteins were associated with 
pathways linked with nervous system, immune system 
(interleukins and chemokines), lipids, vascular sys-
tem and endothelial cells, ECM, as well as signalling 
(Fig.  1G, H). Of the 130 decreased proteins, 17 pro-
teins had a high expression in the ChP (Fig.  1F). The 
increased proteins were related to pathways associ-
ated with lipids, mitochondria and the energy metabo-
lism, protein modification and degradation, immune 
system (neutrophils), epithelial cells, and metabolism 
(Fig. 1I, J). Twenty-two increased proteins were highly 
expressed in the ChP (Fig. 1F). The top 10 proteins with 

the lowest p-values and their main functions can be 
found in Table 2.

Next, we identified age-dependent proteomic changes 
at the ChP by comparing the proteomic results of the 
7 weeks old  APPNL-G-F mice to the ones of the 40 weeks 
old  APPNL-G-F mice. Pathways linked with epithelial cells, 
mitochondria, protein modification, ECM and lipids were 
dysregulated at both ages (Fig.  1B–E, G–J). However, 
only ~ 5% of the dysregulated proteins overlapped in both 
7 and 40  weeks old comparisons (Additional Table  2). 
More specifically, pathways associated with lysosomes, 
endocytosis, protein formation, actin and complement 
were uniquely dysregulated in the 7 weeks old  APPNL-G-F 
mice, while pathways associated with the nervous system, 
immune system (neutrophils, interleukins, chemokines), 
protein degradation and vascular system were uniquely 
dysregulated in the 40 weeks old  APPNL-G-F mice.

Comparison of ChP tissue with CSF proteomic profiles of 
the APPNL‑G‑F mouse model
Next, we performed CSF proteomic analysis to test 
whether pathological changes at the ChP are mirrored in 
the CSF of the  APPNL−G−F mouse model (Fig. 2). Results 
of the mouse CSF proteomic analysis are described in 
Additional file 1—Results, Fig. 2 and Additional Table 3.

We investigated the overlap between ChP tissue and 
CSF dysregulated proteins for the 7 and 40  weeks old 
mice comparisons with controls. Two hundred eighty-
nine proteins were identified in both ChP tissue and CSF 
(8% showed correlation between ChP and CSF). How-
ever, there was no overlap in dysregulated proteins in 
ChP tissue and CSF at both ages. When we compared 
processes associated with the dysregulated proteins in 
ChP tissue and CSF, the 7  weeks old  APPNL-G-F mouse 
showed overlap in dysregulated pathways associated with 

Fig. 1 Choroid plexus (ChP) proteomics in  APPNL‑G‑F versus wild‑type (WT) mice. A Volcano plot displaying the log2 fold‑change against the ‑log10 
statistical P‑value for the 7 weeks old  AppNL‑G‑F compared to their respective WT. Significantly different proteins are red. Significantly different 
proteins highly expressed by the ChP are green. The top 10 proteins are named. B Selected canonical pathways from Ingenuity pathway 
analysis (IPA) for the decreased proteins in the 7 weeks old  APPNL‑G‑F compared to their respective WT. C Selected Gene Ontology (GO) terms 
including biological process for the decreased proteins in the 7 weeks old  APPNL‑G‑F compared to their respective WT. D Selected canonical 
pathways from IPA for the increased proteins in the 7 weeks old  APPNL‑G‑F compared to their respective WT. E Selected GO terms including biological 
process for the increased proteins in the 7 weeks old  APPNL‑G‑F compared to their respective WT. F Volcano plot displaying the log2 fold‑change 
against the −log10 statistical P‑value for the 40 weeks old  APPNL‑G‑F compared to their respective WT. Significantly different proteins are 
red. Significantly different proteins highly expressed by the ChP are green. The top 10 proteins are named. G Selected canonical pathways 
from Ingenuity pathway analysis (IPA) for the decreased proteins in the 40 weeks old  APPNL‑G‑F compared to their respective WT. H Selected Gene 
Ontology (GO) terms including biological process for the decreased proteins in the 40 weeks old  APPNL‑G‑F compared to their respective WT. I 
Selected canonical pathways from IPA for the increased proteins in the 40 weeks old  APPNL‑G‑F compared to their respective WT. J Selected GO terms 
including biological process for the increased proteins in the 40 weeks old  APPNL‑G‑F compared to their respective WT. Pathways linked with lipids 
are yellow, pathways related to mitochondria and energy metabolism are light green, epithelial cells‑linked pathways are light purple, immune 
system‑related pathways are pink, metabolism/signaling‑linked pathways are grey, lysosome‑related pathways are dark purple, protein‑linked 
pathways are brown, pathways linked with nervous system are blue, vascular‑related pathways are  red, ECM‑related pathways are dark green, 
endocytosis‑related pathways are turquoise and actin‑related pathways are orange

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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ECM, lysosomes, protein processing, actin, lipids and 
complement, while the 40  weeks old  APPNL-G-F mouse 
showed only overlap in dysregulated pathways linked to 
ECM and the vascular system.

