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Abstract 

Background The choroid plexus functions as the blood-cerebrospinal fluid (CSF) barrier, plays an important role 
in CSF production and circulation, and has gained increased attention in light of the recent elucidation of CSF circula-
tion dysfunction in neurodegenerative conditions. However, methods for routinely quantifying choroid plexus volume 
are suboptimal and require technical improvements and validation. Here, we propose three deep learning models 
that can segment the choroid plexus from commonly-acquired anatomical MRI data and report performance metrics 
and changes across the adult lifespan.

Methods Fully convolutional neural networks were trained from 3D  T1-weighted, 3D  T2-weighted, and 2D 
 T2-weighted FLAIR MRI using gold-standard manual segmentations in control and neurodegenerative participants 
across the lifespan (n = 50; age = 21–85 years). Dice coefficients, 95% Hausdorff distances, and area-under-curve 
(AUCs) were calculated for each model and compared to segmentations from FreeSurfer using two-tailed Wilcoxon 
tests (significance criteria: p < 0.05 after false discovery rate multiple comparisons correction). Metrics were regressed 
against lateral ventricular volume using generalized linear models to assess model performance for varying levels 
of atrophy. Finally, models were applied to an expanded cohort of adult controls (n = 98; age = 21–89 years) to provide 
an exemplar of choroid plexus volumetry values across the lifespan.

Results Deep learning results yielded Dice coefficient = 0.72, Hausdorff distance = 1.97 mm, AUC = 0.87 
for  T1-weighted MRI, Dice coefficient = 0.72, Hausdorff distance = 2.22 mm, AUC = 0.87 for  T2-weighted MRI, and Dice 
coefficient = 0.74, Hausdorff distance = 1.69 mm, AUC = 0.87 for  T2-weighted FLAIR MRI; values did not differ signifi-
cantly between MRI sequences and were statistically improved compared to current commercially-available algo-
rithms (p < 0.001). The intraclass coefficients were 0.95, 0.95, and 0.96 between  T1-weighted and  T2-weighted FLAIR, 
 T1-weighted and  T2-weighted, and  T2-weighted and  T2-weighted FLAIR models, respectively. Mean lateral ventricle 
choroid plexus volume across all participants was 3.20 ± 1.4  cm3; a significant, positive relationship  (R2 = 0.54-0.60) 
was observed between participant age and choroid plexus volume for all MRI sequences (p < 0.001).

Conclusions Findings support comparable performance in choroid plexus delineation between standard, clini-
cally available, non-contrasted anatomical MRI sequences. The software embedding the evaluated models is freely 
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Background
The choroid plexus consists of a collection of fenestrated 
capillaries and epithelial cells that filter blood plasma 
down an osmotic gradient to secrete cerebrospinal fluid 
(CSF) in each of the brain’s four ventricles, with the 
majority of the choroid plexus volume residing in the 
atria of the lateral ventricles. The choroid plexus is widely 
believed to be the primary source of CSF production in 
the brain, producing CSF at a rate of 430–530  mL/day 
[1], and the choroid plexus has gained additional recent 
attention owing to its role as one of the most proximal 
components of the brain’s waste clearance system [2].

The choroid plexus structure and function has been 
well characterized from animal and post-mortem studies, 
but how choroid plexus structure and function change in 
the context of disease [3–5] and aging [6, 7] in humans 
is an area of active and emerging interest. In the context 
of aging, it has been shown that choroid plexus volume 
increases, and perfusion decreases, with advanced age 
[7, 8]. Diffusion-weighted magnetic resonance imaging 
(MRI) has also revealed that choroid plexus mean diffu-
sivity increases, and fractional anisotropy decreases, with 
advanced age [8]. Increasing choroid plexus volume may 
relate to increasing severity of cognitive impairment in 
the spectrum of Alzheimer’s disease related disorders [3] 
and in support of this possibility, reduced choroid plexus 
metabolism from 18F-Fluorodeoxyglucose positron emis-
sion tomography (PET) has been reported in patients 
with Alzheimer’s disease compared to patients with 
amnestic mild cognitive impairment and healthy con-
trols [9]. Perfusion-weighted arterial spin labelling MRI 
has been utilized further to characterize choroid plexus 
response to various pharmacological stimuli [10], which 
may aid in evaluating novel therapeutic delivery path-
ways or mechanisms.

However, one limitation to the advancement of neu-
roimaging studies of the choroid plexus is the lack of an 
accurate, automatic tool to segment the structure from 
anatomical images. Manual segmentations, as with other 
tissues, are impractical in large cohort studies, and the 
choroid plexus has varying appearances on standard MRI 
sequences due to its heterogeneous relaxometry charac-
teristics [8], making manual segmentations an even more 
difficult process. Alisch et al. found that both the  T1 and 
 T2 relaxation times of the choroid plexus increase with 
advancing age [8], which affects the contrast of the cho-
roid plexus on standard MRI sequences. For instance, this 

finding might suggest that the choroid plexus is more vis-
ible on  T1-weighted and  T2-weighted images for younger 
people, since the relaxometry of the choroid plexus con-
trasts with the surrounding CSF more in younger people.

