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Abstract
Background Peri-sinus structures such as arachnoid granulations (AG) and the parasagittal dural (PSD) space 
have gained much recent attention as sites of cerebral spinal fluid (CSF) egress and neuroimmune surveillance. 
Neurofluid circulation dysfunction may manifest as morphological changes in these structures, however, automated 
quantification of these structures is not possible and rather characterization often requires exogenous contrast agents 
and manual delineation.

Methods We propose a deep learning architecture to automatically delineate the peri-sinus space (e.g., PSD and 
intravenous AG structures) using two cascaded 3D fully convolutional neural networks applied to submillimeter 3D 
T2-weighted non-contrasted MRI images, which can be routinely acquired on all major MRI scanner vendors. The 
method was evaluated through comparison with gold-standard manual tracing from a neuroradiologist (n = 80; 
age range = 11–83 years) and subsequently applied in healthy participants (n = 1,872; age range = 5-100 years), 
using data from the Human Connectome Project, to provide exemplar metrics across the lifespan. Dice-Sørensen 
and a generalized linear model was used to assess PSD and AG changes across the human lifespan using quadratic 
restricted splines, incorporating age and sex as covariates.

Results Findings demonstrate that the PSD and AG volumes can be segmented using T2-weighted MRI with a 
Dice-Sørensen coefficient and accuracy of 80.7 and 74.6, respectively. Across the lifespan, we observed that total PSD 
volume increases with age with a linear interaction of gender and age equal to 0.9 cm3 per year (p < 0.001). Similar 
trends were observed in the frontal and parietal, but not occipital, PSD. An increase in AG volume was observed in the 
third to sixth decades of life, with a linear effect of age equal to 0.64 mm3 per year (p < 0.001) for total AG volume and 
0.54 mm3 (p < 0.001) for maximum AG volume.
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Introduction
Cerebrospinal fluid (CSF) production occurs with pas-
sage of blood through the capillaries and ependymal 
cells within the choroid plexus complexes, resulting in 
the production of approximately 500 mL of CSF daily at 
a rate of 20–25 mL CSF per hour [1]. As the human cho-
roid plexus resides predominately in the lateral ventri-
cles, the majority of CSF produced traverses the cerebral 
aqueduct en route to the 4th ventricle prior to passage 
into the subarachnoid space [2, 3]. CSF is ultimately 
resorbed into the bloodstream through multiple hypoth-
esized pathways [4], including along the olfactory route 
via the cribriform plate [5, 6], the optic route [7], as well 
as along peri-sinus structures.

Among these peri-sinus structures are the intravenous 
arachnoid granulations (AG) which are herniations of the 
arachnoid membrane that penetrate the dural sinuses 
and lateral lacunae veins [8–10]. AGs, which have a typi-
cal spatial extent of several millimeters to over a centi-
meter along the longest axis, have been hypothesized 
to play a fundamental role in CSF regulation. Previous 
studies have reported that AGs hypertrophy with age 
[11], and suggested potential relevance to venous hyper-
tension and headaches [12]. However, quantification of 
these structures generally occurs in post-mortem histol-
ogy studies, or in vivo using manual delineation, with 
the obvious caveats that post-mortem analysis may not 
accurately reflect in vivo morphology owing to complica-
tions of specimen preservation and manual tracings are 
impractical for routine quantification. In addition, there 
is accumulating evidence that CSF and trans-arachnoid 
molecular clearance, as well as immune surveillance and 
activity, can also occur in the regions surrounding the 
dural sinuses [13], or the parasagittal dural (PSD) space 
[14, 15]. This space was initially studied in humans fol-
lowing intrathecal injection of exogenous gadolinium 
contrast [14], however, this approach is contraindicated 
in most settings, or impractical for routine surveil-
lance, given the invasive nature of lumbar punctures as 
well as safety concerns of intraparenchymal gadolinium 
deposition.

Recently, a non-invasive MRI method was proposed 
to quantify PSD morphology in humans from high spa-
tial resolution 3D T2-weighted MRI and deep learn-
ing algorithms [16], whereby it was reported that, using 
this method, PSD hypertrophies with age and is directly 
related to the total CSF volume and CSF flow through the 

cerebral aqueduct. In a separate study using this same 
method, it was also shown that PSD volume correlates 
directly with beta-amyloid concentration in older adults 
with cognitive complaints [17].

These findings collectively support the relevance of 
accurately characterizing anatomical features of CSF 
egress, including both AG and PSD volume. Further-
more, these observations highlight the potential rel-
evance of both of these structures in a growing number 
of pathological conditions where neurofluid circula-
tion dysfunction is being implicated. However, rigorous 
and automated tools for quantifying these structures 
non-invasively in vivo from commonly acquired neuro-
imaging data have not been developed. In this work, we 
present a new analysis approach for the automatic seg-
mentation of peri-sinus space structures, including both 
the AG and PSD, based on two cascaded 3D fully con-
volutional neural networks [18], which we show enables 
delineation of the PSD and AG solely from non-invasive 
3D MRI sequences. The method is demonstrated and 
validated against gold-standard manual tracings on 
T2-weighted imaging, which is routinely acquired on 
clinical imaging. Additionally, we apply this approach to 
data available across the lifespan from the Human Con-
nectome Project dataset to provide an exemplar for how 
PSD and AG change with age and sex in more than 1,000 
adults. This work extends the literature by demonstrat-
ing that non-invasive MRI can be used to quantify these 
relevant structures, and we provide the software for free 
academic use.

Methods
We first developed and evaluated an automated pro-
cessing pipeline for PSD and intravenous AG segmenta-
tion (https://github.com/hettk/spesis) and subsequently 
applied this pipeline to Human Connectome Project 
(HCP) data to evaluate PSD and AG evolution with age 
and sex across the lifespan.