Comparison of mouse ChP and CSF proteomic results 
with human CSF proteomics
To further understand how ChP-related changes in the 
proteomes of the  APPNL-G-F mouse model reflect those 
observed in human patients, we next compared the 
mouse proteomic results (both CSF and ChP tissue) to 
the CSF proteomic results in humans with AD. In A+T− 
and A+T+ individuals with NC, MCI or AD dementia, 
we first selected CSF proteins that differed between AD 
patients and controls. Next, we tested which of the pro-
teins had a high expression in the ChP according to the 
Human Brain Atlas, to define the proteins involved in 
ChP functioning (Additional Table  4). Among AD CSF 
proteins with an increased concentration relative to 
controls, a significant number of proteins were highly 
expressed by the ChP in NC A+T− (56%, ABAenrich-
ment p ≤ 0.001, Fig.  3A) and MCI A+T− (38%, ABAe-
nrichment p = 0.017, Fig.  3F), but not in AD dementia 
(33%, ABAenrichment p = 0.817, Additional Fig. 2A). The 
decreased proteins were not enriched for expression in 

the ChP. The ChP-enriched dysregulated proteins in per-
sons with A+T− were different along the clinical spec-
trum (Additional Fig. 3, Additional Table 4). Nonetheless, 
in NC and MCI A+T−, the increased proteins highly 
expressed by the ChP were associated with lysosomes, 
vascular system, ECM, oxidative stress and protein pro-
cessing or degradation (Fig.  3D-E and I-J). In individu-
als with A+T+, we did not find significant enrichment 
for expression in the ChP (15 to 35% of significant pro-
teins highly expressed by the ChP, Additional Fig. 4A–C). 
Further analysis therefore focused on the A+T− groups. 
More details on the results of the human CSF proteomics 
analysis can be found in Additional file 1—Results.

ChP changes in AD in both mouse (ChP tissue and CSF) 
and human (CSF) proteomes
Figure 4 presents an overview of the overlap in dysregu-
lated ChP-associated pathways identified in AD mouse 
CSF, mouse ChP tissue and human CSF proteomes. 
These analyses showed ChP involvement in AD with 
protein changes related to the ECM, lysosomes, protein 
processing, lipids, complement, vascular system and 
mitochondria.

To investigate the similarity of CSF protein changes 
associated with ChP functioning in AD across species, 

Table 1 Top 10 proteins with the lowest p‑values in the comparison of the 7 weeks old  APPNL‑G‑F versus their relative wild‑type (WT)

The main functions of the proteins are explained

Adgre5 Adhesion G protein-coupled receptor E5, Cog6 Component of oligomeric golgi complex 6, ChP choroid plexus, Fbxo10 F-box protein 10, Hdhd5 Haloacid 
dehalogenase like hydrolase domain containing 5, Npr2 Natriuretic peptide receptor 2, Pigu Phosphatidylinositol glycan anchor biosynthesis class U, Pla2g15 
Phospholipase A2 group XV, Sin3a SIN3 transcription regulator family member A, Slc30a1 Solute carrier family 30 member 1, Spcs1 Signal peptidase complex subunit 1

Protein name APPNL-G-F 
vs WT 
(7 weeks)

Highly 
expressed by 
the ChP

Main functions

Sin3a ↘ Transcriptional repressor; required for the transcriptional repression of circadian target genes; regulate 
cell cycle progression; required for cortical neuron differentiation and callosal axon elongation

Cog6 ↘ ✓ Subunit of the conserved oligomeric Golgi complex; Required for maintaining normal structure 
and activity of the Golgi apparatus; Involved in protein transport

Pla2g15 ↘ Lysophospholipases; Enzyme that act on biological membranes to regulate the multifunctional 
lysophospholipids

Hdhd5 ↘ Predicted to be involved in glycerophospholipid biosynthetic process; Predicted to be active in mito‑
chondria

Adgre5 ↘ Member of the EGF‑TM7 subfamily of adhesion G protein‑coupled receptors; Mediates cell–cell inter‑
actions; Plays a role in cell adhesion, in leukocyte recruitment, activation and migration, and in the 
binding to chondroitin sulfate and the cell surface complement regulatory protein CD55

