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Alterations in brain fluid physiology 
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Abstract 

Oedema occurs when higher than normal amounts of solutes and water accumulate in tissues. In brain parenchy-
mal tissue, vasogenic oedema arises from changes in blood–brain barrier permeability, e.g. in peritumoral oedema. 
Cytotoxic oedema arises from excess accumulation of solutes within cells, e.g. ischaemic oedema following stroke. 
This type of oedema is initiated when blood flow in the affected core region falls sufficiently to deprive brain cells 
of the ATP needed to maintain ion gradients. As a consequence, there is: depolarization of neurons; neural uptake 
of  Na+ and  Cl− and loss of  K+; neuronal swelling; astrocytic uptake of  Na+,  K+ and anions; swelling of astrocytes; 
and reduction in ISF volume by fluid uptake into neurons and astrocytes. There is increased parenchymal solute 
content due to metabolic osmolyte production and solute influx from CSF and blood. The greatly increased  [K+]isf 
triggers spreading depolarizations into the surrounding penumbra increasing metabolic load leading to increased 
size of the ischaemic core. Water enters the parenchyma primarily from blood, some passing into astrocyte endfeet 
via AQP4. In the medium term, e.g. after three hours, NaCl permeability and swelling rate increase with partial open-
ing of tight junctions between blood–brain barrier endothelial cells and opening of SUR1-TPRM4 channels. Swelling 
is then driven by a Donnan-like effect. Longer term, there is gross failure of the blood–brain barrier. Oedema resolu-
tion is slower than its formation. Fluids without colloid, e.g. infused mock CSF, can be reabsorbed across the blood–
brain barrier by a Starling-like mechanism whereas infused serum with its colloids must be removed by even slower 
extravascular means. Large scale oedema can increase intracranial pressure (ICP) sufficiently to cause fatal brain her-
niation. The potentially lethal increase in ICP can be avoided by craniectomy or by aspiration of the osmotically active 
infarcted region. However, the only satisfactory treatment resulting in retention of function is restoration of blood 
flow, providing this can be achieved relatively quickly. One important objective of current research is to find treat-
ments that increase the time during which reperfusion is successful. Questions still to be resolved are discussed.
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1 Introduction
Previous reviews in this series [1–5] have covered the 
principles of regulation of the composition, volume and 
circulation of brain extracellular fluid (ECF). This review 
looks at changes in distribution of intracellular fluid 
(ICF) and ECF in the early stages of ischaemic oedema 
within the brain. The term oedema refers to tissue swell‑
ing that results from excess accumulation of watery fluid. 
This can happen in any part of the body, but this review 
focusses on that which occurs in brain parenchymal tis‑
sue [6, 7].

The barriers to movements of substances between 
ICF, interstitial fluid (ISF), cerebrospinal fluid (CSF) and 
blood plasma are sufficiently permeable to water to allow 
water movements to maintain the osmolality of brain 
parenchyma closely equal to that in plasma (see appendix 
B in [1]). Hence even though most of the volume increase 
occurring during oedema formation results from 
increased water, in the absence of a change in plasma 
osmolality there must be accumulation of solutes. There 
are three possible sources of the additional solutes within 
the affected region of the parenchymal tissue:

• catabolism of molecules;
• transport from blood across the blood-brain barrier;
• transport from CSF either via perivascular pathways 

or across the brain surfaces, i.e. across the ependyma 
lining the ventricles or the pia lining the subarach-
noid spaces.

The relative contribution of solutes from these different 
sources will vary depending on the nature of the oedema, 
its location and the stage of its development. For exam‑
ple, new osmoles from catabolism may be dominant in 
regions of necrosis following contusion [8–11] because 
breakup of proteins and other macromolecules could 
easily generate enough small molecules to double the 
amount of solute in a region.
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Where oedema is localized, the surrounding regions 
can usually deform to accommodate the swelling without 
compromising the local blood flow or disrupting connec‑
tions between cells. Hence localised oedema is regarded 
by some as a sign rather than a cause of further devel‑
opment of pathology (see appendix A). However, there 
must be limits to the degree of swelling. The sum of the 
volumes of blood, ECF and ICF, together with the solids 
(see Fig. 2 of [1]) must add up to the volume enclosed by 
the skull (the Monro‑Kellie dogma, see e.g. [12]). Thus 
if the sum of ICF and ISF, i.e. the tissue fluid volume, 
increases, the volumes of one or more of the other com‑
ponents must decrease. The volume of blood is normally 
about 4% of the total cranial volume and small decreases 
have little consequence. Somewhat larger changes in 
brain tissue volume can be accommodated by adjusting 
outflow of CSF and hence the volume it occupies within 
the cranium. However, still larger total oedema volumes 
can develop and these may have serious consequences.

Firstly, the increased volume can increase total pressure 
which can compress cerebral blood vessels sufficiently to 
reduce blood flow and produce ischaemia, damage and 
further oedema.

Secondly, if the volume of the cortex, including both 
grey and white matter, increases to a critical level, then 
it may herniate across the tentorium into the space occu‑
pied normally by the brain stem (for a diagram see [13]). 
Similarly, if the total volume of the brain becomes too 
large, there may be herniation of parts of the hindbrain 
through the foramen magnum. Either form of herniation 
may be fatal. From 1966 to 1975 there were 100 admis‑
sions to the Mayo Clinic for infarction in the territory of 
the internal cerebral artery ending with the death of the 
patient. Of these, 31 died of herniation, 25 within 4 days 
of admission [14]. Similarly in a European study out of 55 
patients with complete middle cerebral artery territory 
infarction herniation was the cause of death in 43 with 12 
patients surviving [15].

1.1  Types of oedema
Oedemas can be classified according to their locations, 
e.g. peritumoral oedema, or their causes, e.g. ischae‑
mic oedema, or most usefully for present purposes their 
mechanisms. Traditionally, four types of mechanism 
have been recognised: osmotic, cytotoxic, vasogenic and 
periventricular. To these should be added the oedema 
associated with hemorrhage and hematomas. As a result 
of the early release of biochemically active products into 
the tissue, this type of oedema is sufficiently different 
even in its early stages as to warrant a separate review. 
This has been provided recently by Wan et al. [16]).

Cerebral oedema in which fluid accumulates primar‑
ily intracellularly can be experimentally produced very 

rapidly (minutes) by reducing the osmolality of the blood 
perfusing the brain. Water then enters into the tissue, 
moving up the gradient of osmolality (i.e. down its own 
gradient of chemical potential) across the intact blood–
brain barrier and the membranes of the parenchymal 
cells. This is called osmotic oedema.

The distinction between cytotoxic oedema and vaso-
genic oedema was introduced by Klatzo [17]. Cyto‑
toxic oedema arises from excess accumulation of solutes 
within cells. Vasogenic oedema arises from break‑down 
of the blood–brain barrier. There have been a number of 
suggestions for amendment to this terminology, e.g. that 
of Betz (see e.g. [7]) who offered the name ‘intact‑bar‑
rier’ in place of ‘cytotoxic’ and ‘open‑barrier’ instead of 
‘vasogenic’ and more recently that of Simard et  al.[18].1 
Despite this, Klatzo’s terminology still shapes most discus-
sion. The best example of cytotoxic oedema is the ischae-
mic oedema seen in stroke prior to gross disruption of 
the blood–brain barrier. The best clinical example of vaso-
genic oedema is peritumoral oedema where the vascula-
ture supplying the tumour is modified and has properties 
similar to that supplying peripheral tissues. Periventricu-
lar oedema, which is observed in hydrocephalus and 
arises from changes in the structure of the parenchyma 

1 "Oedema" has implied tissue swelling for more than a century. With this 
definition, a simple redistribution of water between cells and ISF does not 
qualify as a type of oedema [7]. Simard and coworkers [18–21]) have pro-
posed redefinition of the word oedema so that it no longer implies tissue 
swelling. In their notation, cell swelling, even when it occurs entirely at the 
expense of ISF, is cytotoxic oedema while what has traditionally been called 
cytotoxic oedema becomes a superposition of cytotoxic and ionic oedema. 
One possible motivation for this change is to allow different names for two 
different sets of molecular processes, one occurring in parenchymal cells, 
the other in the endothelial cells of the blood–brain barrier. It has been sug-
gested that such a change in nomenclature allows increased precision and 
specificity in descriptions of the processes. However, anything that can be 
said using one notation could also be said using the other. "Cellular oedema" 
is just "cell swelling" from the traditional terminology while "ionic oedema" 
refers to "the concept of transcapillary water and electrolyte transport into 
brain parenchyma" [18]. Ionic oedema as a concept is not something that 
can be observed. It simply restates that cytotoxic cell swelling only becomes 
cytotoxic oedema (old nomenclature) when there is influx of material from 
outside. This review follows Klatzo and Betz in referring to “cell swelling” 
with “oedema” reserved for swelling of the tissue. Their nomenclature has a 
number of advantages:
•  it maintains the connection between the meaning of "oedema" in dis-

cussions of mechanisms and the meaning of it in clinical practice where 
"oedema" implies macroscopic, i.e. tissue swelling;

•  it avoids having different meanings for "oedema" when referring to the 
brain or to peripheral tissues;

•  it avoids the incorrect implication that "ionic oedema" is a separate type 
of swelling that has been observed in the absence of "cytotoxic oedema" 
(new notation); and

•  it avoids the implication that the osmotically active solutes added to 
the parenchyma have to be ions, making it easier to discuss the role of 
osmotically active metabolites.

 In the usage adopted here "cellular oedema" means oedema (i.e. swelling of 
a tissue) in which most of the extra volume is located within the cells and 
"extracellular oedema" means oedema in which most of the extra volume 
is in the extracellular fluid (compare usage in [22]). The term "cell swelling" 
carries no implication for whether or not the tissue is swollen.



Page 4 of 33Hladky and Barrand  Fluids and Barriers of the CNS           (2024) 21:51 

adjacent to the ventricles, is discussed in Sects. 8.2.1 and 
8.2.2.3.1 of [1].

This review is concerned mainly with physiological 
mechanisms and so will discuss ischaemic oedema with 
emphasis primarily on events during the first nine to 
twelve hours immediately after the challenge that pro‑
voked the oedema. The review by Jiang et al. [23] covers 
events important in the longer term changes that take 
place over days. The long term responses to trauma and 
the oedema that it causes are considered in the literature 
of neuropathology, see e.g. [24].

1.2  Cytotoxic oedema
With cytotoxic oedema, the initiating event is a distur‑
bance of metabolism in the cells of the brain parenchyma. 
Additional osmotically active solutes can be produced 
within the cells directly by altering metabolism and/or 
indirectly by reducing supply of ATP and thus impairing 
the ability to exclude ions. The resultant metabolic dis‑
turbances lead to cell swelling as water is drawn in from 
the surrounding ISF. This transfer of fluid does not in 
itself cause overall parenchymal swelling because the ISF 
volume decreases [6, 7]. However, ISF volume becomes 
partially restored (see further discussion in later sec‑
tions) due to influx of solutes and water from outside the 
parenchyma either across the blood–brain barrier [6, 17], 
or from CSF presumably via perivascular spaces [25, 26] 
(for background see Sect. 5.6 in [3]). This allows further 
increase in cell volume and results in overall tissue swell‑
ing, i.e. cytotoxic oedema.

More generalised oedema in the whole brain can result 
following global ischaemia produced by cardiac arrest 
(see Sect. 3.5.3). In this situation, the resultant cessation 
of blood flow overall stops delivery of  O2 and glucose, 
and removal of  CO2 from tissues and, as described above, 
such metabolic disturbances will produce cell swelling 
at the expense of ISF volume. It is possible that there is 
some restoration of ISF volume from CSF. If or when 
blood flow is restored, then there is a source of fluid 
which can be added to ISF and from there into cells [27].

Global ischaemia leads to irreversible loss of vital neu‑
rological functions. This typically can occur in less than 
10 min following cardiac arrest. Most neurons survive if 
blood flow is restored after substantially longer periods 
but loss of function possibly depends on selective neu‑
ronal loss under ischaemic conditions (see e.g. [28, 29]). 
Selective neuronal loss also occurs in focal ischaemia 
(see Sects. 4.1 and 5) but long‑term functional recovery 
may occur because surviving portions of the brain can 
compensate.

1.3  Vasogenic oedema
With vasogenic oedema, the initiating event is a failure, 
opening or defect in the blood–brain barrier. This will 
allow solutes, importantly NaCl and plasma proteins, and 
water to enter the brain parenchyma. The gradients driv‑
ing entry may be hydrostatic pressure or the resultant of 
hydrostatic and colloid osmotic pressure depending on 
the size selectivity of the barrier opening. This results in 
tissue swelling.

1.4  Other types of swelling
Some forms of tissue swelling are customarily excluded 
from being called oedema. One important example is 
brain tissue swelling resulting from vascular engorge‑
ment. At least according to Marmarou et  al. [30] this 
latter type of swelling is not regarded as brain oedema. 
Increase in brain volume resulting from tumour growth 
is also not of itself oedema, but it is often accompanied 
by oedema of the surrounding brain tissues.

2  Cytotoxic oedema associated with ischaemic 
stroke. Onset

In ischaemic stroke, blockage of arteries or arterioles 
decreases the blood flow and thus the supply of  O2 and 
glucose to a region of the parenchyma. The decrease 
can be severe but is normally not total, because there is 
some supply of blood via collaterals. It is conventional to 
think of an affected region as divided into a core in which 
neurons and other cells are irreversibly damaged and 
a penumbra in which the cells are still viable. Immedi‑
ately after the reduction in blood flow the core includes 
areas of grey matter in which the flow is reduced from a 
normal value >  ~ 50 mL  min−1 / (100 g) [31, 32] to <  ~ 10 
mL  min−1 / (100 g) [32–39]. In practice these cells cannot 
be rescued and will become part of the infarct because 
attempts at reperfusion cannot be made quickly enough, 
(see e.g. [29, 40, 41]).

A timeline of changes occurring in the core is shown in 
Fig. 1.

