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Hydraulic resistance of three-dimensional 
pial perivascular spaces in the brain
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Abstract 

Background Perivascular spaces (PVSs) carry cerebrospinal fluid (CSF) around the brain, facilitating healthy waste 
clearance. Measuring those flows in vivo is difficult, and often impossible, because PVSs are small, so accurate mod-
eling is essential for understanding brain clearance. The most important parameter for modeling flow in a PVS is its 
hydraulic resistance, defined as the ratio of pressure drop to volume flow rate, which depends on its size and shape. In 
particular, the local resistance per unit length varies along a PVS and depends on variations in the local cross section.

Methods Using segmented, three-dimensional images of pial PVSs in mice, we performed fluid dynamical simula-
tions to calculate the resistance per unit length. We applied extended lubrication theory to elucidate the difference 
between the calculated resistance and the expected resistance assuming a uniform flow. We tested four different 
approximation methods, and a novel correction factor to determine how to accurately estimate resistance per unit 
length with low computational cost. To assess the impact of assuming unidirectional flow, we also considered a circu-
lar duct whose cross-sectional area varied sinusoidally along its length.

Results We found that modeling a PVS as a series of short ducts with uniform flow, and numerically solving 
for the flow in each, yields good resistance estimates at low cost. If the second derivative of area with respect to axial 
location is less than 2, error is typically less than 15%, and can be reduced further with our correction factor. To make 
estimates with even lower cost, we found that instead of solving for the resistance numerically, the well-known resist-
ance of a circular duct could be scaled by a shape factor. As long as the aspect ratio of the cross section was less than 
0.7, the additional error was less than 10%.

Conclusions Neglecting off-axis velocity components underestimates the average resistance, but the error can be 
reduced with a simple correction factor. These results could increase the accuracy of future models of brain-wide 
and local CSF flow, enabling better prediction of clearance, for example, as it varies with age, brain state, and patho-
logical conditions.

Keywords Perivascular spaces, Cerebrospinal fluid, Hydraulic resistance, Brain clearance system, Fluid dynamics, 
Hydraulic network models

Introduction
Perivascular spaces (PVSs) are annular channels that sur-
round arteries and veins in the brain and are filled with 
cerebrospinal fluid (CSF). The flow of CSF along these 
PVSs is an important component of the brain’s glym-
phatic system, which distributes nutrients and removes 
metabolic waste products [1]. (See the recent reviews [2, 
3]). The flow of CSF in this system can be usefully mod-
eled as flow in a hydraulic network, with one-dimensional 
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flows in individual components determined by their 
hydraulic resistance [4–9]. It is known that the hydrau-
lic resistance of a PVS depends strongly on its size and 
shape [10–12]. In this paper we develop methods of esti-
mating the hydraulic resistance of individual PVSs in the 
brain based on their known geometrical configuration, as 
determined from in vivo experimental data. The PVSs are 
often quite irregular in shape, and therefore it is useful to 
have ways of estimating their hydraulic resistance with-
out doing a full numerical simulation of the detailed flow 
field.

Here we are concerned primarily with PVSs that can 
be considered as essentially open spaces, for which the 
flow is governed by the Navier-Stokes equation. PVSs 
surrounding pial (surface) arteries in the mouse brain 
are known to be essentially open spaces, unobstructed 
by tissue [13]. Far less is known about the amount of 
obstruction in PVSs surrounding penetrating arteries: 
experiments indicate that these PVSs in the mouse brain 
contain some mesh-like obstructions [14], but the blood 
vessel usually lies to one side of the PVS, an arrangement 
that usefully reduces the hydraulic resistance of the PVS 
only if it were an essentially open space [10]. It is likely 
that some PVSs in the brain contain a significant amount 
of tissue and might therefore be considered to contain a 
porous medium, with flow governed by the Darcy equa-
tion. Such might be the case for PVSs around arterioles 
and precapillaries deep in the brain. We present here (in 
Appendix 1) a method of estimating the hydraulic resist-
ance of a porous PVS based on its detailed configuration, 
but since we know very little about this configuration, we 
do not carry out any specific applications of the method.

In a steady, laminar flow of fluid along an open duct, 
the volume flow rate Q = �p/R is proportional to the 
pressure drop �p between the entrance and exit of the 
duct and inversely proportional to a hydraulic resistance 
R, which can be calculated from the viscosity of the fluid 
and the detailed shape and length of the duct. Hydrau-
lic resistance is analogous to electrical resistance, which 
impedes an electrical current (analogous to Q) driven by 
a given voltage drop (analogous to �p ). For nonuniform 
ducts, a more useful quantity is the hydraulic resistance 
R per unit length,

where ∂p/∂z is the pressure gradient in the direction of 
the flow (the z-direction). Simple geometric models of 
the cross section of open PVSs have been used to cal-
culate their hydraulic resistance [10, 12], assuming that 
the cross section remains uniform along the PVS. Here 
we are seeking more accurate methods that account for 
the variations in the shape and cross-sectional area of a 

(1)R ≡ −∂p/∂z

Q
,

PVS, and hence its hydraulic resistance R per unit length, 
along its length.