Demographics
All participants provided informed consent in accor-
dance with the local institutional review board (IRB). The 
study included two participant cohorts. First, a prospec-
tively recruited, generalizable adult cohort consisting of 
persons with and without neurodegeneration (Vanderbilt 
Glymphatic Imaging Project, VGIP), and second, a larger 
cohort of participants from the HCP to evaluate the 

Conclusions A tool that can be applied to quantify PSD and AG volumes from commonly acquired T2-weighted MRI 
scans is reported and exemplar volumetric ranges of these structures are provided, which should provide an exemplar 
for studies of neurofluid circulation dysfunction. Software and training data are made freely available online (https://
github.com/hettk/spesis).
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performance of the algorithm on a separate, independent 
dataset, as well as to calculate exemplar values across the 
lifespan.

The Vanderbilt Glymphatic Imaging Project dataset 
(VGIP). All participants (age = 18–83 years) were scanned 
between January 2020 and September 2021 at Vanderbilt 
University Medical Center. Inclusion criteria: compat-
ible with 3 Tesla MRI. Exclusion criteria: history of cere-
brovascular disease, anemia, psychosis, or neurological 
disorder including but not limited to prior overt stroke, 
sickle cell anemia, schizophrenia, bipolar disorder, 
Alzheimer’s disease, Parkinson’s disease, or multiple scle-
rosis. The presence of non-specific white matter lesions 
was not an exclusion criterion, as these lesions are preva-
lent with normal aging, and we sought our cohort to be 
representative. Clinical history was reviewed by a board-
certified Neurologist (DOC; experience = 14 years) and 
anatomical imaging and angiography by a board-certified 
neuroradiologist (CDM; experience = 12 years) to ensure 
criteria were met.

The Human Connectome Project (HCP). Data were 
collected from three different sources: HCP young-adult 
(HCP-YA, age = 22–35 years), HCP aging (age = 36–100 
years), and development (age = 5–21 years) [19], named 
HCP-DA hereon (i.e., combination of HCP development 
and aging). All participants (n = 1,715; age range = 5-100 
years) were assessed using phone screenings to rule out 
major health conditions. HCP excludes participants who 
have been diagnosed and treated for major psychiatric 
(e.g., schizophrenia and bipolar disorder) or neurologi-
cal (e.g., stroke, brain tumors, Parkinson’s disease) dis-
orders as well as individuals with severe depression that 
required treatment for 12 months or longer in the past 
five years. The telephone interview for cognitive status 
was also used to exclude participants with impaired cog-
nitive abilities [20].

Acquisition
VGIP. All scans were acquired at Vanderbilt University 
Medical Center using the same 3 Tesla MRI acquisi-
tion protocol (Philips Medical Systems, Best, The Neth-
erlands) with body coil radiofrequency transmission 
and phased array 32-channel SENSE reception. A non-
contrasted 3D T2-weighted (sagittal acquisition) volu-
metric isotropic turbo-spin-echo acquisition (VISTA) 
sequence was planned along the anterior commissure– 
posterior commissure line: field-of-view (anterior-pos-
terior x foot-head x right-left) = 250 × 250 × 188.8  mm, 
repetition time = 2500 ms, echo time = 331 ms, spatial 
resolution = 0.78 × 0.78 × 0.78  mm. Additionally, a 3D 
T1-weighted MPRAGE scan was acquired with rep-
etition time = 8.1 ms, echo time = 3.7 ms, and spatial 
resolution = 1 × 1 × 1 mm.

HCP. All scans from the HCP were acquired at 3 Tesla.

Scans collected from HCP-YA were acquired using 
the customized “Connectome” scanner with 100 mT/m 
gradient strength. The 3D TSE T2-weighted sequence 
was acquired with a repetition time = 2500 ms, echo 
time = 331 ms, and spatial resolution = 0.8 × 0.8 × 0.8 mm. 
Additionally, 3D T1-weighted MPRAGE scans were 
acquired with a repetition time = 8.1 ms echo time = 3.7 
ms, and spatial resolution = 0.7 × 0.7 × 0.7 mm.

HCP-DA scans were acquired from four different 
sites using a Siemens Prisma scanner at all sites with 
80 mT/m gradient coil. Image acquisition applied a 
3D variable-flip-angle turbo-spin-echo T2-weighted 
sequence (SPACE) with repetition time = 3,200 ms, echo 
time = 564 ms, and spatial resolution = 0.8 × 0.8 × 0.8 mm, 
and 3D MPRAGE T1-weighted sequence with repetition 
time = 2500 ms, echo time = 3.6 ms, flip angle = 8 degrees, 
and spatial resolution = 0.8 × 0.8 × 0.8 mm [19, 21].

Manual delineation of peri-sinus structures
The relevant structures of interest, PSD and intrave-
nous AG, were manually segmented by a board-certified 
radiologist (CDM) and a diagnostic radiology resident 
(under CDM supervision) on a cumulative 80 scans from 
both the VGIP (n = 53, age = 18–86) and HCP (n = 27, 
age = 11–80) data sets. Both data sets were used, over a 
wide age range (i.e., 10 to 86 years old), with the intent 
of increasing generalizability. Manual delineation has 
been conducted using the itk-SNAP software (version 
3.8.0 and 4.0.0). All T2-weighted scans were manually 
delineated in the native space after N4 inhomogeneity 
correction.