The surrounding penumbra is functionally defined 
as the region in which neurons are electrically silent2 
but still have a nearly normal membrane potential [42]. 
Blood flow in this region is typically greater than 12 mL 
 min−1 / (100 g) but less than 18 mL  min−1/(100 g) ([32, 
36, 37, 39]). The core expands over time (see Fig. 1) at the 
expense of the penumbra, but this process is slow enough 
that cells in the penumbra can be rescued by timely 

2 Blood-flow in the penumbra is greater than that in the core and, at least 
initially there is not the depolarization seen in the core but nevertheless 
electrical activity is absent. A number of factors may contribute to this 
loss of activity with a likely cause being suppression of release of excita-
tory transmitters, prominently glutamate, which in turn may be related to 
changes in ATP and  Ca2+ levels in presynaptic terminals [29, 33, 37, 43].
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reperfusion. The pre‑rescue perfusion level threshold 
required to allow rescue to be possible increases with the 
delay before reperfusion [36].

3  Initial events in the development of ischaemic 
oedema

The processes involved in the onset of oedema in the core 
and its initial spread into the penumbra can be summa‑
rized as follows:

• Depolarization of neurons in the core, and neu-
ral uptake of Na+ and Cl−, loss of K+ and neuronal 
swelling (Sect.  3.1). In the core, neurons quickly 
exhaust their supply of  O2 and glucose and thus 
much of their ability to produce the ATP needed to 
maintain ion gradients and hence membrane poten-
tial. They depolarize, take up  Na+, release somewhat 
less  K+, take up  Cl− preserving electroneutrality, and 
swell.

• Propagation of spreading depolarizations into the 
penumbra and beyond (Sect.  3.2). Depolarization of 
neuronal membranes and greatly increased  [K+]isf in the 
core trigger spreading depolarizations that propagate 
into the penumbra and surrounding parenchyma and 
lead to expansion of the core.

• Uptake of Na+, K+ and anions and swelling of astro-
cytes in the core (Sect. 3.3). Astrocytes respond to the 
ischaemia by taking up  K+,  Na+,  HCO3

−, and  Cl− and 
swelling.

• Reduction in ISF volume by cellular uptake of 
fluid (Sects. 3.4). Swelling of neurons and astrocytes 
occurs by influx of solutes and water from ISF thus 
reducing ISF volume.

• Increase in solute content of the parenchyma and 
development of oedema (Sect. 3.5). There is influx 
of solutes from both CSF (Sect.  3.5.1) and blood 
(Sect.  3.5.2) and production of additional solutes 
within the parenchyma (Sect. 3.5.3). This increase in 

Fig. 1 Timeline of changes in the core in the first 12 h of cortical ischaemic oedema. In less than 5 min of ischaemia, intracellular ATP 
concentrations in the core fall,  Na+ and  Ca2+ pumps fail, neurons become depolarized and release  K+ which is is transferred from neurons 
to astrocytes. After 5 min (as shown in orange) it becomes evident that: there are spreading depolarizations that extend into the penumbra; ion 
gradients collapse; both neurons and astrocytes swell at the expense of ISF volume. The combined volume occupied by ISF and cells increases 
initially as CSF enters enlarged perivascular spaces and subsequently as NaCl and water enter the parenchyma across the blood–brain barrier. The 
rate of swelling is sustained by changes in blood–brain barrier properties (as shown in green). These include opening of SUR1-TRPM4 channels 
allowing  Na+ to pass through endothelial cells and into astrocyte endfeet (see Sects. 3.5.2 and 4.2). There are also conformational changes 
in the tight junctions between endothelial cells increasing paracellular permeability of the endothelial cell layer (see Sect. 4.2.2). At first this 
allows small molecules to pass through and eventually large molecules and cells to enter as well. Gross failure of the blood–brain barrier occurs 
within a day. At longer times than shown there is generalised disintegration both of extracellular matrix and of all cell types in the core
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parenchymal solute content leads to influx of water 
and consequential increase in total tissue volume, i.e. 
oedema develops. Most of the solutes and water from 
plasma and from CSF that enter ISF continue into the 
parenchymal cells.

• Presence of AQP4 in astrocyte endfeet allowing water 
that crosses the blood-brain barrier to enter directly 
into the endfeet (Sect. 3.6).

Detailed analyses of the processes listed above are 
described in Sects. 3.1 to 3.6.

3.1  Depolarization of neurons in the core 
and the immediate consequences

At the onset of ischaemia, within the core there is 
increased reliance on glycolysis to provide ATP.3 
This anaerobic metabolism reduces pH and increases 
 [lactate−] (see appendix B). However, despite glycolysis, 
the ATP production is insufficient to meet the demands 
of active pumping of  Na+ and  Ca2+ leading to changes in 
ionic concentrations, membrane potential and cell vol‑
ume as indicated in Fig. 2.

K+ efflux is initially via the  K+ channels normally open 
at the resting potential while  Cl− entry is at least partly via 
cotransporters (see [44–46]. The increase in  [Na+]neuron 
and decrease in  [Na+]isf reverse the direction of ion 
movement by  Na+‑glutamate uptake‑transporters lead‑
ing to glutamate release and increase in  [glutamate−]isf 
[47] (see Fig.  2). The increase in  [Ca2+]neuron may also 
stimulate further release of  glutamate− from vesicles.

The influxes of  Na+ and  Cl− into neurons during 
ischaemia are accompanied by cell swelling indicative 
of entry of water [48] (for graphic examples of swell‑
ing see supplementary files in [45]). The extent of swell‑
ing and the routes by which the water enters have been 
the subject of some controversy. The water permeability 
of neurons when measured in brain slices appears to be 
very low which led Andrew et al. [49] to propose that the 
depolarization resulting from ischaemia opens channels 
that are water permeable. Alternatively, it has been pro‑
posed that the water enters by co‑transport with inor‑
ganic ions, e.g. via transporters like KCC2 and NKCC1, 
and co‑transport with  lactate−, e.g. via MCT2 [44].

Further aspects of the events involved in the depolariza‑
tion and swelling of neurons are discussed in appendix C.

3.2  Spreading depolarizations in the penumbra 
and beyond

The depolarization of neurons and increased  [K+]isf in the 
core (see Sect. 3.1) serve as the origin for spreading depolari‑
zations into surrounding regions of the parenchyma4 [51–
56]. Diffusion of  K+ from the area of raised  [K+]isf increases 
the local concentration of  K+ in neighbouring regions which 

Fig. 2 Flow diagram of the ionic changes occurring in neurons 
at the onset of ischaemia. ATP concentrations fall, active efflux 
of  Na+ by the  Na+-pump is reduced, and  Na+ influx exceeds its efflux. 
Hence  [Na+]neuron increases and  [Na+]isf decreases and this increase 
in positively-charged  Na+ inside the neuron leads to depolarization. 
This results in  K+ efflux and  Cl− entry with further  Na+ influx balancing 
these ion movements to preserve electroneutrality. Other effects 
of depolarization are increases in permeability (i.e. opening more 
voltage-sensitive channels) to  Na+ and  Ca2+ leading to further 
increases in  [Na+]neuron and  [Ca2+]neuron, further depolarization 
and release of  glutamate−. Increased  [glutamate−]isf leads to further 
increase in the permeability to  Na+ and  Ca2+ via glutamate-activated 
channels. The accompanying decrease in  [Na+]isf and increase in  [K+]isf 
can be by as much as 80 mM (to roughly half of normal) and 40–60 
mM (more than ten times normal) respectively. The gain of  Na+ 
and  Cl− exceeds the loss of  K+ and the neurons swell at the expense 
of ISF

3 Siesjö et al. [50] draws attention to the importance of the ATP/ADP ratio 
rather than the ATP concentration itself as the factor driving activity in the 
cell, which includes that of the  Na+-pumps. The ratio can fall to low lev-
els even though the ATP concentration remains a substantial fraction of 
the normal value. Reference to the consequences of low ATP levels in this 
review should more properly be to the consequences of low ATP/ADP 
ratios.

4 Spreading depolarization is now the preferred name for Leão’s spreading 
depression [71] because the wave of depolarization can be seen to propagate 
through regions of tissue in which nervous activity is already depressed. The 
depolarization does suppress activity but it is not necessary for there to be 
activity that can be suppressed for the depolarization to propagate. Some 
authors, see e.g. [56], refer to both the initial depolarization in the core and 
the disturbance that propagates as spreading depolarization.
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drives  K+ entry via the  K+ channels already open at rest. This 
entry is sufficient to initiate depolarization of neurons (see 
Fig. 3) and in turn to provoke  Na+ and  Ca2+ entry leading 
to much greater depolarization (to ~ 0 mV) and release of 
 K+. These changes propagate through the tissue albeit much 
more slowly than action potentials [43, 57–60].

Although cells in the core region remain depolarized, 
those in the adjacent penumbral region can repolar‑
ize and be subject to further waves of depolarization.5 
However, repolarization places a heavy burden on ATP 
consumption and eventually the cells remain depolar‑
ized and become part of the permanently damaged 
core region [48, 53, 60–62]). The metabolic demands 
imposed by spreading depolarizations are likely to be 
more important than reduced blood flow in decreasing 

ATP levels in the penumbra and thus in the expansion 
of the core [48].

3.3  Uptake of  Na+,  K+ and anions by astrocytes and their 
resultant swelling in the core.

The uptake of  K+ by astrocytes serves to buffer  [K+]isf, 
i.e. it blunts the increase in  [K+]isf when  K+ is released 
from neurons. Under normal circumstances this is ben‑
eficial as it stabilizes the resting potential of neurons, but 
in the context of ischaemia it serves to delay elimination 
of  K+ from the damaged region [63]. The ion transport‑
ers involved in the initial responses of both neurons and 
astrocytes are indicated schematically in Fig.  4. These 
changes have been described at length by Somjen and 
his work should be consulted for further background and 
an introduction to quantitative simulations of the events 
[43, 64].

Astrocytes have a high resting  K+ conductance due 
to the presence of multiple types of channel including 
prominently Kir4.1 [65–68] (see Fig.  4 and appendix 
C). As a consequence, the increase in  [K+]isf will lead 
to entry of  K+ and astrocyte membrane depolarization 
[43, 69, 70]. Further depolarization results if the rate of 
 Na+‑pumping is reduced as a consequence of reduced 
ATP.6

Fig. 3 Figure depicting events involved in spreading depolarization. i The depolarization of neurons is initiated by diffusion of  K+ 
from adjacent already depolarized tissue. This increase in  [K+]isf leads to influx of  K+ and to depolarization. ii Depolarization then triggers opening 
of  Na+ channels and influx of  Na+ which amplifies the depolarization leading to release of  K+ which further increases  [K+]isf. Diffusion of  K+ 
to adjacent cells propagates the wave of depolarization. iii The energy required by neurons to recover from the gain of  Na+ and loss of  K+ far 
exceeds that required for recovery from normal neural activity

5 The depolarization at any location is ended if and when the transporters 
and channels mediating the inward  Na+ currents inactivate or desensitize 
sufficiently to allow the  Na+-pump to extrude  Na+ restoring the concen-
tration gradients and potential (see Fig. 3). In the core this is not possible 
because ATP levels are too low, but in the surrounding well perfused tis-
sue and initially in the penumbra, the depolarization can be reversed. In 
healthy tissue, blood flow is increased, partially via vasodilatation linked to 
production of NO, and sufficient [glucose] and  pO2 are achieved in the cells 
to regenerate ATP to original levels. However, in the penumbra where blood 
flow is already compromised, there is instead a vasoconstriction linked to 
the increase in  [K+]isf which further reduces supply of  O2 and glucose and 
slows the recovery [38, 48, 72–79]. (For extensive discussion of the vascular 
responses see [60]). It is thought that each depolarization leads to an expan-
sion of the size of the core at the expense of the penumbra [80, 81] possibly 
via decreases in [glucose] and increases in  [lactate−] [82].

6 If instead ATP levels remain adequate,  Na+ transported inwards by 
NBCe1 (see Fig.  7) is transported back out in partial exchange for  K+ by 
the  Na+-pump, which is stimulated by the increase in  [K+]isf (see discussion 
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Only a small amount of  K+ entry will produce depo‑
larization sufficient to stop further net  K+ entry unless 
the  K+ entry can be accompanied by anions (or efflux of 
 H+).7 To account for significant accumulation of  K+ in 
the astrocytes, several routes for anion entry have been 
proposed. One is an anion channel [83]. However, rest‑
ing astrocytes are reported not to have such a chan‑
nel [84, 85] (but see [69, 86]). It is possible in ischaemic 
conditions  Cl− channels are opened in response to 
depolarization or to increased  [Ca2+]astrocyte (for further 
discussion of anion channels see [85, 87–89]). Another 
suggestion for an anion entry route is the  Na+,  K+,  2Cl− 
cotransporter NKCC1 [90] but, on current evidence, this 
transporter is not expressed in mature astrocytes (see 
appendix C). It is now thought more likely that the anion 
that enters during ischaemia is  HCO3

− [91–93] mediated 
by the electrogenic  Na+, 2  HCO3

− transporter NBCe1 
[83, 94–96] (see Fig. 4).

The net entry of  K+,  Na+,  HCO3
−, and  Cl− described 

above is accompanied by water and the astrocytes swell 
[97]. Some of the water entry is directly coupled to trans‑
port mediated by NBCe1 [95, 96, 98] and some is likely 
to move from endothelial cells into astrocyte endfeet 
via their basement membranes and AQP4 in the blood‑
vessel‑facing membranes of the endfeet (see Sect.  3.6). 
Further consideration of the responses of astrocytes to 
ischaemia is given in appendix C.