Pial PVS shapes determined from in vivo 
experimental data
We acquired and segmented three-dimensional (3D) 
two-photon microscopy images of murine pial PVSs, 
using the methods we developed and employed previ-
ously [12, 15]. We analyzed PVSs adjacent to pial arter-
ies in four mice, M1–M4, and we considered two or three 
subdomains from each mouse, denoted as S1, S2, or S3, 
for a total of 9 different 3D segments of pial arteries. All 
of the subdomains were from pial PVSs located on the 
main branch of the MCA, between 4-7 bifurcations dis-
tal to the start of the MCA. Pial perivascular spaces are 
often shaped like incomplete annuli, with a lobe on each 
side of the pial artery but no spaces connecting the two 
lobes, as described by Raicevic et  al. [12] and shown in 
Fig. 1a. All 9 of the segments we consider are shaped this 
way, and each is an individual lobe, located to one side 
of the pial vessel. Thus, the blood vessel is located to one 
side of the subdomains we consider here.

For each 3D configuration, we chose a series of points 
distributed along the vessel centerline, at each point find-
ing the axial (centerline) direction and a cross section 
normal to that direction, as described in [15] and shown 
here in Fig.  1b. The normal cross sections are spaced 
approximately 0.7 µm apart, but the exact distance varies. 
Below, we will use a variety of methods to estimate the 
local value of R at each cross section.

For comparison, we created ducts with circular cross 
sections that have the same axial variation in cross-sec-
tional area as the realistic geometries, as shown in Fig. 1c. 
This allows us to separate the effects of size and shape 
on R . We do this by finding the cross-sectional area of 
the PVS at each of the previously-chosen normal cross 
sections, obtaining the area as a function of distance in 
the axial direction. We then interpolate the area func-
tion at 0.7 µm (1 pixel) intervals and create a duct with a 
straight centerline and circular cross sections of varying 
area, where the area as a function of axial distance is very 
nearly the same as in the original PVS geometry.

Three‑dimensional flow calculations for realistic 
PVS configurations
As a basis for testing the various simpler methods of 
approximating the hydraulic resistance of PVSs presented 
in the next section, we calculated the full 3D flow field 
for pressure-driven, laminar viscous flow in the actual 
observed PVS sections described above, and then calcu-
lated the hydraulic resistance for these flow fields. We 
solved the 3D Navier-Stokes equations using NX Flow in 
the Siemens NX Advanced Simulation software. The PVS 
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geometries were meshed into 3D tetrahedral elements 
using NX advanced FEM. We used the fluid properties 
of water at 37◦ C. The parallel Flow Solver Scheme was 
set as the fully coupled Pressure-Velocity type, and we 
used a parallel solver to increase efficiency. From NX, we 
exported the results in CSV files that were then further 
post-processed in MATLAB.

We prescribed a zero-pressure condition at the outlet 
and no-slip conditions at the walls. In order to ensure 
fully-developed flow at the entrance of the PVS seg-
ment, we added a uniform (constant cross section) duct 
upstream whose cross-sectional shape matched the 
entrance of the segment and whose length was 40 µm. 
For the low Reynolds number flows considered here, the 
minimum length zL required to achieve a fully-developed 
velocity profile is zL ≈ 0.5Dh , where Dh is the hydraulic 
diameter, Dh ≡ 4A/P , where A is the cross-sectional area 

and P is the wetted perimeter of the duct [16]. In all cases 
we consider, zL ≤ 40 µm. We prescribed a steady flow at 
the entrance of the inlet duct with a volume flow rate of 
Q = 2.19×104 µm3/s, a typical value for pial PVSs in the 
mouse brain [15].

To ensure the accuracy of the 3D flow calculations, 
we reduced the mesh size in a finite-element model of a 
uniform (constant cross section) duct with circular cross 
section until the resistance was within 0.5% of that given 
by the exact analytical solution for laminar flow in a cir-
cular duct (Hagen-Poiseuille flow). This occurred for a 
mesh size of 0.5 µm. We determined that further reduc-
ing the mesh size to 0.3 µm resulted in a change in aver-
age resistance of less than 0.2%. We then used 0.3 µm for 
all the simulations, although it is clear from these grid 
verification studies that a coarser mesh would have pro-
duced very similar results.

Fig. 1 a Three-dimensional (3D) perivascular space (blue) and blood vessel (red) with an example subdomain (M1 S2, shown in green). b The 
subdomain with a few cross sections (gray) and corresponding center points (black) and axial vectors (red). c Circular duct with the same axial 
variation in cross-sectional area as the realistic geometry shown in (b). d Hydraulic resistance per unit length at cross sections along the length 
of the perivascular space and duct as calculated from the 3D simulations (“3D”), from the series unidirectional approach (“SUN” where calculated 
numerically; “SUA” where calculated analytically), and with a correction factor ( � correction) to the series unidirectional approach (“SUN·� ” and “SUA·�
”), for both the perivascular space shown in (b) (“realistic”) and the circular duct shown in (c) (“circular”). e Error between the series unidirectional 
approximation and the 3D solution, for all cross sections. The box and whiskers plots indicate the median with a solid line and the interquartile 
range with a box. Outliers (points more than 1.5 times the interquartile range above the median) are shown with markers. The series unidirectional 
approximation underestimates the error, on average, but the correction factor reduces the error by more than half in most cases
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We used a nonuniform mesh, in which the mesh 
elements were finer near the boundaries and coarser 
near the center. This varying mesh size was dictated by 
changing the internal gradation rate, which limits size 
differences among adjacent mesh elements, particularly 
in the radial direction (inward from the boundary). In 
order to verify that this did not affect the results, we 
ran a simulation in which we kept the mesh size at 0.5 
µm while decreasing the internal graduation rate from 
1.05 to 1.01, which resulted in a difference in average 
resistance of only 0.03%. We then used an internal gra-
dation rate of 1.05 for all the simulations.