Both intravenous AG (AG Type I) and parasagittal 
space were evaluated. The intravenous AGs are CSF-filled 
structures that extend into the venous sinus. These AGs 
emerge from the subarachnoid space, extend through 
the dura mater, and penetrate the superior sagittal sinus 
lumen and may present with similar T2-weighted signal 
intensity as the PSD, however, the structures can be dis-
tinguished as they focally protrude into the lumen of the 
venous sinuses (Fig. 1) whereas the PSD is located along 
the lateral margins of the superior sagittal sinus. By con-
trast, the PSD (i.e., merging definition of stromal and 
diploic AG) demonstrate intermediate T2-weighted sig-
nal intensity relative to the T2 hyperintense subarachnoid 
CSF and T2 hypointense dura mater, superior sagittal 
sinuses, and calvarium. The medial and superior margins 
of the PSD are the superior sagittal sinus and the cal-
varium respectively, which are both relatively T2 hypoin-
tense (Fig. 1). The lateral and inferior margins of the PSD 
are composed of the opposed dura and arachnoid mater 
which appear as a linear T2 hypointense band in the coro-
nal plane. Segmentations were performed up to 30  mm 
from the midline section following previous postmortem 
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studies reporting extension of lateral lacuna in humans 
[22].

Algorithm development
Following the manual segmentations, we endeavored to 
design an algorithm to automatically segment PSD and 
intravenous AG structures. The proposed method was 
based on a combination of a fully convolutional neural 
network (F-CNN) and classical model-based method 
(Fig.  2). First, signal normalization was performed (i.e., 
spatial, and intra-subject intensity normalization). Sec-
ond, the first layer of the F-CNN was used to estimate the 
peri-sinus space mask, followed by pre-labelling of voxels 
belonging to PSD space and sinus lumen using a gaussian 
mixture model fitted by the expectation maximization 
algorithm. This pre-labelling map was then concatenated 
to the T2-weighted image and supplied to a second layer 
of the F-CNN to produce final labelling of the PSD space, 
intravenous AG, and sinus lumen. Finally, the segmenta-
tion was transformed back to T2-weighted native space 
within the post-processing step, and an automated report 
generated (e.g., see Supplementary Material). Additional 
details of this pipeline are provided below.

For pre-processing, intra-subject voxel intensity with 
N4 inhomogeneity field correction was performed [23]. 
Next, to reduce anatomical variability all T2-weighted 
MRIs were aligned to the MNI template [24] using non-
linear registration computed with ANTs [25] (control 
spacing point = 2 mm). This value provides a good trad-
eoff between the robustness of the registration (i.e., limi-
tation of eventual registration artifacts) and increase of 
inter-subject similarity of the peri-sinus space.

The second step of the pipeline consisted of the first 
F-CNN layer, denoted FCNNmask. FCNNmask which 
delineated peri-sinus space from the subarachnoid space 
and the remaining brain parenchyma. Of note, peri-
sinus space may contain venous blood vessels (superior 
sinus and afferent veins), dura mater, PSD, and AG. The 
FCNNmask model was trained using manual binary delin-
eation where all voxels belonging to sinus, PSD, and AG 
were set to 1, with the remaining voxels assigned to 0.

Once this peri-sinus space mask was estimated using 
the FCNNmask, a gaussian mixture model was fit using 
an expectation maximization algorithm and an optimal 
threshold. The maximum a posteriori probability was 
used to assign a label for each voxel belonging to the peri-
sinus space mask. Here, PSD space and arachnoid granu-
lations shared the same label, but were separated from 
the superior sinus.

The readout produced by the pre-labeling step was 
then concatenated and supplied to the second F-CNN 
layer noted FCNNlabels. FCNNlabels accepted two inputs 
and produced a vector composed of four probabilities 
from the final soft-max layer: background, sinus lumen, 
PSD, and AG. Final labeled correspond to the maximum 
probability estimated by FCNNlabels.

The two F-CNN models employed in the proposed 
method (i.e., FCNNmask and FCNNlabels) shared the same 
architecture, which derives from the 3D U-Net archi-
tecture [26] (Fig.  2). U-Net architecture was chosen for 
its good performance with medical images and limited 
training data size requirements. Moreover, the peri-sinus 
structures represent a small component of the entire 
imagery. It is well-known that over-representation of 

Fig. 1 Anatomical depiction of the landmarks used to delineate parasagittal dural (PSD) space (green) and intravenous arachnoid granulations (AG) 
(blue), venous lumen (red). Sketch illustrating localization and morphology of the peri-sinus structures (A). Coronal view displaying medium-sized AG and 
enlargement of the parasagittal dural space (B-1,2,3). Coronal view showing large AG and small enlargement of PSD (C-1,2,3). PSD appears as intermedi-
ate T2-weighted signal above a layer of dura mater (i.e., hypointense T2 signal) and subarachnoid space (i.e., hyperintense T2 signal)
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background can create a bias in learning. In addition, to 
reduce this potential confound, a patch-based approach 
was used. Hence, 3D patches of 96 × 64 × 64 voxels were 
extracted following a peri-sinus probabilistic atlas. The 
peri-sinus probabilistic atlas was computed using the 
mean of manual delineation after non-linear registration. 
Intensity normalization was performed at a patch level, 
using the z-score method.

The F-CNN was based on a U-Net architecture and 
comprised an encoding step composed of two blocks of 
batch normalization, 3D convolutional layer with a ker-
nel set to 3 × 3 × 3 voxels followed by a rectified linear unit 
(ReLu), in each layer. Between each layer, feature maps 
were first down sampled using maximum pooling with 
a kernel of 2 × 2 × 2 voxels. A 3D transposed convolution 
operator was chosen as the up-sampling method with 
a kernel set to 2 × 2 × 2 voxels and a stride set to 2 × 2 × 2 
voxels. The final segmentation map was obtained using a 
block composed of a 3D convolution operator with a ker-
nel of 1 × 1 × 1 voxel followed by a soft-max function.

Once the final labeling of the PSD space and AGs were 
assigned, the final peri-sinus space mask was corrected to 
ensure its topology (i.e., remove non-contiguous regions) 
using a closing operation from mathematical morphol-
ogy set of techniques [27]. Finally, the segmentation mask 
was transformed back to the native T2-weighted space 
using an inverse transformation and nearest-neighbor 
interpolation.