3.4  Changes in ISF and development of oedema
The processes described in Sects.  3.1 & 3.3 account for 
parenchymal cell swelling due to uptake of fluid from the 
adjacent ISF. However, these processes alone would not 
produce an overall parenchymal tissue swelling because 
they also produce an initially matching decrease in ISF 
volume, a decrease which has been observed experimen‑
tally using a number of techniques.8 This ISF volume 

decrease is maintained for days in ischaemia. However, 
the total tissue volume progressively increases on account 
of the cells continuing to swell, i.e. there is oedema. This 
is due to an increase in the total amount of solutes and 
water in cells and in ISF combined. The solutes derive 
both from entry of ions from outside the tissue and from 

Fig. 4 Changes in ion transport between neurons, astrocytes, 
ISF, CSF and plasma following depletion of ATP in the core. a 
In the neurons, because ATP is depleted, the  Na+,K+- ATPase 
(the  Na+- pump) can no longer produce outward movement 
of  Na+ to balance its inward movement via channels and other 
transporters. The net entry of positively charged  Na+ depolarizes 
the cell membrane. This depolarization opens further routes for  Na+ 
entry and also leads to  K+ exit via  K+ channels and to  Cl− entry 
via unspecified channels or cotransporters. The gain of  Na+ exceeds 
the loss of  K+, the net accumulation of cations and  Cl− draws in water 
from ISF and thus the neurons swell. b In ISF, as a result of neuronal 
 Na+ uptake and  K+ release,  [Na+]isf decreases to as low as 60–70 
mM whilst  [K+]isf increases to as much as 40–60 mM. c Astrocytes 
respond to the increase in  [K+]isf by taking up  K+ via  K+ channels 
so depolarizing their membranes.  Na+ and  HCO3

− enter via the NBCe1 
cotransporter and the associated entry of net negative charge allows 
further entry of  K+. Some of the  HCO3

− may exchange with  Cl−. The 
astrocytes swell by taking up water from ISF or from perivascular 
spaces via their AQP4-containing endfeet membranes (see Sect. 3.6 
and appendix E for further discussion). The events in a, b and c occur 
within a few minutes of the onset of ischaemia. d) Also starting 
immediately but progressing over hours is net entry of  Na+ (red) 
and  Cl− (green) into the parenchyma from outside, i.e. from CSF and/
or plasma. There is also net loss of  K+ (blue) from the parenchyma 
to CSF and/or plasma. These ion movements, maintaining 
electroneutrality, result in a gain of parenchymal solute content, entry 
of water and thus formation of oedema

7 When  K+ enters astrocytes in the context of localized neuronal activity it 
can be removed by current flow through the astrocyte and  K+ efflux at dis-
tal sites, a process called spatial buffering. This process is an alternative to 
entry of anions. However, spatial buffering cannot account for the extensive 
uptake and retention of  K+ when entry occurs over an extended region as in 
ischaemia [96, 99, 100].
8 Decreased ISF volume can been seen in experiments recording: a 
marked increase in the impedence of the tissue [43, 101, 102]; an increase 
in concentration of an extracellular marker [103]; reduced space available 
for the diffusion of an extracellular marker [104–107]; and, using diffu-
sion weighted MRI imaging, a decrease in the apparent diffusion constant 
(ADC) of water. The ADC decreases as water moves from ISF where the dif-
fusion constant is relatively large to the cells where the diffusion constant is 
relatively small [73, 106, 108–110]. ADC measurements have the advantages 
that they are non-invasive and can be repeated at intervals. The ADC can 

in [96]). Because the pump carries net positive charge outwards it will also 
tend to repolarize the astrocyte allowing more  K+ entry via the conductance 
pathway.

Footnote 6 (continued)

remain reduced for days as the oedema develops [111]. The fluid removed 
from the extracellular space is taken up by neurons and astrocytes (see 
Sects. 3.1 and 3.3 respectively).

Footnote 8 (continued)
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metabolic production of osmolytes within the tissue as 
discussed in Sects. 3.5.1 to 3.5.3.9

It is possible and convenient to describe separately the 
processes involved in the transfer of osmoles from ISF to 
parenchymal cells and those involved in transfers from 
CSF and plasma to ISF. This stems from the separate loca‑
tions of the two sets of processes. However, it should be 
emphasized that these processes are inextricably linked 
by variations in ISF composition and are not separated in 
time. Both sets of processes function at the same time to 
produce the observable cytotoxic oedema [6].

Oedema formation of the order of 0.8 mL  g−1 (increase 
in tissue volume per unit dry weight) has been observed 
within the first 3 to 4 h in experimental studies using 
middle cerebral artery occlusion (MCAO) (see Fig. 5 for 
an indication of the volume changes and appendix D for 
a compilation of the available data). The increases in total 
osmolality measured in the parenchyma ([102, 112–114], 
appendix D) are sufficient to drive the observed water 
gain (see appendix B in [1]).

3.5  Sources of solutes added to the parenchyma 
during development of oedema

There are three possible sources of solutes added to the 
parenchyma during oedema: CSF (Sect.  3.5.1); blood 
(Sect.  3.5.2); and metabolic production within the tissue 
(Sect. 3.5.3).

3.5.1  Influx of solutes via CSF
Solutes, primarily NaCl, can enter the parenchyma from CSF 
either by diffusion across the surfaces of the parenchyma or, 
as proposed by Thrane et al. [25, 115] and Mestre et al. [26], 
by diffusion and convection in perivascular spaces. Experi‑
mental evidence for CSF inflow during ischaemia comes 
from studies of the very early changes in solute influx and 
water content following MCAO [26],10.11

Mestre et al. showed (see Fig. 6):

• in the first 15 min there was an increase in paren-
chymal water content from 3.7 to 3.9 mL  g−1 (dry 
weight);

• over 5-7 min there was increased entry of both a 
fluorescent marker and an MRI marker, gadobutrol, 
both injected 15 min earlier into CSF in the cisterna 
magna; and

• over a similar period there was an increase in influx 
of  Na+ and of mannitol radiotracers injected into 
CSF.

The main increase in influx of markers, starting at 
about t = 5 min (see Fig.  6a) occurred about 30 s after 
the appearance of a spreading depolarization [26] (see 
Sect.  3.2). Mestre et  al. proposed that the spreading 
depolarization produced a strong vasoconstriction that 
increased the volume of the periarterial spaces allow‑
ing inflow of CSF. Such an inflow would produce a 
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Fig. 5 Illustration of the increase in parenchymal tissue 
volume during development of oedema four hours after onset 
of MCAO. The heights of the columns indicate volumes per gram 
of tissue dry weight: tissue solids (black); the initial fluid volume 
both intra- and extracellular (white); the additional volume 
resulting from net uptake of ions (dark grey), i.e. NaCl influx, 
but KCl efflux; and the additional volume (light grey) resulting 
from metabolic production within the tissue of new osmoles 
together with the amount of water that maintains nearly constant 
osmolality, ~ 310 mOsmol  L−1. The fraction of the volume increase 
attributable to net uptake of ions is fionic = (net ion gain) / ((increase 
in volume) x (310 mOsmol  L−1)) and the fraction attributable 
to production of new osmoles is 1—fionic. In these expressions, 
the net ion gain is the sum of the  Na+ and  Cl− gains minus the  K+ loss; 
and the  Cl− uptake is assumed to be equal to  Na+ gain minus  K+ loss. 
Data from appendix D

9 It should be noted that even though the volume increase requires that fluid 
enters either from CSF or from the blood this is not vasogenic oedema. Vaso-
genic oedema results from a malfunction or breakdown of the blood–brain bar-
rier whereas here the ion entry occurs via the normal physiological mechanisms 
responding to the altered ISF concentrations of  Na+,  K+ and  Cl− and the produc-
tion of osmotically active metabolites within the parenchymal cells.
10 Mestre et al. [26] have investigated the very early responses after MCAO 
produced in mice by embolism with macrospheres. This technique has the 
advantage of allowing obstruction of the circulation in the region supplied 
by the middle cerebral artery at an accurately known time after injection 
of CSF markers and radiotracers into the cisterna magna. It should also be 
noted that it may produce less disturbance of perivascular transport than 
other techniques (see [2]).
11 Using measurements of the movement of the brain surface in cats, 
Hossmann [114] had previously observed swelling within a few minutes of 
MCAO. However, presumably because it was so rapid, he proposed that 
the swelling was a consequence of "autoregulatory dilation of the vascular 
bed (hypoperfusion hyperemia)", i.e. that it was not oedema. However, he 
did not measure the blood volume and indeed none of the evidence he pre-
sented contradicts the alternative idea that the swelling was due to an influx 
of CSF.
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progressive increase in solute and water content of the 
parenchyma and this might account for the develop‑
ing oedema. However, their results demonstrated only 
entry of  Na+ from CSF in the earliest stages of ischaemic 
oedema reaching completion within 15 min (see Fig. 6). 
As noted by Mestre et al. elsewhere [116], the increase in 
water content and thus the intake of CSF, may be analo‑
gous to the CSF intake into the parenchyma that has been 
observed post‑mortem [117, 118]. Such an intake does 
not represent a sustained increase in perivascular flow 
[2].

There are a number of observations which suggest that, 
with the exception of an initial transient as observed by 
Mestre et al. and just described above, perivascular trans‑
port is reduced, not increased, following ischaemia as 
listed below:

• Normal or increased perivascular transport would 
be expected to lead to much faster resolution of 
oedema fluid than is observed (see Sect. 7).

• Entry of DOTA-Gd into the parenchyma following 
cisternal injection is reduced after three hours of 
ischaemia implying reduced rather than increased 
influx via perivascular routes [119].

• The spreading depolarizations seen in another 
condition (migraine aura) are associated with 
decreased rather than increased perivascular 
transport [120].

• Once there is substantial astrocytic swelling, it 
is reasonable to expect that the swollen endfeet 
would reduce the size of the perivascular spaces 
[120, 121].

Further data are required to establish the extent and 
importance of CSF entry from subarachnoid spaces via 
perivascular routes in the subsequent development of 
oedema. In the following sections, it is assumed that 
most of the fluid that enters the parenchyma after the 
initial transient period does so via the blood–brain 
barrier.

3.5.2  Fluxes of solutes across the blood–brain barrier
Blood is another source of the NaCl that accumulates in 
oedema fluid. Unlike  O2 and glucose, uptake of  Na+ across 
the blood–brain barrier is slow and not blood‑flow lim‑
ited. Indeed, the rate of  Na+ uptake required to account for 

development of oedema can be provided by even a severely 
compromised blood‑flow, less than 1% of normal.12 Fur‑
thermore more than adequate uptake of NaCl from blood 
has been observed using radiotracers in MCAO in rats [122, 
123].

Influx of  Na+ and efflux of  K+ across the blood–brain 
barrier are both favoured by the initial changes in ISF 
composition that take place following ischaemia (see 
Fig.  4). These changes affect both passive fluxes and 
active transport of these ions.

3.5.2.1 Effects on passive fluxes  

      Na+fluxes.
  Under "normal" conditions, the passive fluxes of  Na+ 

in both directions across the blood–brain barrier are 
much greater than the net flux. Initially, the likely mech‑
anism for these passive fluxes is electrodiffusion via the 
paracellular spaces, see [124] and Sects.  4.3.4 and 4.3.5  
in [4]. The decrease in  [Na+]isf in ischaemia is expected 
to reduce substantially passive efflux of  Na+ from ISF to 
blood while leaving the passive influx from blood to ISF 
intact (compare [63, 125]). Thus, in ischaemia there will 
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Fig. 6 Time courses of intakes of a fluorescent CSF marker a) 
and of water b) into a brain region following MCAO. a Changes 
in fluorescence from the marker added to CSF in the cisterna 
magna at t = -15 min, shown for regions on the ipsilateral (solid) 
and contralateral (dashed) sides. F0 is the fluorescence at t = 0. b 
Water content of the ipsilateral (solid) and contralateral (dashed) 
regions shown as mL of water per gram dry weight of tissue. Note 
that the intake of the fluorescent marker in a and of water in b appear 
to be complete within a few minutes. Furthermore, the increase 
in water content, about 0.2 mL  g−1 over 15 min, is substantially 
less than the increases over 3 to 4 h measured by others in different 
species (see appendix D and Fig. 5). Redrawn and simplified from data 
in Fig. 1 of Mestre et al. [26]

12 For a normal blood flow per gram wet weight of tissue, 540 µL  g−1  min−1 
[126], a ratio of wet to dry weight of 5, and a restriction of blood flow to 
1% of its normal value, the flow per gram dry weight is still 1.6 mL  g−1  h−1 
which can be compared with rates of fluid gain in ischaemic tissues 
of ~ 0.2 mL   g−1   h−1 (see Table 1). Thus over most of the volume of paren-
chyma affected by ischaemia, including much of the core, transfer of fluid 
from blood to brain will be far less than the rate at which fluid is delivered 
by the residual blood flow.
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be a substantial net flux from blood to ISF which over 
four hours can amount to 120 µmol  g−1.13 This represents 
a substantial fraction of the total uptake of  Na+ into the 
parenchyma that has been observed following MCAO. 

K+ fluxes. 
Under "normal conditions", the passive fluxes of  K+ are 

expected to be much smaller than those of  Na+ simply 
because the  K+ concentrations in ISF and blood plasma 
are much smaller than those of  Na+. In ischaemia, the 
more than tenfold increase in  [K+]isf derived from depo‑
larized cells may lead to a substantial passive efflux of  K+ 
from brain to blood.

3.5.2.2 Effects on  active transport Na+‑pump activ-
ity and transcellular transport of Na+. The  Na+‑pump 
on the abluminal side of the endothelial cells of the 
blood–brain barrier (see Fig. 7) may still function dur‑
ing focal ischaemia. Unlike the neurons and astrocytes, 
these endothelial cells are still exposed directly to  O2 
and glucose in the residual blood flow (compare [127]) 
and so can remain viable even in the face of extensive 
necrosis within the adjacent parenchyma (see Sect. 5). 
Their mitochondria thus still produce enough ATP to 
support active transport of  Na+ by the  Na+‑pumps (see 
Fig.  8). Such continued activity of the pump encour‑
aging  Na+ entry into the parenchyma can be inferred 
from the results of Shigeno et  al. [128] who found 
that ouabain, a pump inhibitor, was able to reduce 
oedema formation over 4 h presumably by prevent‑
ing the  Na+entry. Furthermore, as demonstrated by 
Schielke et al. [129] there is an increase in  Na+ tracer 
influx during ischaemia. This would be expected if the 
 Na+ pumps in the endothelium were still viable and 
were able to be stimulated by the raised  [K+]isf [127, 
130–136].

The stimulated  Na+‑pump activity leading to reduc‑
tion in  [Na+] inside the endothelial cells will increase 
the gradient for  Na+ entry from blood to cells (see 
Fig.  8b). Such entry [137] is likely to be via  Na+,  K+, 
 2Cl− cotransport [138] (but see [139]) and  Na+/H+ 
exchange [140–142]. There may also be some contri‑
bution from  Na+,  HCO3

− cotransport [140, 142, 143].