Spcs1 ↗ Component of the signal peptidase complex (SPC); Catalyzes the cleavage of N‑terminal signal 
sequences from nascent proteins as they are translocated into the lumen of the endoplasmic reticu‑
lum; Predicted to enable peptidase activity and ribosome binding activity

Fbxo10 ↘ Substrate‑recognition component of the SCF (SKP1‑CUL1‑F‑box protein)‑type E3 ubiquitin ligase 
complex.; Plays a role in apoptosis, ubiquitination and subsequent lysosomal degradation

Pigu ↗ Fifth subunit of GPI transamidase complex that attaches GPI‑anchors to proteins

Npr2 ↘ Receptor for natriuretic peptide; Has guanylyl cyclase activity; May play a role in the regulation of skel‑
etal growth

Slc30a1 ↗ Zinc ion:proton antiporter; Mediating zinc efflux from cells against its electrochemical gradient pro‑
tecting them from intracellular zinc accumulation and toxicity
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we compared human and mouse CSF proteomics. 
There were 215 proteins commonly identified in both 
datasets. Seventeen CSF proteins were dysregulated in 
both mice and humans and relevant for ChP function-
ing (Fig.  5; 5 proteins decreased, 3 proteins increased, 

and 9 proteins in opposite direction), which were asso-
ciated with lysosomes, ECM, immune system (comple-
ment, T cells, B cells, immunoglobulins, cytokines), cell 
adhesion, lipids, actin and microtubule and hemostasis 

Table 2 Top 10 proteins with the lowest p‑values in the comparison of the 40 weeks old  APPNL‑G‑F versus their relative wild‑type (WT)

The main functions of the proteins are explained

Chn1 Chimerin 1, ChP choroid plexus, Dnajb1 DnaJ heat shock protein family (Hsp40) member B1, F3 Coagulation factor III, Gmeb1 Glucocorticoid modulatory element 
binding protein 1, Hadha Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha, Hat1 Histone acetyltransferase 1, Hmgn2 High mobility 
group nucleosomal binding domain 2, Osbpl3 Oxysterol binding protein like 3, Usp6nl USP6 N-terminal like, Wdr45b WD repeat domain 45B

Protein name APPNL-G-F 
vs WT 
(7 weeks)

Highly 
expressed by 
the ChP

Main functions

Chn1 ↘ GTPase‑activating protein for p21‑rac and a phorbol ester receptor; Predominantly expressed in neu‑
rons; Plays an important role in neuronal signal‑transduction mechanisms

Gmeb1 ↗ Trans‑acting factor; Increases sensitivity to low concentrations of glucocorticoids

Osbpl3 ↗ Intracellular lipid receptors; Associated with both cell and endoplasmic reticulum membranes; May 
regulate ER morphology; Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhe‑
sion

Hadha ↗ Alpha subunit of the mitochondrial trifunctional protein; Catalyzes the last three steps of mitochon‑
drial beta‑oxidation of long chain fatty acids (major energy‑producing process)

Hmgn2 ↗ Binds nucleosomal DNA and is associated with transcriptionally active chromatin; May help maintain 
an open chromatin configuration around transcribable genes

Dnajb1 ↗ ✓ Member of the heat shock protein family. Involved in a wide range of cellular events, such as protein 
folding and oligomeric protein complex assembly; Promote protein folding and prevent misfolded 
protein aggregation

Wdr45b ↘ Component of the autophagy machinery; Controls the major intracellular degradation process 
by which cytoplasmic materials are packaged into autophagosomes and delivered to lysosomes 
for degradation

Usp6nl ↘ Enables GTPase activator activity and small GTPase binding activity; Involved in several processes, 
including plasma membrane to endosome transport, positive regulation of GTPase activity and retro‑
grade transport, plasma membrane to Golgi

Hat1 ↗ ✓ Type B histone acetyltransferase; Involved in the rapid acetylation of newly synthesized cytoplasmic 
histones; Histone acetylation, particularly of histone H4, plays an important role in replication‑depend‑
ent chromatin assembly

F3 ↘ ✓ Coagulation factor III; Enables cells to initiate the blood coagulation cascades; Platelets and mono‑
cytes have been shown to express this coagulation factor under procoagulatory and proinflammatory 
stimuli