As peri-sinus space structures can have different tra-
jectories dependent on their locations along the superior 
sinus, sub-segments of peri-sinus space were drawn in 
the MNI-ICBM 152 template and aligned to the subject 
space. Sub-segments were defined according to frontal, 
parietal, and occipital portions. The parietal region was 
delineated from the frontal PSD using the central sulcus 
and extended to the parietal–occipital fissure; finally, the 
occipital PSD was delineated from the parietal–occipital 
fissure to the most posterior portion of the PSD.

Fig. 2 Pipeline of the proposed method; blocks of machine learning appear in orange and non-learning methods appear in blue. Input T2-weighted MRIs 
in native space are first preprocessed (N4 bias field inhomogeneity corrected, and registration to a Montreal Neurological Institute (MNI) template using 
non-rigid transformation), (A) The first block of the segmentation method aims to extract the peri-sinus mask (combined background or parasagittal 
space and arachnoid granulation), (B) A is Gaussian mixture model is fit to data using an expectation maximum (EM) algorithm to estimate the maximum 
a posteriori probability distribution and assign a label for each voxel (i.e., parasagittal dural space or sinus), (C) A second U-net is then used to label arach-
noid granulation and correct miss-labeled parasagittal dural space voxels. The final label map is transformed back to native space using inverse transform
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Implementation
Random flipping along the sagittal fissure was performed 
during the training phase to address limited training 
data size. Noise injection was performed using randomly 
assigned standard deviation of a random variable draw 
from a normal distribution. A contrast limited adaptive 
histogram equalization (CLAHE) augmentation was used 
to increase the generalization capability of the model.

Both networks, FCNNmask and FCNNlabels, were trained 
using the ADAM optimizer with a learning rate set to 
10− 4. First, the FCNNmask was trained using a manual 
delineation (MD) set as (MD > 0) and cross entropy as 
loss functions,

 LCE = −
∑

i=1
tilog (pi) (Eq. 1)

where ti represents the ground truth label and pi  rep-
resents the estimated probability computed using the 
first network. Second, different from the training of 
FCNNmask, a generalized dice loss functions (LGDSC ) was 
used to train the second network, FCNNlabels [28],

 
LGDSC = 1− 2

∑
lwl

∑
nrlnpln∑

lwl

∑
nrlnpln

 (Eq. 2)

where, rlnand pln  represent the ground truth and esti-
mated labels, respectively. wl  represents the weight vari-
able computed as wl = 1/ (

∑
nrln) . Generalized dice loss 

has been used to address the unbalanced nature of struc-
tures size.

Evaluation
A cross-validation scheme was used to evaluate the pro-
posed method. The 80 manually labeled scans were sepa-
rated into three distinct groups: training, validation, and 
testing. Using a pseudo-random assignment, the train-
ing set was composed of 60 scans, the validation set was 
composed of 10, and the testing set was composed of 10. 
This process was iterated eight times to obtain unbiased 
segmentation for all scans.

As proposed in [29], we evaluated the segmentation 
accuracy for each structure of interest (i.e., PSD and AG) 
using a set of commonly incorporated metrics. First, to 
evaluate the global overlap between estimated segmenta-
tion and ground truth, we computed the Dice-Sørensen 
coefficient (DSC). Furthermore, we evaluated segmenta-
tion using recall and precision.

Finally, given the sparse characteristic of the AG com-
ponent compared to PSD space which is a single struc-
ture running along the superior sinus, and to evaluate the 
feasibility to assess arachnoid granulation metrics, we 
proposed to calculate the confidence of estimating total 
number, total volume, average volume, and maximum 

volume, compared to manual delineation using Pearson’s 
correlation coefficient and root mean squared difference 
(RMS).

Statistics and hypothesis testing
The segmentation performance was evaluated in two 
ways. First, the method was applied across different 
cohorts to evaluate generalizability. Second, the domain 
generalization was considered by comparing the segmen-
tation results of the method trained on the VGIP and 
the HCP dataset (i.e., two independent cohorts acquired 
at different sites on different scanner vendors). For both 
analyses, segmentation metrics were separately evaluated 
for the PSD space and AG. Performance metrics between 
methods were evaluated using unpaired t-tests.

Next, we applied the segmentation method to quantify 
PSD and AG volumes across the lifespan in the larger 
HCP dataset. PSD volume and AG volume were assessed 
as percentage of intracranial volume (ICV). ICV was esti-
mated using the T1-weighted scans as input to Assem-
blyNet [30], a recent ensemblist deep-learning software 
for the segmentation of brain structures. ICV character-
izes the total brain volume (e.g., gray and white matter 
parenchyma) in addition to the CSF. Linear mixed effect 
models were used to assess changes in PSD and AG vol-
ume across the adult human lifespan. Peri-sinus structure 
metrics (PSD volumes, AG volumes, and AG count) were 
used as separate dependent variables and age and sex as 
covariates as described; the interactions between age and 
sex were modeled using quadratic restricted splines with 
the source dataset used as a random variable (i.e., VGlP, 
HCP-YA, and HCP-DA). Goodness-of-fit was assessed 
using adjusted R2 and Akaike information criterion (AIC) 
scores.

Results
Evaluation of segmentation accuracy
Table  1 summarizes the automatic segmentation from 
the proposed method compared to that of manual trac-
ing from a radiologist. The proposed method provided 
high accuracy of the PSD structure with DSC = 80.7%, 
recall = 84.7%, precision = 84.9%, and RMS = 0.66 cm3. 
Total PSD volumes demonstrated a strong correlation 
with manual segmentation with a Pearson’s correlation 
score of 0.96 (p < 0.001). Subdivision of the PSD vol-
ume yielded higher accuracy in the frontal aspect with 
an average DSC equal to 83.9% and a Pearson’s correla-
tion of 0.96 (p < 0.001). The method demonstrated lower, 
albeit still acceptable, accuracy in the parietal and occipi-
tal regions with DSC = 80.6% and 79.4%, respectively, 
and a correlation with manual tracing = 0.95 and 0.87 
(p < 0.001).