Many neuroimaging software packages do not include 
segmentation options for the choroid plexus, and those 
that do include choroid plexus segmentation tools have 
been reported to have suboptimal performance in many 
applications [11]. Fully convolutional neural networks 
(FCNN) have shown state-of-the-art performance for 
segmentation of other brain structures [12], and recent 
work has proposed deep learning-based methods to 
segment the choroid plexus [11, 13, 14]. These methods 
rely on 3D magnetization-prepared-rapid-gradient-echo 
(MPRAGE)  T1-weighted MRI to learn choroid plexus 
anatomical patterns, however, this approach may provide 
suboptimal contrast for choroid plexus visualization and 
quantification given limited contrast between hypoin-
tense CSF signal and normo-to-mildly hypointense 
choroid plexus signal. In addition to  T1-weighted MRI, 
 T2-weighted and  T2-weighted FLuid Attenuated Inver-
sion Recovery (FLAIR) MRI also are commonly acquired 
in both clinical and research neuroimaging environments 
and may yield differing segmentation accuracy, although 
this possibility has not been investigated rigorously.

In this study, we aim to develop and evaluate automated 
tools for segmenting the choroid plexus from three types 
of commonly acquired MRI sequences:  T1-weighted, 
 T2-weighted, and  T2-weighted FLAIR; and to compare 
the results from these methods to gold-standard manual 
tracings and to commonly used neuroimaging analysis 
software, FreeSurfer [15, 16]. We also evaluate perfor-
mance of these methods in an additional cohort of adult 
controls to report how the choroid plexus evolves across 
the adult lifespan, which will provide an exemplar for 
future clinical studies which may implicate the choroid 
plexus, such as Alzheimer’s disease, Parkinson’s disease, 
multiple sclerosis, and traumatic brain injury. The pro-
cessing code is also made publicly available for free aca-
demic use.

Methods
Demographics
This study had two components. First, we developed and 
evaluated a deep learning algorithm using separate stand-
ard MRI sequences in a diverse cohort of adults (delib-
erately selected to span a range of ages and conditions) 

available online and should provide a useful tool for the growing number of studies that desire to quantitatively 
evaluate choroid plexus structure and function (https:// github. com/ hettk/ chp_ seg).
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with the intent of providing a generalizable segmentation 
algorithm. Second, we applied the method to adult con-
trols across the lifespan to provide an exemplar for how 
choroid plexus volume changes with age in a cross-sec-
tional analysis.

Adult participants (n = 50 for model training; n = 98 
for subsequent adult control lifespan analysis) provided 
informed, written consent in accordance with the Van-
derbilt University Institutional Review Board (IRB) and 
the Declaration of Helsinki and its amendments. All 
participants were enrolled between February 2020 and 
July 2023. It is well-known that the brain atrophies with 
advancing age and in various neurological disorders, 
and with this atrophy comes ventricular enlargement 
and possibly choroid plexus hypertrophy [7, 8]. In order 
to make the proposed method as generalizable as possi-
ble, for algorithm training and development we deliber-
ately enrolled a heterogeneous cohort of persons across 
the adult lifespan. Participants included controls and 
patients with mild cognitive impairment (MCI), Alzhei-
mer’s disease, Parkinson’s disease, and Huntington’s dis-
ease. Inclusion criteria for control participants consisted 
of no history of cerebrovascular disease, anemia, psycho-
sis, or neurological disorder including but not limited 
to prior overt stroke, sickle cell anemia, schizophrenia, 
bipolar disorder, Alzheimer’s disease, Parkinson’s disease, 
or multiple sclerosis. The presence of non-specific white 
matter lesions was not an exclusion criterion for controls, 
as these lesions become more prevalent with aging, and 
we sought our cohort to be generalizable and representa-
tive. Diagnosis of Alzheimer’s disease, mild cognitive 
impairment, Parkinson’s disease, or Huntington’s disease 
was made by a board-certified neurologist (DOC; experi-
ence = 15 years) using clinical criteria.