(See figure on next page.)
Fig. 2 Cerebrospinal fluid (CSF) proteomic profiles of in  APPNL‑G‑F versus wild‑type (WT) mice. A Volcano plot displaying the log2 fold‑change 
against the −log10 statistical P‑value for the 7 weeks old  APPNL‑G‑F compared to their respective WT. Significantly different proteins are 
red. Significantly different proteins highly expressed by the ChP are green. The top 10 proteins are named. B Selected canonical pathways 
from Ingenuity pathway analysis (IPA) for the decreased proteins in the 7 weeks old  APPNL‑G‑F compared to their respective WT. C Selected Gene 
Ontology (GO) terms including biological process for the decreased proteins in the 7 weeks old  APPNL‑G‑F compared to their respective WT. D 
Selected canonical pathways from IPA for the increased proteins in the 7 weeks old  APPNL‑G‑F compared to their respective WT. E Selected GO terms 
including biological process for the increased proteins in the 7 weeks old  APPNL‑G‑F compared to their respective WT. F Volcano plot displaying 
the log2 fold‑change against the −log10 statistical P‑value for the 40 weeks old  APPNL‑G‑F compared to their respective WT. Significantly different 
proteins are red. Significantly different proteins highly expressed by the ChP are green. The top 10 proteins are named. G Selected canonical 
pathways from Ingenuity pathway analysis (IPA) for the decreased proteins in the 40 weeks old  APPNL‑G‑F compared to their respective WT. H 
Selected Gene Ontology (GO) terms including biological process for the decreased proteins in the 40 weeks old  APPNL‑G‑F compared to their 
respective WT. I Selected canonical pathways from IPA for the increased proteins in the 40 weeks old  APPNL‑G‑F compared to their respective 
WT. J Selected GO terms including biological process for the increased proteins in the 40 weeks old  APPNL‑G‑F compared to their respective WT. 
Vascular‑related pathways are red, actin‑related pathways are orange, ECM‑related pathways are dark green, immune system‑related pathways 
are pink, pathways associated with oxidative stress are light blue, pathways linked with lipids are yellow, protein‑linked pathways are brown, 
endocytosis/phagocytosis‑related pathways are turquoise and lysosome‑related pathways are dark purple
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(Table  3). Out of those 17 proteins, 5 were highly 
expressed by the ChP (Fig. 5, Table 3).

Next, to understand to what extent proteomic changes 
in AD mice ChP tissue are present in AD human CSF, 
we compared human CSF proteomics to mice ChP tis-
sue proteomics. This also allowed us to identify relevant 
ChP related proteins in humans beyond those highly 
expressed by the ChP. There were 691 proteins com-
monly identified in both datasets. Eleven proteins were 
dysregulated in both mice and humans (Fig. 5; 4 proteins 
decreased and 7 proteins in opposite direction), which 
were associated with mitochondria and energy metabo-
lism, nervous system, complement, ECM, protein forma-
tion, folding and modification, cell–cell and cell–matrix 
interactions and actin (Table 3). Six proteins were highly 
expressed by the ChP (Fig. 5, Table 3).

Together, we identified 28 proteins associated with 
ChP functioning and dysregulated in both AD mouse 
and human proteomes (17 in mouse versus human CSF 
proteomes; 11 in mouse ChP tissue versus human CSF 
proteomes; see above). Next, we investigated the asso-
ciation between the levels of those 28 proteins and CSF 
Aβ42 in the overall human dataset (Table  3). Globally, 
reduced levels of 17 proteins were associated with lower, 
thus more abnormal, Aβ42. Those proteins were associ-
ated with the nervous system, energy metabolism, pro-
tein formation, folding and modification, lipids, cell–cell 
adhesion and immune system (complement, T cells). We 
further observed, for 7 proteins, that increased levels 
were associated with more abnormal Aβ42 levels. Those 
proteins were linked to the lysosomes, ECM and colla-
gen, mitochondria, immunoglobulins and cytoskeleton. 
Four proteins were not associated with Aβ42 levels.

Discussion
We aimed to investigate the changes of the ChP in rela-
tion to the pathogenesis of AD using ChP tissue prot-
eomics in  APPNL-G-F mice, and compared this to CSF 
proteomic profiles in both AD mice and humans. In 
ChP tissue of mice at both 7 and 40 weeks old, pathways 
linked with epithelial cells, mitochondria, protein modifi-
cation, extracellular matrix and lipids were dysregulated, 
while pathways associated with lysosome, endocytosis, 
protein formation, actin and complement were mainly 
seen at 7  weeks, and pathways associated with nervous 
system, interleukins and neutrophils, protein degradation 
and vascular system were mainly found at 40 weeks. Sim-
ilar results were observed in the CSF of  APPNL-G-F mice, 
as well as of human AD patients with amyloid but with-
out tau pathology. Our findings highlight ChP dysfunc-
tion in relation to amyloid pathology, which is relevant 
for AD treatment strategies.