Entry of  Na+ from blood replenishes the  Na+ in the 
endothelial cells allowing further active transport into 
ISF by the  Na+‑pumps.

The importance of ion transport through the 
endothelial cells at the blood–brain barrier in the 
early development of oedema is supported by evi‑
dence from experiments using inhibitors of trans‑
porters known to be involved in  Na+ and/or  K+ fluxes 
into and out of the endothelial cells [137, 146]: These 
results show that formation of oedema over several 
hours after MCAO can be substantially reduced by:

• ouabain, an inhibitor of the  Na+-pump [128];
• bumetanide, an inhibitor of NKCC1 [138];
• cariporide (HOE-647), an inhibitor of NHEs [147]; 

and
• TRAM-34, an inhibitor of KCa3.1 channels [148].

Furthermore, NKCC1 knock‑out mice exhibited con‑
siderably less oedema and infarction than wildtype mice 
[149]. All of these results are as expected if a substantial 
proportion of the NaCl entry in the initial phase of tissue 
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Fig. 7 Suggested routes for  Na+ and  K+ transport 
across the endothelial cells of the blood–brain barrier in the early 
stages of ischaemic oedema. Passive fluxes of  Na+,  K+ and  Cl− 
probably occur via paracellular routes involving electrodiffusion 
that accounts for the endothelial conductance. Active transport 
through the cells is driven by the  Na+-pump, a  Na+,  K+-ATPase: 
the increase in  [K+]isf stimulates this pump leading to  Na+ flux 
from the endothelial cells into ISF and  K+ flux from ISF into the cells. 
The resulting decrease in  [Na+]cell drives inward fluxes of  Na+, 
 K+ and  Cl− from blood into the cells via NKCC1. The net effect 
is transport of  Na+ and  Cl− from blood to ISF and of  K+ from ISF 
to blood. Many more transporters in addition to those shown 
are involved, prominently NHE1/2 as mentioned in the text, 
but the overall effect is as shown. There may be some recycling of  K+ 
as indicated by the dotted line

13 The size of the effect of decreasing  [Na+]isf on passive  Na+ net flux can 
be estimated from the measured permeability surface area product, PS, for 
 Na+, approximately 0.074 µL  g−1  h−1 [144, 145] where the surface area has 
been calculated per gram wet weight of tissue. This becomes 0.37 µL  g−1  h−1 
when referred to dry weight. For an 80  mM decrease in  [Na+]isf [43] and 
thus for a difference in concentration of this size across the blood–brain 
barrier, the prediction is a reduction in efflux from ISF and increase in net 
flux into ISF of 30 µmol  g−1 h.−1.
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swelling occurs as a result of active transport across the 
endothelial cells.14

Transcellular transport of K+ Stimulation of the 
 Na+‑pumps by the increase in  [K+]isf will also affect  K+ 
movements, in this case increasing  K+ entry from ISF 
into the endothelial cells [127, 130–136] (see Sects. 6.3.4 
and 6.6.4 in [4]). That raises their  [K+] leading to 
increased  K+ efflux into blood, possibly via ion chan‑
nels [150–153](see Sect.  4.5.3 in [4]). This could plausi‑
bly account for the observed clearance of  K+ from the 
parenchymal tissue across the blood–brain barrier under 
ischaemic conditions.  K+ exit from the parenchyma par‑
tially offsets the increase in osmoles resulting from  Na+ 
entry (see appendix D).

3.5.3  Production of osmotically active solutes 
within the parenchyma

The net influx of ions described above is not sufficient to 
maintain, let alone increase, the parenchymal osmolality 
during ischaemia. There must be extra osmoles derived 
from metabolism within the parenchyma.

Evidence for extra metabolites can be seen in MCAO 
experiments (see Fig.  5 and appendix D) but is more 
obvious in experiments on global ischaemia, i.e. where 
there is no blood‑flow and hence neither a source of 
extra solutes from outside the parenchymal tissue nor 
washout of the extra metabolites. In these experiments it 
was found that the osmolality increased from 308 to 353 
mOsmolal during 1 h of total ischaemia but there was lit‑
tle or no oedema [154]. When circulation was restored, 
so providing a source of water and further solutes, 
there was rapid brain swelling presumably driven by the 
already increased osmolality. Hossmann & Takagi [154] 
noted that the 45 mOsm increase substantially exceeded 
the ~ 20 mOsm expected from glycolysis and decomposi‑
tion of labile compounds (see e.g. [155]) and concluded 
that there must be a release of osmoles from other brain 

Fig. 8 Diagram comparing movements of  Na+,  K+ and  Cl− into and out of parenchymal and endothelial cells before (left) and during (right) 
the initial phase of ischaemic swelling. Negatively charged impermeant solutes,  Im−, in the parenchyma and in the endothelial cells provide 
part of the driving force for development of ischaemic oedema. ΔVm, is the cell membrane potential inside relative to 0 in plasma. a Before 
ischaemia,  Na+ is effectively excluded from the cells in the parenchyma by their  Na+- pumps.  K+ is attracted into the cells and  Cl− repelled 
from them by the negative membrane potential, an example of the Donnan effect (see appendix E). The volumes of the cells and ISF are stable 
as are the ion concentrations, with the concentrations of  Na+,  K+ and  Cl− in ISF close to those in plasma. There may be a small net flux of solutes 
and water from plasma into ISF matched by a net flux out of the tissue into CSF primarily via perivascular routes (see [4]). b During the initial stages 
of ischaemia: the  Na+-pumps are no longer able to exclude  Na+ from the cells in the parenchyma but are still functional in the endothelial cells 
(see Sect. 3.5.2.2);  Na+ and  Cl− enter parenchymal cells;  K+ initially redistributes from neurons to astrocytes but eventually leaves both cell types; 
the cell membranes depolarize to small negative potentials; and the cells swell and ISF shrinks as described in Sect. 3.6. On a time scale of minutes 
to hours  Na+ and  Cl− enter ISF across the blood–brain barrier at a rate that depends on the permeability of the barrier to these ions. Water follows 
down the resultant of the total osmotic and hydrostatic pressure gradients. The gradient for solute entry from the plasma persists because  [Na+]isf 
and  [Cl−]isf are kept somewhat less than the concentrations in plasma by continued entry of  Na+ and  Cl− into the parenchymal cells. Development 
of oedema in the medium term, times from ~ 3 h to possibly 12 h (or more) is considered in Sects. 4 to 4.2.2 and Fig. 9

14 The interpretation of the inhibitor results is not entirely straight-for-
ward because these inhibitors can also act on cells within the parenchyma 
([156–158] and for discussion [142, 147, 159]). However, ouabain and, as 
pointed out by O’Donnell [146] bumetanide do not cross the blood–brain 
barrier into the brain (see [160, 161] and Footnote 5 in [142]) and therefore 
when applied to the blood-side of the barrier their effects on production of 
oedema must be via actions on transporters on brain endothelial cells.
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constituents, e.g. by the catabolic break‑down of proteins 
and lipids.

During focal ischaemia such as is produced by MCAO, 
the increase in osmolality due to extra solutes in the 
parenchyma (see column 7 of Table 1) is smaller than that 
seen in global ischaemia. This is partly because the sol‑
utes can be washed away in the residual blood flow and 
partly because they are diluted by influx of water.

In the initial stages of ischaemic oedema, the most 
obvious source of extra metabolites is the generation of 
lactic acid from glucose and glycogen. Some of that pro‑
duced within the parenchymal cells is exported to ISF via 
monocarboxylic acid transporters (MCT). Both in cells 
and ISF,  H+ will be buffered and thus not adding osmoles, 
but  lactate− will remain free and be osmotically active. 
The extra osmoles produced can amount to 15 µmol  g−1 
(per gram of wet tissue) or even 30–40 µmol  g−1 with 
hyperglycaemia [155]. Hossmann [114] concluded that 
metabolically produced osmoles account for a substantial 
part of the increase in osmolality in the first hour or two 
following onset of ischaemia. Thereafter the increase in 
oedema is accounted for by a change in the amounts of 
 Na+,  Cl− and  K+. That in turn suggests that the metabo‑
lites are subsequently being washed away at a rate that 
balances their production but little is known about their 
rate of production during the medium and long term.

3.6  Role of AQP4 in astrocyte endfeet
Deletion of AQP4 has profound effects on fluid move‑
ments in the brain. It has been shown to decrease the 
rate of net fluid transfer into the parenchyma during 
either water intoxication [162, 163] or the development 
of ischaemic oedema [162]. Furthermore, it has also been 
shown to decrease the rate of net fluid removal after 
either infusion of mock ISF or osmotherapy [164] and 
also decrease the rate of spread of fluid out of regions 
damaged by cold injury [165]. These effects are clear 
but because of the nature of the experiments, the actual 
flow rates via the AQP4‑dependent routes could not be 
measured.

At the blood–brain barrier AQP4 is localized to the 
astrocyte endfoot membrane facing towards the vascu‑
lature. Thus, it is thought that a substantial portion of 
the water crossing the perivascular space to or from the 
blood can enter or leave via astrocyte endfeet.

AQP4 has also been linked to the effects of adrenergic 
receptor blockade on the development of oedema [166] 
and to the restoration of low  [K+]ISF after either corti‑
cal spreading depression or light‑activated thrombosis 
[166, 167]. It has been proposed that both of these effects 
result from changes in AQP4 that modulate movements of 
fluid and  K+ via glymphatics. While it is clear that AQP4 
knock‑out affects entry of solutes and presumably fluid via 

glymphatics [168, 169] it is not clear that this is via a direct 
effect on the water permeability of astrocyte endfeet ([170, 
171]. For further discussion and references see [2].

It is interesting to note that there are marked changes 
in localization of AQP4 to endfeet in various stages of 
ischaemic oedema. Indeed it has been suggested this 
relocalization might be a useful target for therapy aimed 
at reducing the extent of oedema and of functional dam‑
age in ischaemic stroke and spinal cord injury [172, 173].

4  The medium term: changes in the blood–brain 
barrier enhancing oedema formation

Events in the early stages have been considered in Sect. 3 
above. These include discussion of the origins of the 
extra solutes and water in the parenchyma and the role of 
spreading depolarizations on expansion of the ischaemic 
core and oedema.

Starting 3 to 4 h after the onset of ischaemia oedema 
(see Fig.  9), changes in blood–brain barrier properties 
maintain the rate of oedema formation. The most impor‑
tant of these changes is increased permeability to NaCl. 
The medium term is here taken to start three to six hours 
and to finish perhaps nine to twelve hours after onset of 
ischaemia (see Fig. 1) though, as the approximate bound‑
aries suggest, this is an arbitrary delineation since there is 
a continuum of changes in the processes occurring with 
the relative importance of different aspects shifting with 
time.

During the medium term, leakage of albumin into 
the parenchyma becomes apparent, clearly indicat‑
ing that the permeability of the blood–brain barrier 
has changed.15 However, the leak is small and the albu‑
min concentration in ISF remains substantially below 
that in plasma [174]. Furthermore, because movement 
of water across the blood–brain barrier is still governed 
by total osmotic pressure rather than colloid osmotic 
pressure, the critical barrier changes are to NaCl rather 
than to albumin. Hence as emphasized by Gotoh et  al. 
[175] and Menzies et  al. [176], the presence of albumin 
in the parenchyma does not explain the development of 
oedema in the first twelve hours. To explain this, at least 
two factors must be considered [18]: the maintenance 
of a driving force for uptake of NaCl and hence water 
into the parenchyma (see Sect.  4.1) and the increase in 
blood–brain barrier permeability to NaCl (see Sect. 4.2). 
Further production of osmotically active metabolites in 
the medium term appears not to have been investigated 

15 Leakage of serum albumin has been seen to correlate directly with the 
formation and resolution of "pure" vasogenic oedema. In this there is no 
damage to cells within the parenchyma but blood vessels are temporarily 
made permeant to large and small solutes [177] (see also [178]). However, 
those are not the conditions that exist with ischaemic oedema.
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with the exception of the single study [114] described in 
Sect. 3.5.3).

4.1  Maintenance of the driving forces for uptake of NaCl 
and water into the parenchyma

Once cells in the parenchyma have ceased to be able to 
pump  Na+ (see Sects.  3.1 & 3.3) and have become per‑
meable to  Na+ (see below), their cell membranes are no 
longer an important barrier to movement of permeant 
ions and water into and out of the cells. In effect it is the 
impermeant intracellular molecules, e.g. proteins, nucleic 
acids, phosphate compounds, and the permeant ions that 
accumulate in response to the presence of the imper‑
meants, that provide the osmotic driving force for water 
to enter (see Fig. 9 and appendix E).

4.2  Increased permeability of the blood–brain barrier 
to NaCl

An important feature in the formation of oedema in 
the medium term is the increase in permeability of the 
blood–brain barrier to NaCl. This increase partly reflects 
changes in paracellular transport across the endothelial 
cell layer (see Sect. 4.2.2). However, on present evidence, 
another major, possibly more important change is the 
expression and opening of  Na+‑permeable SUR1‑TRPM4 
channels, both in the endothelial cells of the blood–brain 
barrier facilitating transcellular transport and in astro‑
cyte endfeet aiding onward transport into astrocytes.

4.2.1  The involvement of SUR1‑TRPM4 cation channels 
in the formation of oedema

SUR1‑TRPM4 (also called  NCCa‑ATP) is a non‑selective 
cation channel involved in changes in blood–brain bar‑
rier permeability that lead to increased rates of oedema 
formation. SUR1‑TRPM4 is formed by association of a 
SUR1 regulatory subunit with a TRPM4 channel. SUR1‑
TRPM4 is not expressed in uninjured brain and cannot 
be invoked to explain the earlier stage of oedema for‑
mation described in Sect. 3. However, during ischaemia 
there is transcriptional upregulation of both SUR1 and 
TRPM4 such that SUR1‑TRPM4 becomes expressed in 
the plasma membranes of brain microvascular endothe‑
lial cells, astrocytes and neurons [173, 179–182]. Open‑
ing and closing of these channels depends on the level 
of ATP in the cells. ATP at normal levels binds to SUR1 
and closes the associated TRPM4 ion channel, but at 
low ATP levels and in the presence of intracellular free 
 Ca2+ the TRPM4 channel is open resulting in increased 
permeability of the blood–brain barrier to  Na+ and  K+ 
[18, 21, 173, 179, 183–186]. This, together with at least 
maintained permeability to  Cl−, can plausibly account for 
at least part of the sustained oedema formation over the 
hours following the onset of ischaemia.