Image acquisition
All participants underwent non-contrasted MRI at 
3 Tesla with body coil radiofrequency transmission 
and 32-channel SENSE phased-array reception on a 
Philips Ingenia system (Philips Healthcare, Best, The 
Netherlands). Anatomical images consisted of: (i) 3D 
 T1-weighted MPRAGE (TR = 8.1  ms; TE = 3.7  ms; field 
of view = 256 × 180 × 150  mm3; number of slices = 150; 
spatial resolution = 1.0 × 1.0 × 1.0  mm3; duration = 4  min 
32  s), (ii) 2D  T2-weighted FLAIR turbo-spin-echo 
(TR = 11,000  ms; TE = 120  ms; TI = 2800  ms; field of 
view = 230 × 184 × 144  mm3; number of slices = 29; spatial 
resolution = 0.57 × 0.57 × 4.0  mm3; duration = 1 min 39 s), 
and (iii) 3D  T2-weighted turbo-spin-echo (TR = 2500 ms; 
TE = 331 ms; field of view = 250 × 250 × 189  mm3; number 
of slices = 242; spatial resolution = 0.78 × 0.78 × 0.78  mm3; 
duration = 4 min 8 s).

Manual segmentation of the choroid plexus
Data utilized for manual segmentation of the choroid 
plexus consisted of 3D  T1-weighted, 2D axial  T2-weighted 
FLAIR, and 3D  T2-weighted MRI from 50 participants. 
Ground truth choroid plexus segmentation was per-
formed manually with final approval from a board-
certified neuroradiologist (CDM; experience = 9  years). 
Additionally, for assessment of the inter-rater reliability 
of manual delineations of the choroid plexus, two addi-
tional raters manually segmented the choroid plexus 
following the same protocol as the primary rater in 10 
participants from the machine learning training sample 
(see Supplementary Materials). In all cases, the manual 
delineation protocol was defined as follows: first, 2D axial 
 T2-weighted FLAIR and 3D  T2-weighted images were 
co-registered to 3D  T1-weighted images using linear reg-
istration tools from the Advanced Normalization Tools 
(ANTs) software package [17]. Next, the contrast from 
all three co-registered images was utilized by the primary 
rater to generate a single choroid plexus segmentation 
for each participant, using the FMRIB Software Library 
(FSL) tool fsleyes for segmentation and to visualize all 
three images in the same space simultaneously [18]. This 
approach was chosen to make efficient use of the higher 
spatial resolution  T1-weighted and  T2-weighted scans 
as well as the intraventricular contrast afforded on the 
 T2-weighted FLAIR. Given this process, a single ground 
truth segmentation was produced for each training sub-
ject. Manual segmentations focused on the choroid 
plexus in the atria of the lateral ventricles. We chose to 
focus on this region of the choroid plexus for several rea-
sons. First, to limit biasing of the deep learning method, 
delineations were careful not  to  include partial volum-
ing from nearby subcortical structures or periventricular 
white matter. The choroid plexus of the lateral ventri-
cles minimizes the partial volumes effect, as the trigo-
num ventriculi contain the largest portion of the choroid 
plexus distinct from surrounding tissue [19]. It has been 
reported previously that across all four brain ventricles, 
more than half of the choroid plexus mass is located 
within the lateral ventricles [20].

Automatic choroid plexus segmentation
Automatic choroid plexus segmentations were generated 
via a fully convolutional neural network model.

The machine learning model was designed following a 
U-NET architecture [21]. This architecture was chosen 
because of its proven success in medical image segmen-
tation algorithms and consisted of an encoding and a 
decoding step. The encoding step was composed of three 
blocks each composed of two layers. The number of fil-
ters was set to 64 for the first block and doubled at each 
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block thereafter. Each layer consised of a 3D convolution 
(kernel size = 3 × 3 × 3 voxels, stride = 1, and padding = 1), 
a batch normalization, followed by a rectified linear unit. 
Feature maps from each block were downsampled using a 
maximum pooling operation (kernel size = 2 × 2 × 2 vox-
els). The decoding step followed the same architecture, 
with each block dividing the number of filters by 2. Up-
sampling between each decoding block was performed 
with a 3D transposed convolution (kernel size = 2 × 2 × 2 
voxels, stride = 2 × 2 × 2 voxels, and no padding). The final 
segmentation map was obtained using a block composed 
of a 3D convolution operator (kernel size = 1 × 1 × 1 vox-
els, stride = 1 × 1 × x1 voxels, and no padding) followed 
by a hyperbolic tangent as the  activation function. The 
model was trained on three separate datasets to com-
pare performance across different MRI sequences (i.e., 
 T1-weighted,  T2-weighted, and  T2-weighted FLAIR 
images). All images were registered non-linearly with 
ANTs software to the International Consortium for Brain 
Mapping-Montreal Neurological Institute (ICBM-MNI) 
152  T1-weighted template [22]. Non-linear registration 
was utilized in this step in order to reduce morphological 
variability of the lateral ventricles and thus increase the 
inter-subject similarity of the choroid plexus appearance.