A high number of dysregulated proteins were found in 
the ChP tissue of the  APPNL-G-F AD mouse model, already 
at early disease stages (7  weeks old). The ChP protein 
changes were linked to multiple dysregulated pathways 
of which several showed consistency across ages, while 
some differed across ages. Findings are consistent with a 
previous ChP transcriptomic study in another AD mouse 
model (J20), in which they found a significant num-
ber of dysregulated genes already at an early AD stage 
(3  months), with differences across ages [55]. This sug-
gests a dynamic and complex process underlying ChP 
dysfunction in AD.

The dysregulated pathways observed in AD and linked 
with epithelial cells, vascular system, ECM, lysosome, 
mitochondria and protein processing can be associated 

Fig. 3 Cerebrospinal fluid (CSF) proteomic profiles and associated ChP pathways in A+T− individuals with normal cognition (NC) and mild 
cognitive impairment (MCI). (A) Volcano plot displaying the log2 fold‑change against the −log10 statistical P‑value for the comparison NC A+T− vs 
controls. Significantly different proteins are red. Significantly different proteins highly expressed by the ChP are green. The top 10 proteins highly 
expressed by the ChP are named. The number of proteins highly expressed by the ChP, as well as the gene expression enrichment in the ChP 
(ABAenrichment) p‑value, are displayed. B Selected canonical pathways from Ingenuity pathway analysis (IPA) for the decreased proteins highly 
expressed by the ChP in the comparison NC A+T− vs controls. C Selected Gene Ontology (GO) terms including biological process for the decreased 
proteins highly expressed by the ChP in the comparison NC A+T− vs controls. D Selected canonical pathways from IPA for the increased proteins 
highly expressed by the ChP in the comparison NC A+T− vs controls. E Selected GO terms including biological process for the increased proteins 
highly expressed by the ChP in the comparison NC A+T− vs controls. F Volcano plot displaying the log2 fold‑change against the −log10 statistical 
P‑value for the comparison MCI A+T− vs controls. Significantly different proteins are red. Significantly different proteins highly expressed 
by the ChP are green. The top 10 proteins highly expressed by the ChP are named. The number of proteins highly expressed by the ChP, as well 
as the gene expression enrichment in the ChP (ABAenrichment) p‑value, are displayed. G‑ Selected canonical pathways from Ingenuity pathway 
analysis (IPA) for the decreased proteins highly expressed by the ChP in the comparison MCI A+T− vs controls. H Selected Gene Ontology (GO) 
terms including biological process for the decreased proteins highly expressed by the ChP the comparison MCI A+T− vs controls. I Selected 
canonical pathways from IPA for the increased proteins highly expressed by the ChP in the comparison MCI A+T− vs controls. J Selected GO terms 
including biological process for the increased proteins highly expressed by the ChP in the comparison MCI A+T− vs controls. Immune‑related 
pathways are pink, vascular‑related pathways are red, pathways associated with lysosomes are dark purple, pathways associated with oxidative 
stress are light blue, pathways related to ECM are dark green, pathways linked with lipids are yellow, pathways related to energy metabolism 
and mitochondria are light green and protein‑linked pathways are brown

(See figure on next page.)
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with changes in the morphology of the ChP. Flattening 
and atrophy of ChP epithelial cells, as well as a decline 
of epithelial tight junctions, in mice and humans with 
AD have been reported previously, and might be linked 
with increased Aβ deposits [5, 13, 14, 56]. Changes in the 
ChP basement membrane, a thin layer of ECM, in AD 
has also been previously reported, with increased thick-
ness (due to an accumulation of collagen) and irregular-
ity, which reduce the permeability, plasma ultrafiltration, 
ChP epithelial oxygenation and CSF formation [4, 14, 57]. 
A high number of vesicles with lysosomal characteristics 
are present in the ChP cytoplasm [58]. Multiple human 
and mouse AD studies have reported impairment of 
autophagy–lysosomal pathway, which is partly responsi-
ble for the accumulation of Aβ [59–62]. A high density 
of mitochondria, Golgi apparatus and a smooth endo-
plasmic reticulum can be found in the ChP epithelial 
cells [58]. In AD, Golgi defects and endoplasmic reticu-
lum stress have been reported, leading to a dysfunction 
of folding, trafficking, processing, and sorting of proteins 
[63, 64], while a defect in mitochondrial enzyme activity 
of the ChP epithelial cells can result in decreased trans-
port across the epithelial cells and thus has implications 
in Aβ clearance in the ChP of AD patients [65, 66]. On 

the other hand, Aβ itself can also impair mitochondrial 
function in the ChP [67].