Part of the evidence that  Na+ entry results from open‑
ing of SUR1‑TRPM4 channels is the effectiveness of 
glibenclamide, (glyburide) an agent that binds to the 
SUR1 subunit and prevents opening of the associated 
SUR1‑TRPM4.16 It has been found that glibenclamide 
substantially reduces oedema formation when given by 
continuous intravenous infusion starting immediately 

Fig. 9 Diagram showing the movements of permeants,  Na+, 
 K+ and  Cl−, into and out of parenchymal and endothelial cells 
in the medium term during ischaemic swelling. The  Na+- pump 
is inhibited both in the parenchymal and endothelial cells (compare 
with situation in Fig. 8). The net negative charge on the impermeants 
 (Im−) will lead to accumulation of  Na+ and  K+. If equilibrium could be 
reached (sufficient impermeants would need to be in plasma) their 
concentrations in the parenchyma cells would be slightly greater 
than in plasma. (For an introduction to more quantitative treatment 
see appendix E). However, during swelling entry of water keeps 
these concentrations slightly below those in plasma. There thus 
continue to be small gradients that drive influx of solutes like  Na+ 
and  Cl− and this influx tends to increase solute concentrations which 
tend to increase the driving force for water entry. The net result 
is continually increasing amounts of solutes and water and thus 
tissue swelling

16 Glibenclamide also inhibits  KATP channels by binding to their SUR2 
subunits. However, it is believed that it is the inhibition of SUR1-TRPM4 
rather than  KATP that is more important in explaining the effect of gliben-
clamide on oedema formation.  KATP channels are  K+ selective. During the 
development of oedema, block of  K+ selective channels would prevent 
 K+ loss and increase  Cl− gain accompanying  Na+ entry (see Sect. 3), i.e. it 
would increase the rate of NaCl accumulation and cell swelling rather than 
reducing the rate as noted above. The relative importance of block of SUR1-
TRPM4 channels is also supported by results showing that antisense knock-
down of SUR1-TRPM4 channels (antisense oligodeoxynucleotides (ODNs) 
against either Abcc8/SUR1 or Trpm4/TRPM4) significantly reduce swelling 
while antisense knockdown of  KATP (antisense-ODNs, either Kcnj8/Kir6.1 
or Kcnj11/Kir6.2) have no effect [186]. Assuming that the Kir ODN’s have 
similar access to the cells in which the anti-SUR1 and anti-TRPM4 ODNS 
are effective these results suggest that glibenclamide’s effects on oedema 
can be ascribed to its blockade of SUR1-TRPM4 channels, plausibly those 
located on the endothelial cells of the blood–brain barrier.
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after the insult [179] or by loading dose plus infusion 
starting as late as 10 h after start of a 4.5 h period of 
ischaemia followed by reperfusion [183, 187]. If, as pro‑
posed (see [188] and [189] for review), glibenclamide 
extends the window during which reperfusion can be 
beneficial, this may turn out to be the most important 
feature of its use.

The ability of SUR1‑TRPM4 to increase the rate of 
swelling implies that under these circumstances ATP 
levels are low. That in turn implies that the  Na+‑pump 
is unlikely to play a major role in  Na+ transport. If not, 
the movements of  Na+ across the blood–brain barrier 
must involve passive transport across both luminal and 
abluminal membranes as indicated in Fig.  9 [185]. The 
experimental result that inhibition of SUR1‑TRPM4 sub‑
stantially decreases fluxes and rate of swelling thus argues 
that a) with SUR1‑TRPM4 channels open, a large pro‑
portion of the fluxes are transcellular and b) that in the 
medium to long term, active transport across endothelial 
cell membranes does not make a major contribution.

4.2.2  Paracellular: The impact of partial opening of tight 
junctions on oedema formation

Ischaemia leads to changes in the tightness of the blood–
brain barrier. The endothelial cells of the blood–brain 
barrier are joined to each other by tight junctions which 
form a complete seal between the cells. Occludin and 
claudins are important molecular components of tight 
junctions that are found in epithelial layers through‑
out the body and also in certain endothelial layers. Dif‑
ferences in type and proportions of these components 
will determine the paracellular ionic permeability of any 
particular layer. Claudin‑5 is the dominant claudin form 
in the endothelial lining at the blood–brain barrier and 
accounts for the much lower paracellular permeability 
of this interface compared to that of secretory epithelia 
such as the choroid plexuses [190, 191].

Changes in the properties of tight junctions following 
ischaemia are often described as occurring in two phases 
(see e.g. [192–195] but see also [196]). The first phase 
presumably begins soon after onset of ischaemia but may 
only become apparent after several hours. This manifests 
as an increase in permeability to small solutes (< 800 dal‑
tons) e.g. sucrose or a gadolinium probe. An increase in 
conductance of the blood–brain barrier, i.e. a decrease in 
transendothelial electrical resistance (TEER), may also 
be observed when opening is induced by addition of the 
chemokine CCL2 [197]. However, despite its importance, 
there has been no attempt to measure changes in para‑
cellular permeability to  Na+ and  Cl− during this phase. It 
is thought that the increase in permeability to small sol‑
utes may involve changes in conformation and position 
of claudin‑5 [193, 197].

The second phase of barrier opening becomes apparent 
more than 12 h after onset of ischaemia and extends into 
days. It is associated with loss of tight junction structure 
and increase in permeability to a wider range of solutes 
than that seen during the first phase. This will be consid‑
ered briefly in the next section.

5  The long term: gross failure of the blood–brain 
barrier. Haemorrhagic transformation

The development of oedema after ~ 12 h will be discussed 
only briefly here. A good indication of the complexities of 
the cellular and molecular events occurring in the long‑
term in the parenchyma can be seen in other reviews [16, 
23, 81, 198–205]. Also outside the remit of this review 
is any coverage of the changes that commit neurons to 
death by either necrosis or apoptosis including  Ca2+ 
overload [50, 206–208].

As cell death becomes more prominent, solutes pro‑
duced within the parenchyma by catabolism may pro‑
duce large osmotic effects [209, 210]. As the oedema 
spreads carrying these solutes, their effects can be seen 
at some distance from their site of production even in 
regions where the blood–brain barrier remains intact 
[17].

The late phase of oedema is associated with severe 
loss of tight junction structure in the vasculature within 
the core leading to gross failure of the blood–brain bar‑
rier. There is extensive proteolysis of extracellular matrix 
and internalization of tight junction components into 
the endothelial cells from where they may be recycled 
or degraded [23, 197, 211, 212]). This accounts for the 
observed increases in permeability to a wide range of 
solutes. In some instances, the paracellular permeabil‑
ity of the blood–brain barrier to large and small solutes 
becomes sufficiently high that osmotic pressure gradients 
can be ignored and paracellular transport becomes effec‑
tively a hydrostatic pressure driven flow (compare [177, 
178]). Indeed, the ultimate limitation on oedema devel‑
opment may be haemostasis as this removes the source 
of fluid.

In many instances focal ischaemia does not proceed 
to haemorrhage but in 10–15% of cases it does. This is 
called haemorrhagic transformation or conversion. 
Reperfusion using tissue plasminogen activator (tPA) 
after ~ 4.5 h (see Sect.  6) increases the risk of transfor‑
mation. Factors important in transformation have been 
reviewed comprehensively by Jicking et al. [202] and Jin 
et al. [213]. The sequelae of transformation are similar to 
those when haemorrhage is the original fault [16].

Conversion of damaged tissue to final infarct (the 
region in which all cells have died) entails clearance 
of the cellular and extracellular debris, resolution of 
the oedema (see Sect.  7) and then growth of new cells 
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including angiogenesis. Nervous tissue normally can‑
not be replaced and either the cellular component of the 
region of the infarct becomes a glial scar [214] [215–217]) 
or the volume ceases to be part of the parenchyma and is 
filled with CSF.

6  Reperfusion
Immediate reperfusion may avoid damage but if it is 
delayed until the blood–brain barrier has been com‑
prehensively breached or even destroyed then this will 
obviously lead to severe oedema at best and very likely 
to haemorrhage. At some stage, reperfusion shifts from 
being beneficial to being harmful.

It is not known how long a neuron can be exposed to 
ischaemic conditions before cell death becomes inevi‑
table, partly because this varies with the type and loca‑
tion of the neuron and on the "severity" of the ischaemia. 
Some neurons are thought to be particularly vulnerable 
[29] which may account for the relatively short period, for 
example after cardiac arrest, that can be survived without 
life support. Most neurons located in the core in focal 
ischaemia are unlikely to be rescuable after a period of 
the order of an hour (see e.g. [29, 40, 41]). Those located 
in the penumbra, receiving somewhat higher blood flow, 
have a better survival chance but even in those regions 
where most cells will survive there can be selective neu‑
ronal loss over the same time period [218].

The principal objective of reperfusion is not to reverse 
changes within the core, but rather to prevent the core 
from spreading beyond its initial extent and to prevent 
as far as possible neuronal loss in the penumbra and sur‑
rounding regions. Within the core, reperfusion may be 
achieved but will have little benefit (and may be harm‑
ful). By contrast the sooner spreading of the core into the 
penumbra can be halted, the smaller the volume that will 
become part of the core (see for instance [218, 219]).

Reperfusion may be attempted by thrombolysis using 
alteplase (tissue plasminogen activator, tPA)) [220, 
221] or, if the embolism is in an accessible artery, by 
thrombectomy [222]. According to the current National 
Clinical Guideline for Stroke for the United Kingdom and 
Ireland [223] up to 4.5 h after onset thrombolysis should 
be considered "regardless of age or stroke severity" (rec‑
ommendation 3.5A). Between 4.5 h and 9 h thrombolysis 
should be considered if there is evidence "of the potential 
to salvage brain tissue" (recommendation 3.5B). The time 
window for thrombectomy is longer. When certain cri‑
teria are met thrombectomy should be considered even 
24 h after the onset of stroke. The principal criteria are 
accessibility of the clot and evidence from imaging that 

there is still tissue that can be salvaged. Obviously, the 
sooner the better.

The main reason that the recommended time window 
for thrombolysis is shorter than for thrombectomy is that 
in addition to activation of plasmin and lysis of the clot 
responsible for the stroke, tPA has harmful effects pro‑
moting haemorrhagic transformation. Prominently it 
leads to secretion of matrix metalloprotease leading to 
lysis of extracellular matrix and breakdown of the blood–
brain barrier [224].

7  Resolution of oedema
There has been extensive work studying the resolution 
of oedema, particularly the oedema produced in the sur‑
rounding tissues either by focal freezing [225, 226] or by 
parenchymal infusions of fluids [227–232]. In these situ‑
ations, it seems that during the time that fluid is accu‑
mulating either in the region of damage or at the site of 
infusion, the added fluid spreads through the surround‑
ing tissue by pressure driven flow. Once the flow reaches 
white matter it tends to follow fibre tracts. If the fluid 
front reaches the brain parenchymal surface, it then flows 
into CSF [225, 228, 233]. However, in those cases where 
the oedema was produced by parenchymal infusion, this 
flow ceases shortly after the end of the infusion [234], or 
at least becomes much slower.

The excess volume introduced by mock CSF infusion in 
rats is removed from the parenchyma with a half‑life of 
12–24 h which is much faster than that after infusion of 
serum for which the half‑life is several days [228]. This is 
most simply explained if there are two routes for removal 
of oedema fluid, transvascular and extravascular.

According to this explanation, mock CSF can be 
absorbed across the blood–brain barrier into the vascu‑
lature on a time scale of hours by a Starling‑like mech‑
anism. The Starling mechanism is too slow to have any 
significant impact on fluid movement across the blood–
brain barrier under normal conditions (see Sect.  3.2.1 
and appendix A in [1]) but, given many hours, slow pas‑
sive absorption of fluid, limited primarily by the low per‑
meability to NaCl, may account for the removal of colloid 
free fluid during resolution of oedema.

Serum cannot be reabsorbed effectively by the Starling 
mechanism because the proteins it contains provide an 
opposing colloid osmotic pressure [228]. Thus reabsorp‑
tion after infusion of serum must occur by the slower 
extravascular route. A recent study on oedema following 
trauma suggests that this extravascular route is inhibited 
during traumatic oedema formation [235] which raises 
the possibility that extravascular resolution of oedema 
may also be inhibited. Further studies are certainly 
warranted.
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8  Overview and summary
Large scale oedema after trauma or stroke is life‑threat‑
ening because it increases intracerebral pressure, ICP 
which may produce fatal brain herniation. However, it is, 
at present, not certain that small scale oedema is harm‑
ful; it may be a collateral effect of other events that do 
cause harm (appendix A).

Oedema is normally classified as osmotic, cytotoxic 
(e.g. ischaemic oedema), vasogenic (e.g. peritumoral 
oedema), periventricular (as seen in hydrocephalus (see 
[1]), and haemorrhagic or perihematomal (Sect.  1.1). 
The oedema associated with brain trauma is a mixture of 
cytotoxic, vasogenic and hemorrhagic oedemas (briefly 
mentioned in Sects. 1.1 and 5). Osmotic oedema occurs 
in water intoxication. Cytotoxic oedema arises from 
excess accumulation of solutes within cells. Vasogenic 
oedema arises from changes in the blood–brain barrier. 
This review considers primarily cytotoxic oedema arising 
from ischaemic stroke.

Initial events occurring during the onset of ischaemic 
oedema. These are described in Sect. 3. The blockage of 
blood vessels decreases blood flow and thus supply of  O2 
and glucose leading to rapid formation of a core region 
with irreversible damage and a surrounding penumbra 
in which still viable cells are at risk. The events occurring 
can be summarized as follows:

• Depolarization of neurons in the core, and neu-
ral uptake of  Na+ and  Cl−, loss of  K+ and neuronal 
swelling (Sect. 3.1).