Implementation details
A patch-based approach for training of the machine 
learning model was employed. Patches of 64 × 64 × 64 
voxels were extracted from the MNI-registered images, 
and these patches were centered on random voxels from 
the choroid plexus probabilistic atlas that was generated 

from the average of the manual choroid plexus segmen-
tations included in the training data set. In total, 41 
overlapping patches from each participant were used to 
train the model. During the training phase, random flip-
ping along the longitudinal fissure was implemented to 
increase the training sample size further. The network 
was trained using an ADAM [23] optimizer with a learn-
ing rate set to  10–4. A generalized Dice loss function was 
used to train the network [24]. Lastly, the segmentation 
mask patches were pieced back together in MNI space 
and transformed back to the native T1-weighted space 
using the inverse transformation and nearest-neighbor 
interpolation. An overview of the processing pipeline 
with a diagram of the 3D U-NET architecture is shown 
in Fig. 1.

For comparison to available algorithms, choroid plexus 
segmentation masks were generated using FreeSurfer’s 
standard segmentation procedure from  T1-weighted MRI 
in all training subjects [15, 16]. Briefly, input images were 
skull-stripped and intensity corrected, and FreeSurfer’s 
aseg atlas was used to generate left and right choroid 
plexus labels. These labels were inverse transformed back 
to each subject’s native  T1 space and combined to form 
one choroid plexus mask per subject. These masks were 
then compared to ground truth manual segmentations 
for statistical analysis. As a secondary and exploratory 
analysis, to assess test–retest reliability of the proposed 
machine learning methods, we analyzed consecutive 
 T1-weighted MRI collected in 10 participants during dif-
ferent scan sessions within a 2 month time frame (see 
Aditional file 1).

Fig. 1 Overview of the processing pipeline of the anatomical magnetic resonance imaging (MRI) utilized in the proposed deep learning method. 
Examples are shown for a  T1-weighted MRI, but this pipeline also was utilized for  T2-weighted and  T2-weighted FLuid-Attenuated Inversion 
Recovery (FLAIR) MRI. Input images were registered to MNI152 space and cropped around the choroid plexus based off a probabilistic atlas 
generated from ground truth manual choroid plexus segmentations. Cropped images were then used as training input for the 3D U-NET fully 
convolutional neural network. The number of inputs for each trained model was 1 and the number of output structures was 1 (i.e., choroid plexus). 
Cropped outputs were then decropped and inverse transformed to the native imaging space. Example images are shown from a 69 year old male 
with Parkinson’s disease. (MRI: magnetic resonance imaging; Conv: convolution; ReLu: rectified linear unit; Tanh: hyperbolic tangent)
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Lastly, for the lifespan volumetry analysis,  T1,  T2, and 
 T2-weighted FLAIR images were separately preprocessed 
as described previously, and the deep learning model for 
each corresponding MRI sequence was utilized to gen-
erate choroid plexus segmentations for all enrolled par-
ticipants. From these segmentations in each participant’s 
native imaging space, the choroid plexus volume was cal-
culated in  cm3 .

Statistical analyses
To evaluate the accuracy of the choroid plexus seg-
mentation, we investigated how each model performed 
when trained with different sets of MRI sequences (i.e., 
 T1-weighted,  T2-weighted, and  T2-weighted FLAIR 
images) compared to ground truth manual delinea-
tions. For each MRI sequence, a fivefold cross-validation 
scheme was implemented with 30 participants utilized 
in model training, 10 participants utilized in model vali-
dation, and 10 participants utilized in model evaluation. 
Pseudo-randomization was used to ensure the same par-
ticipant groups across each modality-based model.

To verify the accuracy of the machine learning and 
FreeSurfer outputs, standard comparison metrics 
between the ground truth segmentation and machine 
learning output were calculated. The Dice-Sørensen coef-
ficient, 95% Hausdorff distance, and area under curve 
(AUC) were calculated for each iteration of cross-valida-
tion and averaged across the iterations to produce repre-
sentative metrics for each modality-based model. These 
metrics were then compared to FreeSurfer using two-
tailed Wilcoxon tests.

As an exploratory analysis, we evaluated these perfor-
mance metrics as a function of participant lateral ven-
tricular volume to gain more understanding on how the 
machine learning models perform in different anatomi-
cal environments. Lateral ventricular volume was calcu-
lated from each participant’s  T1-weighted MRI using the 
AssemblyNet software package [25]. Generalized linear 
models were utilized to separately regress performance 

metrics against model-testing participants’ lateral ven-
tricular volume.

The intraclass correlation coefficients between the 
choroid plexus volume for each control participant from 
the three deep learning models and between each of the 
choroid plexus volumes for the training participants and 
their ground truth choroid plexus volumes, were calcu-
lated and descriptive statistics presented as Bland–Alt-
man plots.