The second evaluation consisted of assessing the fea-
sibility of automatically detecting AGs by combining 
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a non-contrasted MRI sequence and machine learn-
ing (Table  2). The proposed method provided delinea-
tion of the AG structure with an average DSC = 74.6%, 
recall = 67.3%, precision = 83.6%, and RMS = 21.2mm3. 
Total AG volumes demonstrated a strong correlation 
with manual segmentation with a Pearson’s correlation 
score of 0.97 (p < 0.001). Subdivision of the AG volume 

showed automatic delineation in the frontal aspect with 
an average DSC = 71.7% and a Pearson’s correlation = 0.95 
(p < 0.001). The automatic delineation in the parietal 
region results in a DSC = 73.9% and a fair correlation 
with manual tracing of DSC = 0.96 (p < 0.001). No AG was 
observed in the occipital lobe, therefore, evaluation met-
rics in this region are not reported.

Results of PSD and AG segmentation are illustrated in 
Fig. 4, which display case-examples of automatic segmen-
tation provided by the proposed method compared to the 
manually delineated segmentation maps along the spec-
trum of the distribution performance (i.e., 25, 50, 75, and 
95 percentiles).

Next, we evaluated the relationship between AG vol-
ume estimated by manual tracing and our method (see 
Table 3). The four measures of interest were total AG vol-
ume, number of AGs detected (i.e., count), average AG 
volume, maximum AG volume, and minimum AG vol-
ume (i.e., volume of the smallest detected AG). Findings 
suggest that the method enables the estimation of total 
AG volume and AG count with a strong correlation with 
manual tracing, with a Pearson’s correlation coefficient of 
0.97 and 0.90 (p < 0.001) with an RMS equal to 21.27 mm3 
and 1.17 mm3, with average AG volume and maximum 
AG yielding a high correlation with a Pearson’s coeffi-
cient of 0.80 (p < 0.001) and RMS equal to 3.83 mm3. The 
smallest estimated AG volume (i.e., minimum volume) 

Table 1 Evaluation of arachnoid granulation labelling over 
different interest metrics and comparison to gold standard 
manual segmentation. Results provided are means with standard 
deviations in parentheses. The method accuracies are evaluated 
using Dice-Sørensen coefficients (DSC), Recall, and Precision. 
Root mean square difference (RMS) and Pearson correlation (R) 
were computed using estimated volume and manual tracing

DSC
(std)

Recall
(std)

Precision 
(std)

RMS
(std)

R
(p-
value)

Total 80.7 (11.4) 84.7 (11.4) 84.9 (0.0) 0.66 
(0.44)

0.96 
(< 0.001)

Frontal 83.9 (15.3) 86.7 (15.3) 84.9 (0.0) 0.33 
(0.25)

0.96 
(< 0.001)

Parietal 80.6 (15.7) 91.5 (15.7) 86.3 (0.0) 0.22 
(0.18)

0.95 
(< 0.001)

Occipital 79.4 (23.4) 89.2 (23.4) 94.6 (11.9) 0.15 
(0.14)

0.87 
(< 0.001)

Table 2 Evaluation of arachnoid granulation labelling over 
different interest metrics and comparison to gold standard 
manual segmentation. Results provided are averages (standard 
deviation). The method accuracies are evaluated using Dice-
Sørensen coefficients (DSC), Recall, and Precision. Root mean 
square difference (RMS), expressed in mm3, and Pearson 
correlation (R) were computed using estimated volume and 
manual tracing

DSC
(std)

Recall
(std)

Precision 
(std)

RMS
(std)

R
(p-value)

Total 74.6 (29.6) 67.3 (29.6) 83.6 (30.2) 21.2 
(37.5)

0.97 
(< 0.001)

Frontal 71.7 (32.1) 71.2 (32.1) 84.8 (35.9) 11.23 
(27.56)

0.95 
(< 0.001)

Parietal 73.9 (34.9) 67.7 (20.6) 82.4 (41.9) 9.48 
(17.78)

0.96 
(< 0.001)

Occipital 94.5 (15.2) 94.0 (17.5) 96.2 (12.5) 3.32 
(17.39)

0.97 
(< 0.001)

Table 3 Evaluation of arachnoid granulation labelling over 
different metrics of interest and comparison to gold standard 
manual segmentation. Results are expressed using Pearson’s 
correlation coefficient, uncorrected p-values are reported in 
parentheses, and root mean square (RMS) difference (standard 
deviation in parenthesis). The RMS is expressed in mm3 for 
all volumetric measures (i.e., total, average, maximum, and 
minimum), and by number of occurrences for count

Total
Volume

Count Average
volume

Maximum 
volume

Mini-
mum 
volume

R (p-value) 0.97 
(< 0.001)

0.90 
(< 0.001)

0.80 
(< 0.001)

0.80 (< 0.001) 0.82 
(< 0.001)

RMS (std) 21.27 
(37.57)

1.17 
(1.46)

3.83 
(6.11)

12.83 (26.32) 1.09 
(0.86)

Table 4 Evaluation of segmentation accuracy of PSD and AG in different dataset (i.e., VGlP, HCP-DA, and HCP-YA). The method 
accuracies are evaluated using Dice-Sørensen coefficients (DSC), Recall, and Precision. Root mean squared (RMS) differences are 
expressed in cm3 for the PSD volume and mm3 for the AG volume

DSC
(std)

Recall
(std)

Precision (std) RMS
(std)

R
(p-value)