• Greatly increased  [K+]isf in the core triggers spread-
ing depolarizations into the adjacent penumbral 
region. The metabolic cost of recovering from 
spreading depolarization without adequate blood 
supply is a major factor in the spread of the ischae-
mic core into the penumbra (Sect. 3.2).

• Astrocytic uptake of  Na+,  K+ and anions and swell-
ing of astrocytes in the core (Sect. 3.3).

• Reduction in ISF volume by uptake into cells 
(Sects. 3.4).

• Increased solute content of the parenchyma by 
influx of solutes from CSF (Sect.  3.5.1) and blood 
(Sect.  3.5.2) and by production of additional sol-
utes (Sect.  3.4 and appendix E) within the paren-
chyma (Sect. 3.5.3) leads to development of oedema 
(Sect. 3.5).

• Water enters primarily from blood across the 
endothelial layer with some passing directly into 
astrocyte endfeet via AQP4.

Events in the medium term (Sect.  4). These include 
changes in the blood–brain barrier that enhance oedema 
formation. There is a substantial increase in NaCl 

permeability of both parenchymal and endothelial cells. 
These changes include opening of SUR1‑TPRM4 chan‑
nels in neurons, astrocytes and endothelial cells, so 
allowing more rapid NaCl movements into and out of 
the cells (Sect. 4.2.1). In addition, there is an initial stage 
of opening of the tight junctions between the endothe‑
lial cells. In this initial stage, the important effect is an 
increase in permeability to small molecules (Sect. 4.2.2). 
The driving force for fluid entry into the parenchyma still 
arises from the presence of impermeant macromolecules 
in the parenchymal cells. Only substantially later does the 
blood–brain barrier become sufficiently leaky to large 
molecules, e.g. albumin, that their entry affects the driv‑
ing force for fluid entry from blood.

Many aspects of tissue swelling in the medium term 
can be understood in terms of the Donnan effect caused 
by the excess of negative charge on large solutes trapped 
within the parenchymal cells. (Sects. 3 to 3.6 and 4.1 and 
appendix E).

Events in the long term (Sect. 5). At this point there is 
gross failure of the blood–brain barrier that occurs on 
a time scale of days. In about 10% of clinical cases this 
leads to haemorrhage into the tissue (haemorrhagic 
transformation). Lack of haemorrhage in 90% of cases 
implies that haemostasis has occurred.

Treatment At present the only effective treatment for 
ischaemic oedema is reperfusion (Sect.  6). If achieved 
sufficiently early it can greatly reduce the spread of 
ischaemic damage and oedema, but it cannot rescue the 
core. The major risk of reperfusion is haemorrhage.

Resolution of oedema (Sect.  7) This is a slow process 
requiring days or even weeks. Fluids without colloid, e.g. 
CSF or mock CSF, can be reabsorbed across the blood–
brain barrier over a few days, presumably by the Starling 
mechanism with the rate limited by the permeability of 
the barrier to NaCl. If colloid is present in the fluid, e.g. 
after an infusion of serum, fluid must be removed by 
extravascular means which are much slower.

9  Conclusions
The development of focal ischaemic oedema depends on 
events that occur in a localized region of the brain. Nev‑
ertheless, when the ischaemic region is sufficiently large, 
the oedema can produce marked increases in ICP with 
devastating results, i.e. herniation of brain structures 
accompanied by mechanical damage. By contrast, when 
ischaemia affects smaller regions, it is still uncertain that 
the oedema itself is responsible for any of the adverse 
consequences.

The early stages of ischaemic oedema develop‑
ment involve a complex interplay of ionic movements 
between neurons, astrocytes, endothelial cells, ISF, 
CSF and blood. Many of the main players have now 
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been identified making it possible to explain how 
the oedema develops. Oedema fluid accumulates 
inside cells for two reasons: because of the intracel‑
lular generation of new, osmotically active solutes by 
catabolism and because of the Donnan effect of the 
negatively‑charged impermeant intracellular solutes 
such as proteins and phosphate compounds. Once the 
ischaemia deprives the cells of the energy needed to 
transport  Na+ outwards, the presence of these imper‑
meants and the negative potential they produce lead 
to intracellular accumulation of  Na+ together with 
 Cl− to maintain electroneutrality. The new metabolic 
products, the impermeants and the accumulated per‑
meants provide the osmolality necessary for water to 
be retained in the cells. While there is coupled trans‑
port of solutes and water across the cell membranes, 
present evidence suggests that this is not sufficient 
in the face of the membrane permeability to water to 
produce measurable osmotic gradients between the 
cells and ISF.

When ICP is increased by large scale oedema, her‑
niation of brain structures can be avoided by craniec‑
tomy or by aspiration of the osmotically active infarct 
region. However, neither of these procedures is 
reported to be effective in restricting the size of the 
damaged parenchymal region. The only satisfactory 
treatment to maintain or restore function following 
ischaemic stroke is restoration of blood flow pro‑
viding this can be achieved relatively quickly. In the 
core region where there is little blood flow, the dam‑
age is irreversible, but in the surrounding penumbral 
region where there is somewhat higher blood flow, 
some functional recovery can be achieved even after a 
number of hours. One important objective of current 
research is to find treatments which increase the time 
window for successful reperfusion.

While the development of ischaemic oedema can 
be explained using plausible arguments, there are still 
questions that need to be answered. These include:

• Which transporters or channels allow entry of  Na+, 
 K+,  HCO3

− and  Cl− (the permeants) into astrocytes? 
Measurements of concentrations of these ions inside 
astrocytes would be very useful.

• Do the differences between the isoforms of 
 Na+-pump present in astrocytes and neurons notice-
ably affect oedema development?

• What is the importance of the localization of aqua-
porins to astrocyte endfeet? Can aquaporins be 
exploited to delay the development of oedema?

Appendix A
Does oedema per se cause neuronal damage in ischaemia?
As discussed earlier, there is no doubt that severe wide‑
spread oedema is itself life threatening as it can increase 
intracranial pressure leading to brain herniation. The 
question here is whether less severe, more localized 
oedema can of itself cause damage to parenchymal cells 
or whether the damage which does occur is more directly 
the result of the ischaemia and spreading depolarizations.

In early work it was proposed that developing oedema 
was a key factor in spreading tissue damage. The tissue 
swelling was thought to compress blood vessels, perhaps 
just microvessels, reducing local blood flow and render‑
ing surrounding tissue more ischaemic (see e.g. [236, 
237]. The idea that there was compression of microves‑
sels was based on the observation that much of the swell‑
ing during development of ischaemic oedema was in the 
astrocyte end feet surrounding microvessels [238, 239]. 
This view was never explicitly contradicted, but there was 
also little direct evidence for further reduction in blood 
flow as the oedema developed. The idea fell out of favour 
when it became apparent that spreading depolarizations 
account for at least part of the observed increase in core 
volume into the surrounding tissue (see e.g. [73, 240]. 
Takano et  al. [48] showed it was the spreading depo‑
larization increasing metabolic demand rather than any 
further deficit in blood flow that was challenging cell via‑
bility (see also [60]).

However, there is evidence that oedema per se has a 
role in neuronal damage. The size of an infarct is clearly 
a major determinant of the loss of neurological function. 
The "infarct" is the more or less sharply defined region in 
which all the cells are dead. There are two different but 
not mutually exclusive ways in which the volume of a 
region committed to becoming infarct can increase (see 
Fig. 10): by inclusion of more cells and structures or by 
swelling of the cells and structures already present within 
the region. Battey et al. [241] found in acute stroke sub‑
jects that the functional deficit measured on the modified 
Rankin scale 90 days after stroke correlated with the final 
size of the infarct but also and independently with the 
extent to which oedema contributed to the infarct expan‑
sion. Oedema even of extent as small as 11 mL worsened 
the outcome. In other words, given two infarcts of simi‑
lar size, functional outcome was worse in the patient with 
greater oedema. Since all function of neurons within 
either of these two infarcts is irretrievably lost, regardless 
of the extent of oedema, any differences in neuronal func‑
tion to be ascribed to effects of oedema must relate to 
effects outside the infarct. The suggestion is that oedema 
somehow causes an extra impairment or loss of function 
in tissue adjacent to the infarct, presumably from selec‑
tive neuronal loss [218].
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Further evidence for a role for oedema per se in neu‑
ral damage has been obtained using glibenclamide and 
MCAO in rats. In a 4.5 h transient MCAO model, it was 
found that oedema, behavioural deficit and mortality 
determined at 28 h after occlusion could all be reduced 
by treatment with glibenclamide starting 4.5 h or even 
10 h after occlusion. By contrast the final infarct volume 
was not reduced [187], see also [242]. The ability of glib‑
enclamide given after 4.5 h to reduce behavioural deficit 
but not infarct size indicates that glibenclamide is some‑
how involved in limiting neural damage additional to 
that occurring within the infarct. Furthermore, because 
glibenclamide also reduces oedema, it is possible that the 
effect on behaviour results from its effect on oedema.

Further evidence that oedema produces adverse effects 
was reported by Woo et al. [186] who found that the anti‑
sense oligodeoxynucleotides they used to knock‑down 
SUR1‑TRPM4 significantly reduced oedema (calculated 

from stained sections as in [243])17 and loss of function 
assessed as spontaneous movement but had no effect 
on infarct volume. All of these were measured 24 h after 
occlusion. Similarly Stokum et  al. [173] found in mice 
that, when results after MCAO with different reperfu‑
sion times were compared, there were worse functional 
outcomes when oedema was greater for the same final 
infarct size.

Whether targeting the formation of oedema with the 
aim of increasing retention of function will ultimately 
lead to useful treatment of ischaemic stroke is still not 
known. Stokum et  al. [21] and Robert et  al. [244] have 
presented interesting overviews of the various treatments 
being considered in 2020.

Appendix B
Lactic acidosis in ischaemia
The term acidosis refers to the processes leading to a 
reduction in the pH of a body fluid. “Lactic acidosis” thus 
means that pH is reduced as a result of lactic acid pro‑
duction. There has been considerable controversy about 
the use of this term [245–250] because the reactions that 
produce  lactate− from glucose do not in themselves pro‑
duce the protons needed for lactic acid [155, 251]. Thus 
writing the reactions in a way that displays conservation 
of charge

and

which together become

It is clear that these reactions do not result in a net pro‑
duction of any acid, i.e.  H+. In that case how can they be 
the origin of acidosis?

However these reactions should not be considered in 
isolation. They are occurring to regenerate the ATP that 
is being consumed in performing the work being done by 
the cell. When the ATP consuming reactions,

(1)
glucose + 2 Pi2− + 2 ADP3− + 2 NAD+

−− >

2 pyruvate− + 2 ATP4− + 2 NADH + 2 H+
+ 2 H2O

(2)
2 pyruvate− + 2 NADH + 2 H+

−− >

2 lactate− + 2 NAD+

(3)
glucose + 2 Pi2− + 2 ADP3−−− >

2 lactate− + 2 ATP4− + 2 H2O.

Fig. 10 Schematic diagram showing possible ways in which growth 
and swelling of the core region can occur over time. Examples 
of cells present in and around the core are indicated by the small 
circles, (viable cells in white, dead or dying cells in black). The larger 
dotted circles indicate the size of the core shortly after the onset 
of ischaemia. The dashed circles represent the size of infarct 
after 2–3 days: upper right if cells outside the core region become 
incorporated but with no change in cell volume; lower left the size 
of an infarct if cells originally within the core swell but no extra cells 
from outside the original core are incorporated: lower right if both of 
these indicated changes take place

17 In Woo et al. [186] and Liu et al. [252] the final volume occupied by the 
infarct would be that shown lower right, while the infarct volume corrected 
for swelling, often called just the infarct volume, would be that shown upper 
right. The corrected volume is the volume of the region occupied before 
ischaemia by the cells which are in the final infarct.
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are combined with anaerobic glycolysis, the overall reac‑
tion supporting the work of the cell is

i.e. the anaerobic metabolism of glucose to obtain the 
energy needed for work does produce lactic acid and is 
responsible for a fall in pH. Thus, to the extent that these 
are the reactions occurring, calling the acidosis “lactic 
acidosis” is appropriate [155]. The role of production 
of lactic acid in normal pH regulation in the CNS was 
reviewed in Sect. 6 of [4].

The controversy over the name “lactic acidosis” isn’t 
entirely a matter of semantics: there is a substantive issue 
concerned with the acidosis observed with ischaemia. In 
this situation, part of the production of acid results from 
the breakdown of ATP and other forms of high energy 
phosphate compounds already present within the cell, 
hence to the extent that the acidosis results from such 
breakdown it has nothing to do with lactate. However, 
because substantially more lactate can be produced than 
existing ATP + creatinine phosphate (see e.g. [102]) much 
of the reduction of pH inside the cell depends on lactate 
production. Thus the term lactic acidosis (or lactacido‑
sis), which has been used for many years (see e.g. [155, 
253, 254]), is still appropriate.

Appendix C
Ischaemic responses of neurons and astrocytes
Na+‑pumps are key players: (a) in the long‑term regula‑
tion of intracellular and extracellular  Na+ and  K+ concen‑
trations, (b) in the reuptake of  K+ and expulsion of  Na+ 
after action potentials in nerve; and (c) in the redistri‑
butions of  Na+ and  K+ in the cells and interstitial fluid 
occurring in ischaemia. For the first of these roles the 
important pumps are located in the endothelial cells of 
the blood–brain barrier while for the second they are 
located in neurons. Pumps in neurons, astrocytes and 
endothelial cells are important during the development 
of oedema until the ATP/ADP ratio drops sufficiently to 
stop their function.

Neurons
Ions
There are likely to be at least four types of ion chan‑
nels that can allow the early  Na+ entry into neurons in 
ischaemia including voltage excitable  Na+ channels and 
NMDA cation channels that are opened by  glutamate−. 
It is possible to inhibit the  Na+ entry and depolarization 
with a cocktail of cation channel inhibitors (TTX which 

(4)
2ATP4− + 2H2O−− > 2Pi2− + 2ADP3−

+ 2H+
+ heat and energy to perform work,

(5)glucose −− > 2lactate− + 2H+
+ work & heat,

block voltage excitable  Na+ channels, CPP which blocks 
NMDA cation channels, DNQX which blocks other 
 glutamate− activated channels, and  Ni2+ which blocks 
various cation channels) [255], but, by omitting any one 
of these, spreading depolarizations (see below) recorded 
from CA1 pyramidal neurones in rat hippocampal brain 
slices [43] (see also [256]) could still occur. (The multi‑
plicity of channels and overlap in their functions may be 
part of the explanation for why it is difficult to achieve 
beneficial clinical effects in stroke with inhibitors of any 
single type of channel.) Ion channels and transporters 
involved in oedema are reviewed in [257].