For the lifespan component of this study, a generalized 
linear model was utilized to regress the choroid plexus 
volume from each modality model against participant 
age. Sex was included as a covariate as well in this regres-
sion to account for previously found sex-dependence on 
choroid plexus volume [4], and total intracranial volume 
calculated from AssemblyNet was included as a covariate 
as well. The McFadden  R2 values were calculated for each 
regression model.

The machine learning algorithm was implemented 
using the PyTorch Python library [26], and pre-pro-
cessing, post-processing, and statistical analyses were 
implemented in Matlab [27]. All statistical analyses were 
implemented using the R software package [28]. All 
p-values were corrected with false discovery rate for mul-
tiple comparisons correction [29]. Significance criteria 
was defined as p < 0.05.

Results
Demographics: algorithm development
Participants (n = 50) included in the training, validation, 
and testing of the machine learning models ranged in age 
from 21 to 85  years, included 27 males and 23 females, 
and 29 control participants and 21 participants with neu-
rodegeneration (Additional file 1: Table S1).

Algorithm performance metrics
Performance metrics for each proposed machine 
learning model, and a previously available FreeSurfer 
algorithm, are reported in Table 1. The average Dice coef-
ficients were 0.72, 0.72, and 0.74 for the  T1-weighted, 

Table 1 Performance metrics for each machine learning method and FreeSurfer using manual segmentations as the ground truth

Values are shown as mean (range). Metrics for the machine learning-based methods were calculated from ten testing participants across five cross-validation 
iterations, whereas metrics for FreeSurfer were calculated from all 50 participants included in the algorithm development. *** indicates two-tailed Wilcoxon test 
revealed a significant difference between the machine learning method and FreeSurfer (p-value < 0.001)

Method Sørensen–Dice Coefficient 95% Hausdorff Distance 
(mm)

AUC 

Deep Learning from  T1-weighted MRI 0.72 (0.55–0.78)*** 1.97 (1.00–6.71)*** 0.87 (0.75–0.96)***

Deep Learning from  T2-weighted MRI 0.72 (0.57–0.78)*** 2.22 (1.00–16.6)*** 0.87 (0.75–0.96)***

Deep Learning from   T2-weighted FLAIR MRI 0.74 (0.61–0.80)*** 1.69 (1.00–3.74)*** 0.87 (0.74–0.96)***

FreeSurfer from
T1-weighted MRI

0.19 (0.02–0.37) 10.4 (4.12–17.2) 0.56 (0.50–0.62)
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 T2-weighted, and  T2-weighted FLAIR models, respec-
tively, while the average Dice coefficient for the Free-
Surfer output applied to the  T1-weighted image was 0.19. 
Two-tailed Wilcoxon tests revealed a significant differ-
ence in the Dice coefficient between the  T1-weighted 
machine learning method and FreeSurfer, the 
 T2-weighted machine learning method and FreeSurfer, 
and the  T2-weighted FLAIR machine learning method 
and FreeSurfer (all p-values < 0.001).

The average 95% Hausdorff distances were 1.97, 2.22, 
and 1.69  mm for the  T1-weighted,  T2-weighted, and 
 T2-weighted FLAIR models, respectively, and the aver-
age 95% Hausdorff distance for the FreeSurfer output was 
10.4  mm. Two-tailed Wilcoxon tests revealed a signifi-
cant difference in the 95% Hausdorff distance between 
the  T1-weighted machine learning method and Free-
Surfer, the  T2-weighted machine learning method and 
FreeSurfer, and the  T2-weighted FLAIR machine learning 
method and FreeSurfer (all p-values < 0.001).

The average AUCs were 0.87 for each of the mod-
els and the average AUC for the FreeSurfer output was 
0.56. Two-tailed Wilcoxon tests revealed a significant dif-
ference in the AUC between the  T1-weighted machine 
learning method and FreeSurfer, the  T2-weighted 
machine learning method and FreeSurfer, and the 
 T2-weighted FLAIR machine learning method and Free-
Surfer (all p-values < 0.001).

An example of each machine learning model output 
compared to ground truth and FreeSurfer choroid plexus 
segmentations from a 53-year-old male with MCI are 
shown in Figs. 2 and 3.

Finally, supplementary sub-analyses on inter-rater 
manual segmentation (ICC between all raters = 0.73) and 
inter-scan machine learning segmentation performance 
(ICC between consecutive segmentations = 0.99) are 
summarized in the Supplementary Materials.