The dysregulated pathways related to lipids and 
immune system observed in AD can be associated with 
functional dysfunction of the ChP. The ChP plays a cru-
cial role in the transport of lipids from the blood to the 
CSF [68] and acts as a reservoir for multiple types of 
immune cells [10]. Previous studies on AD patients 
reported the presence of complement components as 
well as activation of the complement cascade in the ChP 
[69, 70].

While the protein changes in tissue were similar to 
those in CSF on a pathway level, at the protein level, ChP 
tissue changes were not directly reflected in the CSF in 
our AD mouse model. This could be linked with the ChP 
epithelial cell and tight junction alterations that we found 
in our ChP tissue proteomics analysis, which may indi-
cate changes in blood-CSF barrier permeability [56, 71]. 
Furthermore, a previous mouse study showed that intrac-
erebroventricular injection of Aβ1-42 oligomers rapidly 
affected ChP epithelial cells and tight junctions, which 
were associated with an increase in blood-CSF barrier 
leakage [15]. Alternatively, as CSF has been isolated in 
sedated mice while tissue has been extracted after death, 

Fig. 4 Selected Ingenuity pathway analysis (IPA) canonical pathways or Gene Ontology (GO) biological/cellular processes enriched for proteins 
in the different comparisons of the paper with decreased (blue) or increased (red) concentrations relative to controls. The comparisons include 
the choroid plexus (ChP) proteomic analysis of 7 weeks old  APPNL‑G‑F mice versus\wild‑type (WT), the ChP proteomic analysis of the 40 weeks 
old  APPNL‑G‑F mice versus their relative WT, the cerebrospinal fluid (CSF) proteomic analysis of the 7 weeks  APPNL‑G‑F mice versus their relative 
WT, the CSF proteomic analysis of the 40 weeks old  APPNL‑G‑F mice versus their relative WT, the CSF proteomic analysis of human with normal 
cognition (NC) and abnormal amyloid‑β 42 (A) levels and normal phosphorylated tau (T) levels (A+T−) versus controls, the CSF proteomic 
analysis of individuals with mild cognitive impairment (MCI) A+T− versus controls and the CSF proteomic analysis of Alzheimer’s dementia (AD) 
A+T− versus controls. P‑values are presented and scaled based on the scale in the right of the graphs. ECM‑related pathways are dark green, 
lysosome‑related pathways are dark purple, protein‑linked pathways are brown, pathways linked with lipids are yellow, immune system‑related 
pathways are pink, vascular‑related pathways are red and pathways related to mitochondria and energy metabolism are light green
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this could have resulted in differences in changes in pro-
teins in CSF and ChP tissue. Future studies are needed 
to further explore the AD-related changes in ChP perme-
ability in relation to changes in epithelial cells, epithelial 
tight junctions and epithelial transport proteins. Simi-
larly, a small overlap was observed at the protein level 
between mice and humans for significant CSF proteins 
associated with ChP functioning.

We found a correlation with CSF amyloid levels for 
most proteins that were associated with ChP changes in 
both mouse and human. In line with previous publica-
tions, this supports a causal relationship between ChP 
protein changes and amyloid pathology in AD [4, 17–22]. 

Several studies in both AD patients and AD mouse mod-
els have reported Aβ deposits in the ChP epithelial cells 
and stroma surrounding capillaries in AD [5, 14, 67, 72], 
which could lead to morphological and functional altera-
tions of ChP [15, 67, 73].

Our study has several strengths and limitations. To the 
best of our knowledge, this is the first study reporting 
ChP tissue proteomic analysis in an AD mouse model. 
We used  APPNL-G-F knock-in mice, which is an AD 
model exhibiting amyloid pathology without the typical 
APP overexpression artefacts. Another main strength of 
this study is our translational approach. We compared 
ChP tissue proteomics in AD mice to CSF proteomics 