PSD VGlP 80.3 (4.3) 82.4 (5.6) 78.4 (4.4) 0.61 (0.42) 0.95 (< 0.001)
HCP-YA 79.5 (3.4) 82.5 (3.2) 77.0 (5.4) 0.58 (0.44) 0.97 (< 0.001)
HCP-DA 77.3 (3.8) 82.7 (4.5) 76.2 (2.6) 1.11 (0.31) 0.88 (< 0.001)

AG VGlP 76.6 (13.4) 75.1 (16.4) 79.5 (12.3) 26.60 (43.96) 0.97 (< 0.001)
HCP-YA 75.5 (12.1) 75.5 (13.2) 81.1 (7.7) 10.57 (12.74) 0.98 (< 0.001)
HCP-DA 69.9 (15.6) 69.9 (16.3) 80.4 (15.7) 9.50 (10.68) 0.98 (< 0.001)
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obtained a correlation coefficient with manual tracing of 
0.82 (p < 0.001) and a RMS equal to 1.09 mm3. The larg-
est AG volume within each individual (i.e., maximum 
volume) obtained a correlation coefficient with manual 
tracing of 0.80 (p < 0.001) and a RMS equal to 12.83 mm3.

Finally, Table 4 summarizes the evaluation of the seg-
mentation accuracy as performed for each data source 
in order to assess whether the origin of the data may 
influence the quantified metrics. The segmentation of 

PSD from individuals enrolled in VGlP and HCP-YA is 
similar in terms of performance with a DSC of 80.3 and 
79.5, respectively. However, a lower, albeit still similar, 
segmentation accuracy was observed in scans from HCP-
DA with an average DSC of 77.3. The same trends were 
observed for the AG. Scans collected from VGlP and 
HCP-YA demonstrate similar accuracy with a DSC of 
76.6 and 75.5, respectively, and a slightly lower accuracy 
in the HCP-DA dataset with a DSC of 69.9.

Fig. 3 Comparison of segmentation of parasagittal dural space (PSD) and arachnoid granulation (AG) between manual segmentation from a board-
certified neuroradiologist, and the proposed method. In each panel, an exemplar case of segmentation for the 95th, 75th, 50th, and 25th percentiles of 
the distribution of segmentation accuracy as measured by the Dice coefficient is shown
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Evaluation of the volumetrics in the human lifespan
Next, we evaluated peri-sinus structures volume in the 
human lifespan using a large cohorts of subjects aged 
5-100 years. In total, 1,872 scans composed of 861 male 
and 1011 female participants, were used for follow-
ing analyses (see age distribution and sex proportion 
in Fig.  4). Figure  5 shows average PSD volume over the 
human lifespan. Quadratic models indicate an increase 
of PSD volume as total volume and sub-regions. Total 
PSD volume increases with age are more pronounced in 
males compared to females with a linear interaction of 
gender and age equal to 0.9 cm3 per year (p < 0.001). Total 
PSD volume reached a plateau near 70 years of age with 
an average PSD volume reaching 8 cm3 in male partici-
pants compared to 6.5 cm3 in female participants. Similar 
trends occur in the frontal and parietal regions.

Figure  6 shows evolution of proposed AG metrics 
across the human lifespan. An increase of AG volume 
was observed in the third to sixth decades of life, with a 
linear effect of age equal to 0.64 mm3 per year (p < 0.001) 
for total AG volume, and 0.54 (p < 0.001) for maximum 
AG volume, and one new AG detected every four years 
during the first two decades of life (p < 0.001).

Discussion
We propose a new process to quantify PSD and intrave-
nous AG volumes, which have recently been implicated 
in CSF egress or neuroimmune surveillance. The pro-
posed method enables the automatic extraction of the 
PSD and AGs from non-invasive 3D T2-weighted MRI, 
which should render it easily implementable in standard 
clinical and research protocols. Furthermore, we applied 
our new method in a larger dataset of 1,872 scans to 
assess volumetric changes in PSD and AG across the typ-
ically developing human lifespan.

Methodologic evaluation
The in vivo visualization of human PSD space was first 
shown using intrathecal injection of gadolinium-based 
contrast agents [14]. However, this technique requires 
injection of contrast directly into the intrathecal space, 
which is deemed unethical and contraindicated for most 
research studies in the United States. Following this 
seminal work, a separate study proposed to use intrave-
nous (IV) injection of gadobutrol to quantify changes in 
the PSD space in melanoma patients [31]. In this work, 
Park et al. used post-contrasted T1-weighted black blood 
MRI combined with a thresholding method to discrimi-
nate the PSD space. As exogenous contrast agents are 
becoming increasingly restricted in research studies [32, 
33], non-invasive methods are more widely relevant and 
provide a complementary approach. In prior work, we 
investigated the use of non-contrasted MRI sequence to 
quantify PSD volume [16]. Here, we combined a deep-
learning technique to extract peri-sinus space and pro-
posed to delineate PSD space from the superior sagittal 
sinus lumen. It is noteworthy that in this first approach, 
AGs were not differentiated from PSD volumes. The 
current method detailed here enables the added delin-
eation of the AGs and addresses the two major limita-
tions of methods using gadolinium as a contrast agent 
to highlight PSD space. The use of T2-weighted MRI (a) 
increases the generalizability as this sequence can be 
readily added to non-contrasted head MRI protocols and 
(b) bypasses any safety concerns related to downstream 
effects of gadolinium contrast administration. Given 
safety concerns with intrathecal gadolinium injections, 
it was not possible to compare our results directly with 
intrathecal contrast studies, and rather, we used manual 
delineation of the parasagittal dural space, by a board-
certified neuroradiologist, for gold-standard validation.