In the normal resting state of a neuron there is a small 
inward leak of  Na+ balanced by an outward flux via the 
 Na+‑pump. The resulting inward flux of  K+ via the pump 
and an outward flux of  Cl− by secondary active transport 
via a  K+,  Cl− cotransporter, probably KCC2 [46], are in 
turn balanced by fluxes in the opposite directions, pre‑
sumably via channels. The pump‑leak balance maintains 
resting  [K+]neuron above and resting  [Cl−]neuron below 
equilibrium with the membrane potential such that 
increasing the passive permeability to either ion pro‑
duces hyperpolarization (e.g. an inhibitory postsynap‑
tic potential). In the ischaemic core the inhibition of the 
 Na+‑pump when ATP is depleted leads to depolariza‑
tion, caused primarily by the then unopposed  Na+ entry. 
The depolarization leads to an increase in  K+ perme‑
ability and release of  K+ which decreases  [K+]neuron and 
increases  [K+]isf. The change in the membrane potential 
also increases  Cl− transport into the neurons. Because 
the cell contents must remain almost neutral, the gain 
of  Na+ must be close to the sum of the loss of  K+ and 
gain of  Cl−. Any departure from electroneutrality large 
enough to be detected by means other than by measuring 
the potential would produce an impossibly large electri‑
cal potential. (There is no need to invoke specific binding 
of  K+ (as in [18]) to explain why the gain of  Na+ exceeds 
the loss of  K+ and there is no evidence for such binding.)

Water
The net gain of solutes in the neuron has frequently been 
stated to be the cause of neural swelling, tacitly assum‑
ing that the influx of water is osmotically driven. For this 
to be correct, the water permeability of the neuron must 
be adequate. The osmotic water permeability of pyrami‑
dal neurons with nearly normal resting potential in tissue 
slices is remarkably low. As Andrew et al. [49] note, this 
implies that these neurons do not have aquaporins and in 
addition that they are among the “cell types … that resist 
high osmotic gradients with specialized membranes that 
impede the equilibration of water between compart‑
ments”. Andrew et  al. suggest that the rapid swelling 
observed during depolarization can be explained if some 
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of the channels or transporters opened or activated by 
the depolarization are permeable to water.

Steffensen et  al. [44] have suggested an alternative 
explanation for rapid water entry into dendritic beads 
during depolarization. They conclude that the water 
entry occurs by coupled transport through cotransport‑
ers like the  Na+,K+,2Cl− transporter NKCC1 and the lac‑
tic acid transporter MCT2. In support of their suggestion, 
they report that omission of  Cl− or use of inhibitors of 
NKCC1, (furosemide) and MCT2 (4‑CIN) reduces swell‑
ing without affecting spreading depolarization. However, 
this evidence does not establish that cotransport of water 
is essential for swelling in dendritic beads or in cell bod‑
ies. For swelling to occur, there must be entry of cati‑
ons, anions and water. All the available evidence can be 
explained if there is inhibition of anion entry reducing the 
osmotic gradient that would be needed to drive osmotic 
entry of water. In the dendritic beads, the inhibition of 
NKCC1 activity would thus inhibit swelling regardless of 
the route of water entry. (Neither  Cl− entry nor NKCC1 
activity are needed for spreading depolarization.) In cell 
bodies, cell swelling was not inhibited by bumetanide (an 
inhibitor of NKCC1) within a few minutes of persistent 
activation of  Na+ channels but was blocked by DIDS and 
siRNA directed against the  Cl− transporter slc26a11 [45], 
which is also consistent with the primary importance of 
the inhibition of anion transport. The two hypotheses for 
the mechanism of swelling could be distinguished if the 
osmotic water permeability of the depolarized neurons 
were known, but apparently those experiments have not 
yet been done.

Astrocytes
Ions
Based on evidence obtained with astrocytes in cell cul‑
ture it has been proposed that most of the  K+ and 
 Cl− entry into astrocytes is mediated by the  Na+,  K+, 
 2Cl−‑cotransporter, NKCC1 [258–260]. However, while 
NKCC1 expression in cultured astrocytes is high, that in 
astrocytes in vivo is low, reported as being either unde‑
tectable [261] or comparable to the low levels seen in 
adult neurons [262] (for extensive discussion see [96] but 
for a contrary view see [90]). Consistent with low expres‑
sion of NKCC1, furosemide, an inhibitor of NKCC1, had 
negligible effect on the change in  [K+]isf when  K+ was 
added iontophoretically [263].

MacAulay [96] has extensively reviewed studies on 
the changes in  [K+]isf and the volume of the extracellu‑
lar space following repetitive nerve stimulation. Some 
care is required in comparing those results with the 
changes in ischaemia. Following nerve stimulation there 
is reuptake of  K+ into neurons as their  Na+‑pumps are 

stimulated by the increase in  [Na+]neuron (see e.g. [264, 
265] and Fig. B‑1) but with the fall in [ATP] in ischae‑
mia this reuptake will be much less obvious. Similarly, 
because ATP becomes depleted in ischaemia, the role of 
the  Na+‑pumps in astrocytes is likely to differ between 
the response to nerve stimulation and that to ischaemia. 
Nevertheless, results obtained during and after repeti‑
tive nerve stimulation (see Fig. B‑1) do still inform any 
discussion of the mechanisms involved in responses to 
ischaemia.

The account in [96] assigns only a restricted role to the 
 K+ conductance of astrocytes in the response to nerve 
stimulation, noting that it sets the resting potential and 
thus is important in the initial astrocytic depolarization 
when  [K+]isf is increased. The uptake of  K+ into astro‑
cytes is said to occur primarily via their  Na+‑pumps 
[86, 95, 96, 265]. However, while the importance of 
 Na+‑pumps in reuptake of  K+ into neurons is well estab‑
lished, the relative importance of astrocytic  Na+ pumps 
and  K+ channels in  K+ entry into astrocytes is not so 
clear. Data shown in Fig.  11 from the meticulous study 
by D’Ambrosio et al. [265] provide a good example. The 
interpretation in the legend to Fig.  11 differs from the 
interpretation given by D’Ambrosio in that it takes into 
account the strong possibility that neurons and astro‑
cytes have different isoforms of the  Na+‑pumps with dif‑
ferent affinities for inhibitors [266–269]. Reinterpreted, 
D’Ambrosio et al.’s data suggest a role for  Ba2+‑sensitive 
 K+‑channels in entry of  K+ into astrocytes both during 
and after stimulation of  K+ release from neurons.

It is unfortunate that the study by D’Ambrosio et  al. 
[265] did not report data either for a sufficient concen‑
tration of the  Na+‑pump inhibitor to inhibit the pumps 
in astrocytes or for the combination of pump inhibitor 
and  Ba2+. These results might have allowed a clearer dis‑
tinction between pump‑mediated and channel‑mediated 
fluxes of  K+ into astrocytes.

In the account given in Sect.  3.3,  K+ conductance is 
given more prominence (compare [270]) than in [96] for 
two principal reasons, first in ischaemia the  Na+‑pumps 
in the astrocytes are to some extent inhibited and sec‑
ondly some route for inward current is required to 
maintain approximate electroneutrality during astrocyte 
swelling (see Fig. 4). 

In the initial changes during ischaemia, both NBCe1 
and the  Na+‑pump, if functioning, are expected to 
carry outward currents, NBCe1 as a net inward move‑
ment of negative charge, 2  HCO3

− for each Na+, and the 
 Na+‑pump as an outward movement of positive charge, 3 
 Na+ outward for each 2  K+ inward.

The only plausible routes for an inward current are  K+ 
entry via the  K+ conductance and  Na+ entry via charge 
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carrying cotransporters with  Na+‑ glutamate cotransport 
being the most prominent [271].

The stoichiometry of the  Na+,  glutamate−‑transporter 
is complex, but it mediates a net current into the astro‑
cyte, which will tend to depolarize it, while at the same 
time being a source of intracellular anions. Thus, it might 
be expected to account for some of the volume increase 
in astrocytes and the ISF decrease. However, inhibition 
of coupled glutamate transport with the inhibitor TBOA 
(200  µM, DL‑threo‑b‑Benzyloxyaspartic acid) produced 
a modest potentiation of the nerve‑stimulus‑induced 
decrease in ISF volume, i.e. a change in the reverse direc‑
tion of that expected if the astrocyte volume increase and 
ISF volume decrease were the results of coupled trans‑
port of glutamate into the astrocytes [95]. Hence, by a 
process of elimination, that leaves  K+ entry as the likely 
basis for the inward current.

There are a number of arguments in favour of chan‑
nels mediating  K+ entry into astrocytes in ischaemia 
including:

• K+ channels are present and at least initially open;
• [K+]isf is greatly increased while  [Na+]isf is substan-

tially reduced, favouring importance of  K+ entry 
mechanisms;

• Ba2+, a Kir channel blocker, has been found to block 
most of the  K+ entry into glia [69] (but see caveat 
below);

• Ba2+ augments the change in  [K+]isf when  K+ is 
added iontophoretically [263];

• deletion of the Kir4.1 subunit in mice abolished buff-
ering of [K.+]isf in the ventral respiratory group [272]

• both baseline and nerve simulation increased  [K+]isf 
are higher in the presence of  Ba2+ (see Fig.  11 and 
discussion above).

It would be very interesting indeed to know how 
 [K+]astrocyte,  [Na+]astrocyte,  [Cl−]astrocyte,  [HCO3

−]astrocyte 
and pHastrocyte vary in intact tissue during ischaemia both 
initially when  [K+]isf is first increased and also subse‑
quently. However, experiments reporting changes actu‑
ally recorded within astrocytes, as opposed to being 

Fig. 11 Effects of a dihydro-ouabain (DHO) and b)  Ba2+ on  [K+]isf. 
Concentrations were measured using ion-selective microelectrodes 
under baseline conditions and during antidromic Schaffer 
collateral 3 Hz stimulation of cells in the CA3 stratum pyramidale 
of rat hippocampus. Neuron firing releases  K+ into the ISF. DHO 
is an inhibitor of  Na+-pumps;  Ba2+ inhibits Kir4.1  K+ channels 
known to be expressed in the astrocytes. Data traces are 
from D’Ambrosio et al. [265]. Each trace shows the baseline values 
before 3 Hz stimulation begins at 4 min. During this initial period, 
the rates of  K+ release and uptake are in balance for the neurons 
and the astrocytes. In the control traces in both a) and b) at the onset 
of stimulation  [K+]isf increases rapidly to a peak then falls gradually 
as increases in  [Na+]neuron stimulate the neural  Na+-pumps and thus 
increase the rate of reuptake of  K+ into the neurons. At the end 
of stimulation,  [K+]isf decreases rapidly, overshoots the baseline 
and then increases towards baseline as  [Na+]neuron and the rate 
of  K+ uptake into the neurons return to baseline values [265]. Both 
DHO in a and  Ba2+ in b increase the baseline prestimulation  [K+]isf 
compared to its paired control suggesting that each inhibits one 
or more routes of removal of  K+ from ISF. a With DHO present, 
at the onset of stimulation  [K+]isf increases rapidly to a higher 
and sustained plateau indicating that the rate of  K+ removal from ISF 
is the same as the increased rate at which it is being released 
from the neurons. At the end of stimulation  [K+]isf decreases 
rapidly but with little overshoot. The absence of the gradual 
decline during stimulation and the lack of overshoot afterwards 
suggest that 5 µM DHO has completely inhibited the  Na+ pumps 
in the neurons. This is consistent with the idea that the isoform 
of the pump in the neurons has a relatively high affinity for DHO 
[267]. In this interpretation, the release of  K+ during stimulation 
would be balanced by uptake into astrocytes. From the evidence 
discussed so far this uptake could be via either a pump isoform 
with relatively low affinity for DHO or  K+ channels. b With  Ba2+ 
present,  [K+]isf is higher than in the paired control both before and 
during stimulation suggesting that  Ba2+ has inhibited removal 
of  K+ from ISF into the cells. At the end of stimulation,  Ba2+ 
accentuates the size of the overshoot in  [K+]isf below the baseline 
before stimulation. This phenomenon is explained [265] 
by the combination of continued rapid uptake of  K+ by the neural 
 Na+-pumps stimulated by increased  [Na+]neuron together 
with inhibition by  Ba2+ of the return of  K+ to ISF from the astrocytes

◂
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inferred from those recorded in ISF, have been rare. Bal‑
lanyi et al. [69] used sharp microelectrodes to penetrate 
glial cells. Unfortunately, there is uncertainty about 
whether the glial cells in their experiments were astro‑
cytes or oligodendrocytes [85] (or NG2 cells [270]) and 
thus further investigation is required (compare [65]). Du 
et  al. [273] used patch clamp recording in slices from 
control mice and those with knock‑out of either TWIK‑1 
or TWIK‑1 and TREK‑1  K+ channels and found no dif‑
ference in their passive conductance or input resistance, 
suggesting that some other type of channel (the obvious 
candidate being Kir4.1) is responsible for the resting con‑
ductance of astrocytes. By contrast Junsung Woo et  al. 
[89] loaded individual cells with a  K+ sensitive dye via 
a patch pipette and recorded transients in neurons and 
astrocytes in response to neural stimulation. Not surpris‑
ingly they found that  K+ was released from the neurons 
and taken up by the astrocytes. However, they found that 
the uptake in astrocytes was blocked by shRNA knock‑
down of TREK‑1 channels and not by knockdown of 
Kir4.1. Which  K+ channels are most important is not 
yet certain and may not be the same in all astrocytes [89, 
273–276].

There is likely to be some recycling of  HCO3
− and some 

entry of  Cl−, but the mechanisms for these are unknown. 
One suggestion has been  HCO3

− /  Cl− exchange [277] 
[278] [279, 280] but the efflux of  HCO3

− from astrocytes 
after repetitive nerve simulation appears to be by reversal 
of NBCe1 rather than  HCO3

− /  Cl− exchange [281].