We also investigated the relationship between model 
performance and lateral ventricular volume. Numerical 
results and graphical representations of these relation-
ships are shown in Additional file 1: Table S2 and Fig. 4, 
respectively. For each MRI sequence, the lateral ventricu-
lar volume of the testing participant was not significantly 
related to the Dice coefficient  (T1-weighted p-value: 0.44; 
 T2-weighted p-value: 0.99;  T2-weighted FLAIR p-value: 
0.40). For the  T2-weighted and  T2-weighted FLAIR mod-
els, the lateral ventricular volume was not significantly 
related to the 95% Hausdorff Distance  (T2-weighted 
p-value: 0.92;  T2-weighted FLAIR p-value: 0.094); how-
ever, for the  T1-weighted model, the lateral ventricular 
volume was positively related to the 95% Hausdorff Dis-
tance (p-value: 0.050). For each MRI sequence, the lateral 
ventricular volume was not significantly related to the 
AUC  (T1-weighted p-value: 0.20;  T2-weighted p-value: 

0.35;  T2-weighted FLAIR p-value: 0.69). For the Free-
Surfer outputs, none of the metrics related to ventricu-
lar volume (Dice p-value: 0.99; 95% Hausdorff distance 
p-value: 0.44; AUC p-value: 0.69).

Intraclass correlation coefficients were 0.83, 0.82, and 
0.82 between  T1-weighted deep learning choroid plexus 
volumes and ground truth choroid plexus volumes 
(Fig. 5a),  T2-weighted deep learning choroid plexus vol-
umes and ground truth choroid plexus volumes (Fig. 5b), 
and  T2-weighted FLAIR deep learning choroid plexus 
volumes and ground truth choroid plexus volumes 
(Fig. 5c), respectively.

Choroid plexus volume and age
Participants (n = 98) included in the assessment of cho-
roid plexus volume across the adult lifespan ranged 
from 21 to 89 years of age and included 46 males and 52 
females (Additional file 1: Table S3).

Numerical and graphical results from these regres-
sion analyses are shown in Additional file 1: Table S4 and 
Fig.  6, respectively. For each MRI sequence, participant 
age was positively related to choroid plexus volume (all 
p-values < 0.001). Additionally, for each MRI sequence, 
participant sex was significantly related to choroid plexus 
volume, with males having a larger choroid plexus volume 
than females  (T1-weighted p-value: 0.0012;  T2-weighted 
and  T2-weighted FLAIR p-values < 0.001). For each MRI 
sequence, total intracranial volume was not signifi-
cantly related to choroid plexus volume  (T1-weighted 
p-value: 0.094;  T2-weighted p-value: 0.094;  T2-weighted 
FLAIR p-value: 0.11). The McFadden’s  R2 values for the 
 T1-weighted,  T2-weighted, and  T2-weighted FLAIR 
regression models were 0.54, 0.60, and 0.57, respectively. 
Intraclass correlation coefficients between choroid plexus 
volumes were 0.95, 0.95, and 0.96 for  T1-weighted and 
 T2-weighted FLAIR deep learning methods (Fig.  7a), 
 T1-weighted and  T2-weighted deep learning methods 
(Fig. 7b), and  T2-weighted and  T2-weighted FLAIR deep 
learning methods (Fig. 7c). Representative choroid plexus 
volumes across the adult lifespan are included in Addi-
tional file 1: Table S3.

Discussion
A deep learning method with 3D U-NET architecture 
was trained for automatic segmentation of the choroid 
plexus from standard anatomical MRI. Models were 
trained separately on three types of commonly-acquired 
images:  T1-weighted,  T2-weighted, and  T2-weighted 
FLAIR MRI from a cohort of 50 participants across the 
adult lifespan and with differing levels of tissue atrophy. 
The findings of the study support improved automated 
segmentation of the choroid plexus using the proposed 
method compared to currently-available software, and 
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Fig. 2 Example choroid plexus segmentations from machine learning models in a 53 year old male with mild cognitive impairment. From 
left to right, columns show results from  T1-weighted images,  T2-weighted images, and  T2-weighted FLAIR images. The first row (panels a–c) 
shows the anatomical MRI sequence utilized in this study for deep learning training, and the second row (d–f) shows these same images 
magnified on the lateral ventricles where the majority of the choroid plexus resides. The remaining rows show the manual segmentations (g–i), 
machine learning output segmentations (j–l), and the overlay of these segmentations in axial slices (m–o) and 3D renderings (p–r) for each 
type of MRI contrast. The 3D renderings show the manual segmentation in blue (i.e., under-segmentation), the machine learning segmentation 
in red (i.e., over-segmetntation, and the overlap between the two in white. The Dice scores of each model  (T1-weighted: 0.78,  T2-weighted: 0.78, 
 T2-weighted FLAIR: 0.80) are shown and reflect consistently accurate performance across MRI sequences. (MRI: magnetic resonance imaging; FLAIR: 
FLuid-Attenuated Inversion Recovery)
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Fig. 3 Example  T1-weighted  sequence from a 53 year old male with mild cognitive impairment (a–d) and manual tracings (e–f) utilized in training 
of the machine learning methods. Example outputs from the  T1-weighted trained machine learning model (g–h) are shown compared to FreeSurfer 
segmentations (i–j). Dice scores are shown for machine learning and FreeSurfer outputs and reflect an improvement in segmentation accuracy 
for the proposed method
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also provides an exemplar of choroid plexus volumes, as 
a function of age, in controls that may provide a reference 
for studies in neurodegeneration. The software is also 
made freely available for academic use.