Fig. 5 Choroid plexus (ChP)‑related proteins dysregulated in both mice (ChP tissue or CSF) and humans (CSF). The comparisons include the ChP 
tissue proteomic analysis of the 7 weeks old  APPNL‑G‑F mice versus their relative wild‑type (WT), the ChP proteomic analysis of the 40 weeks old 
 APPNL‑G‑F mice versus their relative WT, the cerebrospinal fluid (CSF) proteomic analysis of the 7 weeks old  APPNL‑G‑F mice versus their relative 
WT, the CSF proteomic analysis of the 40 weeks old  APPNL‑G‑F mice versus their relative WT, the CSF proteomic analysis of human with normal 
cognition (NC) and abnormal amyloid‑β 42 (A) levels and normal phosphorylated tau (T) levels (A+T−) versus controls, the CSF proteomic analysis 
of individuals with mild cognitive impairment (MCI) A+T− versus controls and the CSF proteomic analysis of Alzheimer’s dementia (AD) A+T− 
versus controls. P‑values are presented and scaled based on the dot scale in the right of the graphs. A blue dot means decreased concentrations 
relative to controls and a red dot means increased concentrations relative to controls. AD Alzheimer’s dementia, Adam22 ADAM metallopeptidase 
domain 22, C3 Complement C3, Cacna2d1 Calcium voltage‑gated channel auxiliary subunit alpha2delta 1, Cadm4 Cell adhesion molecule 4, Cluh 
clustered mitochondria protein homolog, CSF cerebrospinal fluid, ChP choroid plexus, Ctsd cathepsin D, Dcn decorin, Enpp2 Autotaxin, Gm2a 
Ganglioside GM2 activator, Gsn Gelsolin, Icoslg Inducible T cell costimulator ligand, Igkc Immunoglobulin kappa constant, Krt10 Keratin 10, Ldhb 
Lactate dehydrogenase B, Man1b1 Endoplasmic reticulum mannosyl‑oligosaccharide 1,2‑alpha‑mannosidase protein, Marcks Myristoylated alanine 
rich protein kinase C substrate, MCI Mild cognitive impairment, NC Normal cognition, Ntm Neurotrimin, Opcml Opioid binding protein/cell adhesion 
molecule like, Plod1 procollagen‑lysine,2‑oxoglutarate 5‑dioxygenase 1 protein, Ptprg Receptor‑type tyrosine‑protein phosphatase gamma, Ptprn2 
Protein tyrosine phosphatase receptor type N2, Sema7a Semaphorin 7A, Serpinf2 Serpin family F member 2, Serpini1 Serpin family I member 1, Sirpa 
Signal regulatory protein alpha, Ube2v1 Ubiquitin conjugating enzyme E2 V1, Vgf Vgf nerve growth factor inducible
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Table 3 Linear regression table between the 28 choroid plexus (ChP)‑related proteins and CSF amyloid‑β 42 (Aβ42) levels

P-value
Beta

CSF Aβ42 Highly 
expressed by 
the ChP

Main functions

Adam22 0.001
0.129

Membrane‑anchored protein; Implicated in cell–cell and cell–matrix interactions; May function as an integrin 
ligand; It has no metalloprotease activity

C3 0.021
0.093

Complement component; Plays a central role in the activation of complement system (both classical 
and alternative)

Cacna2d1 < 0.001
0.284

Subunit of voltage‑dependent calcium channels; Mediate the influx of calcium ions into the cell upon mem‑
brane polarization

Cadm4 0.014
0.099

Cell–cell adhesion protein; Involved in negative regulation of protein phosphorylation, regulation of Rac 
protein signal transduction and regulation of wound healing

Cd55 0.004
0.116

Glycoprotein involved in the regulation of the complement cascade; Inhibits complement activation 
by destabilizing and preventing the formation of C3 and C5 convertases

Cluh 0.011
0.157

✓ mRNA‑binding protein; involved in proper cytoplasmic distribution of mitochondria

Ctsd < 0.001
− 0.272

✓ Lysosomal protease; plays a role in amyloid protein precursor (APP) processing; is the principal Aβ‑degrading 
protease

Dcn < 0.001
− 0.186

✓ Extracellular matrix protein; plays a role in collagen fibril assembly

Enpp2 < 0.001
− 0.323

✓ Hydrolase; Hydrolyzes lysophospholipids to produce the signaling molecule lysophosphatidic acid (LPA)

Gm2a < 0.001
0.253

✓ Lipid transport protein; acts as a substrate specific co‑factor for the lysosomal enzyme beta‑hexosaminidase 
A; important for the normal lysosomal function

Gsn 0.060
0.076

Actin‑modulating protein; Has functions in both assembly and disassembly of actin filaments

Icoslg < 0.001
0.149

Ligand for the T‑cell‑specific cell surface receptor ICOS; Acts as a costimulatory signal for T‑cell proliferation 
and cytokine secretion; Induces also B‑cell proliferation and differentiation into plasma cells