Similarly, we evaluated for the first time the perfor-
mance of intravenous AG segmentation and compared 

Fig. 4 Demographic schematic of the dataset from the open-access Human Connectome Project used to model parasagittal dural space and arachnoid 
granulation volumes across the human lifespan. The pink color represents the proportion of females, the blue color represents the proportion of male 
participants, and the bar height represents the total number of scans for each age group. *p-value < 0.05 using a chi-square test which assesses difference 
of proportion between female and male in each age segment
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metrics estimated from these segmentation masks to 
gold-standard manual segmentation performed by 
a board-certified neuroradiologist. This experiment 
showed a moderate segmentation accuracy for the three 
investigated populations of participants in terms of over-
lap between segmentation masks automatically estimated 
by our method and manual delineation. Of the multiple 
AG metrics, the detection of the largest AG (i.e., maxi-
mum volume) and total volume of AG were the most 
reliable measurements when comparing to manual neu-
roradiologist segmentation. AG limitations derive from 
two factors that must be addressed in future work to 
increase the reliability of arachnoid granulation segmen-
tation. First, a better definition of structure features must 
be established. Although this aspect is not emphasized 
in this work, a stricter definition of arachnoid granula-
tion is fundamental to enable deep learning to learn spe-
cific patterns of such structure. Second, AG delineation 
is associated with large intra- and inter-subject spatial 

variability. Therefore, modeling this structure requires 
a robust algorithm that will accommodate variable ana-
tomical patterns (e.g., shape, contrast, size, and localiza-
tion). Additional increase of the size for the training set 
will also improve model performance. This is the subject 
of ongoing investigation.

It should also be noted that this work focused on 
identifying the PSD space and intravenous AG from 
a single non-invasive MRI sequence, specifically a 3D 
T2-weighted sequence with a spatial resolution of 0.8–
0.9 mm isotropic. Incorporation of additional MRI acqui-
sitions, such as FLAIR and magnet resonance venography 
may help to further disambiguate the PSD from sur-
rounding venous structures and AG which may increase 
the performance of the automated segmentation further.

The results of both methods compared to manual 
delineation are illustrated in Fig. 3 for different levels of 
segmentation performance. This illustrates the robust-
ness of segmentation quality provided by the method. 

Fig. 5 Modelling of the parasagittal dural (PSD) space volumes in each region of interest (i.e., total, frontal, parietal, and occipital) using restricted qua-
dratic spline models. Blue and purple curves represent average PSD volume in male and female, respectively. Gray curves represent average of PSD 
volume for both genders
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95, 75, and 50 percentile of the performance indicates 
that the proposed method provides a similar estimation 
of the PSD space. The additional FCNN layer enables 
us a better estimation of the PSD space in regions with 
lower T2-weighted signal contrast and accurately delin-
eates AGs. In these two examples, the method was able 
to detect AGs as small as 2 mm3. This represents, in the 
spatial resolution of the native T2-weighted scan, a vol-
ume of 3 to 4 voxels. Such results motivate future studies 
investigating changes of intravenous AG and this as well 
is the topic of ongoing work.

Integration in the current literature
Initially characterized as a principal site for CSF egress, 
the role of the perisinusoidal drainage and AGs evolved 
following studies that utilized intrathecal injection of 
gadolinium into the CSF [14]. Somewhat surprisingly, the 
contrast agent attained its maximum concentration in 
the plasma before reaching peak levels in peri-sinusoidal 

structures [15]. This implicates alternative efflux path-
ways as primary loci for the clearance of cerebrospinal 
fluid and metabolic waste. While the findings from these 
studies build upon the current comprehension of CSF 
egress, the details of these pathways are still not entirely 
understood.

It was recognized that gadolinium-based contrast dem-
onstrates trans-arachnoid passage from the subarachnoid 
space at the vertex to the structures in the peri-sinus 
space (e.g., PSD and AG). However, the distinctive egress 
patterns of contrast may be influenced by the molecular 
properties of the particular gadolinium-based contrast 
agent. Additionally, these studies involved the injection 
of a tracer into the spinal subarachnoid space, which is 
far removed from the superior sinus regions where AGs 
are prominent. Consequently, the tracer may have fol-
lowed divergent egress pathways more anatomically 
proximate to the lumbar injection site prior to reaching 
the peri-sinus structures such as AGs.

Fig. 6 Modelling of the total arachnoid granulation (AG) volume in each metrics of interest (i.e., total, maximum, average volume, and number) using 
restricted quadratic spline models. Blue and purple curves represent average AG measure in male and female, respectively. Gray curves represent average 
of AG measures for both genders
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PSD and AG across the human lifespan and future 
directions
One useful aspect of the proposed methodology is that it 
can be applied to commonly acquired non-invasive brain 
MRIs, as are acquired in large consortium datasets such 
as the HCP. This allows for new insights into how these 
structures evolve across the lifespan which would not 
be possible from focal, single-site studies with smaller 
samples. As previous linear modeling of age and sex 
effect suggested [15, 16, 31], our experiments indicate an 
increase of PSD volume related to age. Improvement of 
our model enables us to detect a faster increase in males 
compared to females in the first half of life. Of note, male 
participants have an average similar PSD volume in early 
life compared to female participants. The findings suggest 
that differentiation of PSD volume between males and 
females may occur during childhood and adolescence, 
which could be related to distinct developmental pro-
cesses. This highlights the need to evaluate CSF dynam-
ics in youth to understand how structures related to CSF 
production and egress evolve during brain development 
[34]. Moreover, analysis of regional growth of PSD vol-
ume indicates that, on average, enlargement of the PSD 
begins in the frontal region and progresses to the parietal 
and occipital regions later in life.