The three proposed deep learning methods were able 
to segment the choroid plexus with Dice coefficients, 
95% Hausdorff distances, and AUC values comparable 
to those found in literature for choroid plexus segmen-
tation [11, 13, 14, 30]. Zhao and colleagues report a 
mean dice score of 0.73 and a mean 95% Hausdorff dis-
tance of 1.87 utilizing a similar deep learning method 
with 3D U-NET architecture and 3D  T1-weighted MRI 
from 10 healthy subjects for training data [11]. Yazdan-
Panah and colleagues also propose a 3D U-NET 
method for automatic choroid plexus segmentation 
using 3D  T1-weighted MRI from patients with multi-
ple sclerosis (n = 97) and heatlhy controls (n = 44) for 
model training and report a mean dice score of 0.73 
[14]. Lastly, Storelli and colleagues developed an auto-
matic choroid plexus segmentation method utilizing a 

Gaussian Mixture Model from 3D  T2-weighted FLAIR 
and 3D  T1-weighted MRI in patients with multiple scle-
rosis (n = 55) and healthy controls (n = 60) and report 
mean dice scores of 0.63 in multiple sclerosis patients 
and 0.66 in healthy controls [30]. All training data in 
these studies were collected at 3.0  T. We expand on 
these methods by including additional anatomical MRI 
contrasts  that are commonly acquired in clinical set-
tings, specifically 3D  T2-weighted and 2D  T2-weighted 
FLAIR MRI, and a training dataset with diverse demo-
graphics with the goal of increasing the generalizability 
of the proposed methods. The proposed methods also 
showed improved performance compared to automatic 
segmentations from FreeSurfer across all calculated 
metrics, an important finding as many previous and 
ongoing studies utilize FreeSurfer for choroid plexus 
volumetric analyses [3, 8, 31]. FreeSurfer utilizes an 
atlas-based segmentation approach, whereby a manu-
ally labeled training set provided by the software is 
used to estimate probabilistic neuroanatomical labels 
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Fig. 4 Regression plots for machine learning dice score (a), 95% Hausdorff distance (b), and AUC (c) against testing subject lateral ventricular 
volume. Overall, models performed consistently across lateral ventricular volume. The only model metric that was significantly related to lateral 
ventricular volume was the  T1-weighted model’s 95% Hausdorff distance (ß value = 0.015; p-value = 0.05). (MRI: magnetic resonance imaging; FLAIR: 
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Fig. 5 Bland-Altman plots for choroid plexus volumes generated from  T1-weighted deep learning methods (a),  T2-weighted deep learning 
methods (b),  T2-weighted FLAIR deep learning methods (c), and FreeSurfer (d) compared to the ground truth manual segmentation volumes. The 
intraclass correlation coefficient between  T1-weighted and ground truth choroid plexus volumes was 0.83,  T2-weighted and ground truth choroid 
plexus volumes was 0.82,  T2-weighted FLAIR and ground truth choroid plexus volumes was 0.82, and FreeSurfer and ground truth choroid plexus 
volumes was 0.00
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for each voxel in the MRI volume registered to this atlas 
[15]. While this software has shown robust sensitivity 
for segmentation of many noncortical structures [15, 
16], the results from this study and from Zhao et  al. 
suggest that it may not be the most accurate for choroid 
plexus segmentation, possibly due to the inter-subject 
variation in choroid plexus structure [11]. Further, we 
found that most of the proposed models perform accu-
rately independent of lateral ventricular volume. All 
model performance metrics had no significant relation-
ship to testing subject lateral ventricular volume except 

the  T1 model’s 95% Hausdorff distance. Observing the 
central plot in Fig.  4, it is possible that this relation-
ship was driven by a statistical outlier. The observa-
tion that the other performance metrics were relatively 
stable in the presence of a variety of lateral ventricular 
volumes provides further support for the robustness 
of these models. In our test–retest analysis, the intra-
class correlation coefficient between choroid plexus 
volumes in consecutively acquired  T1-weighted MRI 
also was high (ICC = 0.99), again suggesting that the 
proposed method performs robustly in the context of 

Fig. 6 a Regression plot displaying choroid plexus volume against participants’ age for each MRI modality in adult controls. McFadden’s  R2 values 
are reported for each regression model. b Case examples for younger, middle, and older-aged controls showing an increase in choroid plexus 
volume with age. Results show consistently across MRI types that choroid plexus volume increases with age across the adult lifespan. 3D renderings 
are shown from the  T2-weighted segmentations to provide further support of this finding. (FLAIR: FLuid-Attenuated-Inversion-Recovery)
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repeated applications of the same algorithm to separate 
 T1-weighted scans from the same subject (Additional 
file 1: Fig. S2).