Water
MacAulay [96] describes the mechanism for water uptake 
from ISF into astrocytes as being primarily cotransport 
of water along with  Na+ and  HCO3

− by NBCe1. (There 
is also an incompletely defined role for monocarboxylate 
transporters, MCTs). Much of the evidence in favour of 
this proposal is that inhibition of NBCe1 reduces astro‑
cyte swelling [95, 96]. However, to the extent that anion 
entry into astrocytes requires NBCe1, its inhibition 
would tend to hyperpolarize the cells and inhibit their 
swelling, regardless of whether the net entry of water was 
occurring by cotransport or via osmotically driven fluxes.

The argument against water entry by osmotically 
driven water fluxes given by MacAulay is based on their 
result [96, 282] (see also [283]) that inhibition of AQP4 
does not reduce the rate of astrocyte swelling and ISF 
volume reduction following repetitive nerve stimulation. 
Set against that, however, are conflicting results show‑
ing that knock‑out of AQP4 reduces [162] or knock‑
down virtually abolishes [89]) the swelling response. 
Furthermore, if inhibition of AQP4 does fail to affect the 
response that would only argue against a requirement for 
AQP4 not against osmotically driven water movement 

through other routes including the lipid portions of the 
membrane. As noted in [96], Solenov et  al. [284] found 
that at 37 ºC the water permeability of cultured astro‑
cytes from AQP4 knockout mice was still about half 
that of those cultured from wild‑type mice which might 
be sufficient to allow rapid water entry. Further study is 
required to clarify the roles of AQP4, of osmotic move‑
ments of water, and of co‑transport of water via NBCe1.

Appendix D 
The early changes in tissue volume,  Na+ and  K+ content 
and osmolality following onset of ischaemia.
These studies are now more than thirty years old. Despite 
this there does not seem to have been any compilation of 
the results. Nor has there been any discussion of the rela‑
tive merits of the assertions that tissue swelling (water 
gain) is driven primarily by the metabolic production 
of new osmoles or that the swelling is due to accumu‑
lation of NaCl. The conclusion reported in Fig.  5 based 
on consideration of the data in Table  1 is that both are 
important. Three reports were excluded from calcula‑
tions of the fraction of swelling attributable to NaCl 
entry, because in two cases [285, 286] data from at least 
3 h of ischaemia were not included and in one case [112] 
changes in  Na+ and  K+ were not reported.

The mean values of the quantities calculated from the 
experiments in Table  1 (with the three exclusions dis‑
cussed above) are: water gain, 0.83 mL  g−1 (scaled to 4 
h time point); ionic osmolality in the added fluid (at the 
time points of the data), 177 mOsmolal; osmolality attrib‑
utable to new osmoles produced within the tissue, 133 
mOsmolal. Based on these values the water gain over 4 h 
attributable to uptake of NaCl and loss of KCl is 0.47 mL 
 g−1 and to production of new osmoles 0.36 mL  g−1. Given 
the scatter of the data, these are only rough estimates.

One of the reasons why the data are scattered may be 
the different ways in which the parenchymal samples 
were obtained for measurement of water and solute 
gains. These varied from using an entire hemisphere sub‑
jected to MCAO [286, 287] to using small cubes, 1  mm3, 
dissected from the MCAO core [176, 288, 289]. It is dif‑
ficult to say how these differences may have affected the 
results reported in Table  1 because with the exceptions 
of [176] they are not discussed in the original papers (see 
also [289]). However, the errors introduced by using the 
whole hemisphere are probably not as great as might 
be imagined. To see this, consider a simple, artificial 
example of the calculations of fluid uptakes per unit vol‑
ume when all of the uptake into a hemisphere with vol‑
ume Vhemi occurs within a portion with volume Vsample.. 
Because the estimate of the uptake per unit volume is 
just the measured uptake divided by the volume, the 
ratio of the estimates obtained by taking the hemisphere 
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instead of the sample for analysis would be just the ratio, 
Vsample/Vhemi. Use of the hemisphere as the sample will 
lead to underestimation of the uptake per unit volume, 
but the errors may be little more than a factor of 2 when 
the oedematous region is large.

The osmotic effects of entry of NaCl from outside the 
parenchyma and the production of new osmoles within 
the parenchyma are much larger than any conceiv‑
able effects of influx of serum albumin from blood or of 
hydrostatic pressure differences between the tissue and 
blood. The largest conceivable osmolality attributable 
to influx of serum albumin from blood would be a few 
mOsmolal. The largest conceivable hydrostatic pressure 
difference would be less than 19 mmHg which as a driv‑
ing force for fluid movement is equivalent to 1 mOsmolal. 
Thus influx of colloid and hydrostatic pressure gradients 
almost certainly do not drive the early development of 
ischaemic oedema (compare [174, 175, 285]).

Appendix E 
The Donnan effect, cell swelling and oedema
The electrical potential difference across the cell mem‑
brane separating the contents of a cell from its outside 
is equal to the net charge within the cell divided by the 
capacitance of the membrane. Thus, for cells with nega‑
tive potentials, there is an excess of negative over positive 
charge within the cell. However, over the entire range of 
membrane potentials observed, the difference between 
the amounts of negative and positive charge present is 
very much smaller than either of those amounts, i.e. the 
amounts of negative and positive charge are almost equal. 
When determined in any way other than by measuring 
the membrane potential, the net charge is within experi‑
mental error of being zero: the cell contents appear to be 
neutral. The approximation used in calculations that the 
cell contents are neutral even though the potential differ‑
ence is not zero is the so‑called Principle of Electroneu‑
trality (see e.g. Section 6.1.2. in [4]).

Table 1 The early changes in volume and fluid composition in regions of brain parenchyma subject to ischaemia following middle 
cerebral artery occlusion (MCAo) or carotid artery occlusion in the case of gerbil studies

a This column denotes the change in volume measured in terms of water content per unit dry weight of tissue, i.e. the solids after the water is evaporated. (For the 
calculations leading to Fig. 5, water gains measured after three hours were presumed to continue at the same rate for an additional hour.) The water gain at any time 
point can be calculated [290] from values for the percentage of water in the tissue (taken to be milliliters per 100 g of tissue wet weight). The water content per unit 
dry weight both before and after the period of ischaemia can be calculated as % water / (100-% water) and the gain is then the difference. In Fig. 5 the water content 
per unit dry weight before ischaemia is taken as 8 mL  g−1

b These columns show the content of  Na+ or  K+ measured per unit dry weight of tissue
c In this column the ionic osmolality of the added fluid has been calculated from the previous columns assuming  Cl− gain =  Na+ gain—K+ loss (net gain of  Na+,  K+ 
and  Cl−) / (water gain) = 2 x  (Na+ gain—K+ loss) / (water gain). The calculation of the fraction of the swelling that can be attributed to net uptake of NaCl minus loss 
of KCl shown in Fig. 5 and listed below is based on the assumption that the osmolality of ISF during swelling is 310 mOsmolal which is close to the sum of the initial 
osmolality, assumed to be 296 mOsmolal, plus the average of the few values of the increase in osmolality that have been determined experimentally. The fraction is 
then the ionic osmolality of the added fluid / 310 mOsmolal. The remainder of the osmolality is assumed to be provided by the production of new osmoles within the 
tissue
d Δosmolality is the total osmolality 2 or 3 h after onset of ischaemia (depending on the study) minus that before onset
e Murtha et al. [291] reported smaller, not significantly different from zero, oedemas measured 24 h after onset of 3 h transient MCAO. These data could not be used 
because they didn’t report oedema at any earlier time points
f Hossmann discusses the sequence of increases in metabolically produced osmoles and influx of NaCl with the former occurring at the beginning and the latter 
proceeding with a delay of about an hour compared to the uptake of water. This suggests that subsequent increase in oedema is accompanied by ~ 310 mOsmoles 
of ions per litre gained less than 19 mmHg which as a driving force for fluid movement is equivalent to 1 mOsmolal. Thus influx of colloid and hydrostatic pressure 
gradients almost certainly do not drive the early development of ischaemic oedema (compare [175, 176, 288])

Species Time after 
insult/h

water gain/
mL  g−1 a

Na+ gain/
µmol  g−1 b

K+ loss/
µmol  g−1 b

ionic osmolality of 
added fluid/mOsmolal c

Δosmolality/
mOsmolal d

Ref. e

cat 2 0.56 69 88 − 67 Bartko et al. [285]

gerbil 3 0.76 185 130 145 Ito et al. [287]

cat 4 0.7 192 137 157 16–22 Schuier and Hoss-mann [102]

cat 4 0.72 9 Hossmann [112]

rat 4 1.91 263 − 39 316 Young et al. [63]

gerbil 3 0.44 146 108 173 Lo et al. [125]

rat 4 0.4 139 141 − 10 18 Hatashita et al. [113]

cat 4 0.7 178 114 183e 9 Hossmann [114]f, e

gerbil 3 0.53 160 91 260 Betz et al. [288]

rat 2 0.55 228 95 483 Yang et al. [286]

rat 4 0.65 178 116 191 Menzies et al. [176]
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Cells contain large amounts of impermeant negatively 
charged solutes, e.g. proteins, nucleic acids, and phos‑
phate compounds. Because otherwise membrane poten‑
tials would be prohibitively large, the permeant solutes 
must be distributed to balance that charge. In practice 
this means the cells must contain more  K+ than  Cl−. 
Given two important assumptions, (a) that solutes can 
be divided into those that are effectively impermeant 
and those that are permeant and (b) that water reaches 
osmotic equilibrium, the Donnan equilibrium describes 
quantitatively the relations between the amounts and 
charges of the impermeants, the concentrations and 
charges of the permeant ions, the membrane potential 
and cell volume.18 The Donnan effect is the tendency 
for the permeant ions and water to move so that the con‑
centrations and volume approach this equilibrium. The 
Donnan potential is the membrane potential at Don‑
nan equilibrium. The Donnan equilibrium [292, 293] was 
introduced into cell physiology by Boyle and Conway [294] 
who used it to account for the cell volume changes and dis‑
tribution of ions observed in frog skeletal muscle fibres.

To better understand the consequences of the Donnan 
effect, consider what would happen if a cell like a muscle 
fibre were suspended in just KCl. Because the negative 
potential would lead to more accumulation of  K+ than 
depletion of  Cl−,  [K+]inside +  [Cl−]inside would be larger 
than  [K+]outside +  [Cl−]outside and the osmotic pressure 
inside the cell would be higher than that outside which 
would drive cell swelling.19 For the fibre to have a stable 
volume either the osmotic pressure must be balanced by 
a higher hydrostatic pressure acting on the fluid inside 
the fibre than on the fluid outside or there must be some 
impermeant solute that can increase the osmotic pres‑
sure of the solution outside. For mammalian cells with 
membranes that cannot support significant hydrostatic 
pressure differences, this means in practice that there 

must be external impermeants. An important role of the 
 Na+‑pump is to render the cell membrane effectively 
impermeant to  Na+ so that the  Na+ inside acts as one of 
the internal impermeants and the  Na+ outside, present 
at a relatively high concentration, can act as the exter‑
nal impermeant that allows osmotic balance. For muscle 
fibres Boyle and Conway showed that the experimentally 
measured distributions of  K+ (high inside) and  Cl− (low 
inside), the membrane potential (negative inside) and the 
cell volume were interrelated as predicted by Donnan’s 
equations. The initial swelling of brain cells surrounded 
by ISF in the early stages of ischaemia has been described 
in Sects. 3.1–3.3, Fig. 4, Fig. 8 and appendix C in terms 
like those used by Boyle and Conway.

The Donnan theory can also be used to interpret data 
for a gel with a flexible framework of negatively charged 
molecular strands with the spaces between them filled 
with solution. Such a gel can expand and shrink taking up 
and releasing fluid and ions. To be able to resist expansion, 
the gel strands must be cross linked. Stable volumes can 
then be achieved because stretching of the tissue matrix 
increases the pressure acting on the fluid. This type of Don‑
nan theory has been used to interpret data obtained from 
experiments studying the swelling of brain tissue slices in 
culture medium when the cells have been damaged by inhi‑
bition of cell metabolism [295–297]. Furthermore, it has 
been asserted that this theory for a gel can be used to inter‑
pret the formation of oedema in the brain [295–298].

The Donnan theory with the entire tissue intracellular 
and extracellular treated like a single gel does provide a 
plausible description of the swelling of the damaged tis‑
sue slices. However, there are several reasons why some‑
what more care is required in the application of Donnan 
theory to interpret the development of ischaemic brain 
oedema. Firstly, the theory as applied to the slices takes 
no account of the effects of the cell membranes or the 
blood–brain barrier, which are important in situ, and in 
particular the Donnan theory for slices does not allow 
for differences in the handling of  Na+ and of  K+ in the 
initial stages of the oedema development. Secondly, as a 
result of damaging the cell membranes in the slices, many 
of the impermeant solutes, some with negative charge, 
will escape from the inside of the neurons and astrocytes 
and be washed away. Much of the oedema in ischae‑
mic brain develops before the cell membranes are com‑
pletely disrupted and thus the "fixed" charge densities in 
the swelling brain and in swelling slices will be different. 
Thirdly, analysis of the slice preparation does not allow 
for the differences in the behaviour of astrocytes and 
neurons. Finally, even if the cell membranes are disrupted 
completely in later stages of oedema, thus exposing the 
intracellular gel directly to that outside the cells, most of 
the oedema will be accumulating outside of the relics of 

18 Strictly it is necessary to know the activity coefficients for the ions and the 
nature and extent of binding of the ions to cell constituents. These factors 
substantially complicate quantitative predictions, but do not change any of 
the qualitative features of the Donnan equilibrium. In practice provided only 
monovalent ions are being considered, the errors involved in the predictions 
are usually smaller than those contained in the experimental results.
19 For a muscle fibre containing fixed negative charge and freely permeable to  K+ 
and  Cl−, the concentrations and the membrane potential ∆Vm at equilibrium 
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the cells in grossly swollen extracellular spaces (often in 
white matter), i.e. not within what was the cellular gel.
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