In terms of AGs, the same trends have been shown 
in human lifespan analysis, with an increase of AG vol-
ume and AG number more pronounced in the first three 
decades of life, with in average one new AG detected 
each decade of life. These findings follow a previous study 
investigating changes in AG volume and number [11]. 
The decrease of average AG metrics along with increased 
confidence interval after 60 years of life is noteworthy. 
Several factors may contribute and warrant future atten-
tion. For instance, the sample size after age 60 years is 
restricted, even more so after age 80 years, which may 
contribute to larger confidence intervals. One potential 
contributory process to this decrease in sample size is a 
survival bias, whereby increasing rates of exclusionary 
neurological conditions reduces the available asymptom-
atic control sample in later decades. Relatedly, the appar-
ent parabolic increase and then decrease of AG metrics 
centered around the late-50s / early-60s may represent a 
modeling artifact. Specifically, there may be pathological 
AG hypertrophy emerging near age 50 years in a subset of 
the HCP presumed asymptomatic control group, reflect-
ing a new early-biomarker or prodromal stage of neu-
rodegenerative disease, yet these participants may not 
meet HCP diagnostic criteria for exclusion. This would 
not be surprising considering the non-comprehensive 
neurological and neuropsychological screening necessi-
tated by their large-scale methodological approach. After 
approximately an additional 5–10 years, this type of par-
ticipant manifests sufficiently to be excluded. When this 

pattern is combined with a proposed healthy aging pat-
tern involving a plateau of AG metrics at midlife, it would 
result in a smoothed inverse parabola, as observed here. 
Replicating the analyses of this study in a much larger 
sample of adults aged 50 years and older who have under-
gone comprehensive neurological and neuropsychologi-
cal evaluation, with longitudinal follow-up, would bolster 
confidence in the normal developmental trajectory of 
AG and PSD morphology in later life. Cross-sectional 
application of the same analyses in well-established neu-
rodegenerative disease populations would lend further 
confidence to delineating potentially normal age-related 
changes across different decades of adulthood in these 
metrics from those related to neuropathologies with pro-
gressively later age-of-onset (i.e., Huntington’s disease, 
Parkinson’s disease, and Alzheimer’s disease). Longitudi-
nal application in those at risk of developing these con-
ditions could then evaluate AG and PSD metrics utility 
as a novel early structural biomarker of neurodegenera-
tion. Such studies are needed to understand the potential 
usage of arachnoid granulation quantification for moni-
toring and predicting the development of neurological 
conditions.

Future studies such as those investigating the relation-
ship of white matter hyper-intensities (WMh) and brain 
cisternal volumes with the peri-sinus structures could 
provide insight on the PSD and AG functions. Such 
lesions, despite often being considered non clinically 
meaningful when diffuse and burden low, may reflect 
inflammation resulting from the damage of the axonal 
myelin sheath [35] or chronic mild ischemia which could, 
in principle, influence perivascular flow profiles. Inves-
tigating, the relationship between PSD and AG in con-
text of these lesions could provide further support of the 
neuroinflammation interface model as recently proposed 
[15] and the algorithms developed here should be eas-
ily applicable to such future studies. Additionally, CSF is 
localized to both ventricular and subarachnoid compart-
ments and the composition of fluid in these compart-
ments, and distribution between these compartments, 
may vary in the setting of neurofluid circulation dysfunc-
tion. These variations could relate to regional differences 
in the egress pathway, which also can be investigated 
using the methods developed here to better characterize 
egress pathways.

Limitations
The study findings should also be considered considering 
several limitations. Initially, it is essential to highlight that 
the existing version of the deep-learning model under-
went training with a dataset comprising participants aged 
11 to 83 years old. Subsequently, the methodology was 
applied to a broader age range to extrapolate structural 
volumes across a slightly wider demographic spectrum. 
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An ad hoc analysis (presented in Supplemental Materials) 
indicates that, despite the high accuracy of estimations 
in older age groups (i.e., 80 to 100 years old), the current 
iteration of our method tends to overestimate PSD vol-
ume in very young cohorts (i.e., 5–10 years old). Although 
this overestimation does not alter the observed volume 
trajectory reported in our analysis, this underscores the 
imperative to enhance the current model to rectify this 
limitation by performing additional model training on 
datasets from young children with gold standard manual 
tracings; this will be the topic of future work. Second, we 
develop an automated segmentation method for peri-
sinus structures using high-resolution T2-weighted MRI 
while most recent studies investigating this structure 
reported higher contrast for PSD structure using fluid-
attenuated inversion recovery (FLAIR). However, FLAIR 
sequences are designed to suppress the longitudinal mag-
netization from CSF, which reduces contrast in CSF-filled 
structures such as AGs. Therefore, visualization of AG is 
suboptimal when using FLAIR scans, while T2-weighted 
MRI provides a good tradeoff between the high contrast 
on signals from the PSD and intravenous AG. Third, the 
lower average volume observed in late life in AG struc-
tures could be reflective of the inner limitation of cross-
sectional study. Future longitudinal investigations are 
required to understand volumetric changes of peri-sinus 
structures at an individual level. Despite this limitation, 
analyses presented from our study provides normative 
range in the human lifespan. Finally, we validated our 
method using manual tracing from a neuroradiologist, 
which is generally considered the gold-standard for vali-
dation purposes. It would have been additionally useful 
to compare findings with segmentation from intrathe-
cal gadolinium injections, however, this protocol is sim-
ply deemed unethical at our, and most, hospitals. As we 
provide our algorithm free for public use, investigators at 
other centers may be in a better position to make such a 
comparison.

Conclusions
We propose a new method for the automatic segmen-
tation of peri-sinus space including delineation of the 
parasagittal dural space and intravenous arachnoid gran-
ulations. This method provides a new tool to study a site 
of CSF egress, which may have relevance to fluid and 
waste clearance related to the recently proposed glym-
phatic circuit and is intended to enable researchers to 
study such structures with only the use of non-contrasted 
T2-weigthed MRI. Moreover, findings further enable 
investigation of morphological changes occurring in the 
parasagittal dural spaces and CSF egress pathways in the 
setting of multiple neurologic disorders. The application 
of this method in a large cohort of participants across 

the lifespan provides normative ranges for comparison in 
pathological conditions.
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