Additionally, we applied these deep learning methods 
in a cohort of 98 adult controls across the adult lifespan 
and found a significant positive relationship between 
subject age and choroid plexus volume with all three 
methods. Intraclass correlation coefficients between 
these volumes were high, suggesting consistently accu-
rate calculations of choroid plexus volumes between 
models in this cohort. Intraclass coefficients between 
training subjects’ ground truth choroid plexus volumes 
and deep learning choroid plexus volumes were also high, 
suggesting accurate segmentation performance from the 
proposed methods. We also reported normative ranges 
of choroid plexus volume across the adult lifespan and 
found an approximate 15% increase in choroid plexus 
volume with each decade of life on average across all MRI 
sequences, which agrees with previous reports from liter-
ature [7, 8]. We previously reported age-related increases 
in choroid plexus volume using similar methods as 
described in this study and age-related decreases in cho-
roid plexus perfusion detected from arterial spin labeling 
MRI [7]. Sun and colleagues recently reported age-related 
increases in choroid plexus volume using manual deline-
ations from  T1-weighted MRI and enlarged stromal 
tissue in the choroid plexus of older subjects using ultr-
asmall superparamagnetic iron oxide (USPIO)-enhanced 
high resolution 2D gradient echo MRI at 7 Tesla [32]. 
Previous histopathological studies using hematoxylin–
eosin staining have shown a thickened vascular wall and 
fibrotic stroma in the choroid plexus of elderly subjects 
as well [33], which could explain the enlarged volume on 
anatomical MRI.

While these methods showed robust results and pro-
vided findings that aligned with previous reports from 
literature, several factors should be considered when 
interpreting the results. The training data sample size 
included 50 participants. However, the chroid plexus was 
segmented using gold-standard manual segmentation 
by a radiologist and we chose a 3D U-NET architecture 
which has shown robust accuracy with limited data set 
samples [11, 21]. We also adopted a data augmentation 
strategy and utilized a patch-based approach and random 
flipping, which increased the training dataset from 50 
to 4100 samples. Furthernore, we included participants 
in the training dataset with and without clinically diag-
nosed neurodegenerative diseases to increase generaliz-
ability. Additionally, the lifespan study reports on trends 
in choroid plexus volume with age, and participants are 
approximately equally distributed across the adult lifes-
pan. However, this study was cross-sectional and not lon-
gitudinal (e.g., following the same participant over time) 

and also may be underpowered to infer small changes 
in choroid plexus volume over limited age epochs (e.g., 
a decade of life or less). Future work could expand on 
this cohort, using large data sets, to address these issues 
more rigorously. Lastly, when observing Table 1, Figs. 5, 
and 7 there is some variability in the calculated choroid 
plexus volumes compared to the ground truth volumes 
in all the proposed methods and when compared across 
the proposed methods. While this variability needs to be 
reduced in order to ensure accurate volume estimates, it 
is promising that the variability in Figs.  5a–c is consid-
erably less than the variability produced from currently 
available automated segmentation approaches (Fig. 5d). It 
is also relevant to contextualize this variability with the 
variability that arises from manual segmentation proce-
dures. In a separate analysis, we had two additional raters 
segment the choroid plexus in a subsample of the same 10 
subjects using the same protocol described in the Meth-
ods. More details for the methods of this analysis can be 
found in the Supplementary Materials. The main find-
ing from this analysis was that the variability produced 
from manual segmentations performed by separate raters 
was larger (overall ICC between 3 raters = 0.73) than the 
variability produced from the proposed automatic meth-
ods (ICC = 0.82). These analyses also stress the need to 
develop a more rigorous manual delineation protocol to 
assess the presence of ChP tissues in the lateral ventricles.

Conclusion
We propose a deep learning segmentation method for 
automatic segmentation of the choroid plexus from 
the following standard anatomical MRI:  T1-weighted, 
 T2-weighted, and  T2-weighted FLAIR. The proposed 
method performs similarly across these three commonly-
acquired MRI sequences and improves segmentation 
accuracy compared to commercially available algorithms. 
Finally, we provide ranges for lateral ventricle choroid 
plexus volume across the adult lifespan, which should 
provide a useful exemplar for future work that aims to 
identify pathological aberrations in choroid plexus vol-
ume and function. The proposed method is also made 
freely available for academic use.
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