Igkc 0.018
− 0.097

Constant region of immunoglobulin light chains

Krt10 0.039
− 0.084

✓ Keratin; forms the intermediate filament, which, along with actin microfilaments and microtubules, compose 
the cytoskeleton of epithelial cells

Ldhb 0.009
0.107

B subunit of lactate dehydrogenase enzyme; which catalyzes the interconversion of pyruvate and lactate 
with concomitant interconversion of NADH and NAD + in a post‑glycolysis process

Man1b1 0.157 0.066 ✓ Glycosidase; found in the ER quality control compartment; involved in glycoprotein quality control targeting 
of misfolded glycoproteins for degradation; involved in N‑glycan biosynthesis

Marcks 0.042
0.084

Substrate for protein kinase C; Actin filament crosslinking protein; Involved in cell motility, phagocytosis, 
membrane trafficking and mitogenesis

Ntm < 0.001
0.233

Neural cell adhesion protein

Opcml < 0.001
0.224

Cell adhesion protein

Plod1 < 0.001
− 0.199

✓ Endoplasmic reticulum hydroxylase; catalyzes hydroxylation of lysine residues in collagen alpha chains; 
is required for normal assembly and cross‑linking of collagen fibrils

Ptprg < 0.001
0.180

✓ Protein phosphatase; signaling molecules that regulate a variety of cellular processes including cell growth, 
differentiation and mitotic cycle

Ptprn2 < 0.001
0.340

Plays a role in vesicle‑mediated secretory processes; Plays a role in insulin secretion in response to glucose 
stimuli

Sema7a 0.087
0.070

Semaphorin protein; Promotes production of pro‑inflammatory cytokines by monocytes and macrophages. 
Plays an important role in modulating inflammation and T‑cell‑mediated immune responses

Serpinf2 0.025
− 0.091

Protease inhibitor; Major inhibitor of plasmin; Major role in regulating the blood clotting pathway

Serpini1 < 0.001
0.143

Serine proteinase inhibitor; Reacts with and inhibits tissue‑type plasminogen activator; Plays a role in the reg‑
ulation of axonal growth and the development of synaptic plasticity

Sirpa < 0.001
0.216

Supports adhesion of cerebellar neurons, neurite outgrowth and glial cell attachment; Important during syn‑
aptogenesis and in synaptic function; Mediates negative regulation of phagocytosis, mast cell activation 
and dendritic cell activation

Ube2v1 0.092
0.082

Mediates transcriptional activation of target genes; Plays a role in the control of progress through the cell 
cycle and differentiation
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in AD mice and humans to gain novel insights into the 
role of the ChP in AD pathogenesis. Yet, for comparisons 
between these findings, this resulted in a smaller set of 
overlapping proteins that could be studied. This could 
have led to missing key pathways and proteins associated 
with the ChP implication in AD. Moreover, we made use 
of a unique large dataset for the human CSF proteomic 
analyses which covered the whole clinical spectrum. 
Yet, for the human dataset, we used ChP expression to 
define the proteins involved in the functioning of the 
ChP. While this is the best proxy at hand, this may have 
resulted in less identified proteins that play a role in the 
ChP. Future research should validate our findings using 
post-mortem human ChP samples, from individuals with 
various extents of AD pathology. Moreover, the exclusive 
use of female mice may potentially limit the generaliza-
bility of our findings to both sexes. Previous publications 
showed earlier AD pathology onset in female mice com-
pared to male mice, with more profound amyloidosis and 
a higher percentage of astrocytes in the cortex and hip-
pocampus of 18-month old female  APPNL-G-F mice com-
pared to male mice [74]. It could also be that early ChP 
changes are more pronounced in female mice.

Conclusions
Together, our findings support the hypothesis of dys-
regulated ChP functioning in AD. These ChP changes 
were already present at early stages of AD, were related 
to amyloid pathology, and were related to similar key 
pathways across the disease trajectory for mice and 
the clinical trajectory of humans. Key pathways related 
to the ChP dysfunction in AD are associated with 
ECM, lysosomes, lipids, protein processing, comple-
ment, vascular system and mitochondria. Our results 
further contribute towards better pathophysiologi-
cal characterization of the involvement of the ChP in 
AD. It has implications for drug development, as ChP 
changes were already present at early stages of AD and 

associated with amyloid pathology. Addressing funda-
mental mechanisms linked to ChP functioning, such as 
ECM-related pathways, lysosomal pathways, or vascu-
lar pathways, may hold therapeutic promise.
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