We calculated the hydraulic resistance per unit length 
at each normal cross section along the length of the 
channel by taking the volume-weighted average of the 
pressure at all elements in 2-µm-thick slices and divid-
ing the pressure difference between adjacent slices by the 
volume flow rate Q. (See Appendix 3 for a discussion of 
how this calculated quantity compares to the theoretical 
one derived from the lubrication approximation in §4.1.) 
We observed an increase in error in cross sections near 
the outlet due to exit effects, so in all of our results we 
exclude the last five normal cross sections.

Approximate methods for calculating the hydraulic 
resistance
The lubrication approximation
Perivascular flows are generally characterized by very 
low Reynolds number (Re ≪ 1 ), where viscous effects 
greatly outweigh inertial effects. Also, the pulsatile flows 
in PVSs have very small Womersley number, and hence 
the hydraulic resistance experienced by these flows is the 
same as that for a steady flow [17]: therefore, without loss 
of generality, we will consider steady flow throughout this 
paper. The Navier-Stokes equation can then be reduced 
to the Stokes (creeping flow) equation for steady flow,

where u = (ux,uy,uz) is the Eulerian velocity in Carte-
sian coordinates (x, y, z), p is the pressure, and µ is the 
dynamic viscosity. This equation is accompanied by the 
continuity equation for incompressibe flow,

Because PVSs are generally much longer (in the flow 
direction) than they are wide (in directions transverse to 
flow), the flow can be modeled using lubrication theory, 
which describes a class of flows that are nearly unidirec-
tional. Even if the PVS changes in size or shape along its 
length, the magnitude of the axial flow is much larger 
than the transverse flow.

(2)0 = −∇p+ µ∇2
u,

(3)∇ · u = 0.

We can arrive at the lubrication equations for a duct by 
non-dimensionalizing the components of the Stokes equa-
tion according to:

where b0 and c0 are the characteristic length scales in the 
x and y directions (transverse to flow), respectively, L is 
the characteristic length scale in the z direction (axial), 
uc , vc , and wc are the characteristic velocities in the x, y, z 
directions, respectively, and �pc is a characteristic pres-
sure drop across the full length of the duct. We assume 
here that b0 and c0 are comparable, such that there is one 
characteristic length in the transverse direction, 

√
b0c0 , 

and hence ux and uy are comparable, such that uc = vc . By 
non-dimensionalizing the continuity equation

we find that uc = αwc where α ≡
√
b0c0
L  is the aspect ratio 

of the channel, and that the characteristic pressure is 
�pc = µwcL/b0c0.

The resulting dimensionless equations are:

We can see that several terms in these equations are small 
perturbations when α2 ≪ 1 , as is the case for long, nar-
row ducts like PVSs. Hence we can appropriately express 
the variables as power series in α2:

(4)x̂ = x√
b0c0

, ŷ = y√
b0c0

, ẑ = z

L
,

(5)û = ux

uc
, v̂ = uy

vc
, ŵ = uz

wc
,

(6)p̂ = p

�pc
,

(7)
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0,

(8)0 = ∂û

∂ x̂
+ ∂ v̂

∂ ŷ
+ ∂ŵ

∂ ẑ
,

(9)0 = − ∂ p̂

∂ x̂
+ α2

(

∂2

∂ x̂2
+ ∂2

∂ ŷ2
+ α2 ∂2

∂ ẑ2

)

û,

(10)0 =− ∂ p̂

∂ ŷ
+ α2

(

∂2

∂ x̂2
+ ∂2

∂ ŷ2
+ α2 ∂2

∂ ẑ2

)

v̂,

(11)0 =− ∂ p̂

∂ ẑ
+

(

∂2

∂ x̂2
+ ∂2

∂ ŷ2
+ α2 ∂2

∂ ẑ2

)

ŵ.

(12)p̂ = p̂0 + α2p̂2 + α4p̂4 + O(α6),

(13)û = û0 + α2û2 + α4û4 + O(α6),
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Substituting these series expressions into the governing 
equations and collecting terms of the same order of α2 , 
we find that the 0th-order equations (composed of terms 
free of α2 ) are

These 0th-order equations constitute “classical” lubrica-
tion theory. At this order, pressure does not vary in the 
transverse direction, as the equations show. We later 
approximate the PVS as a series of sections, and solve 
these equations for each section, referring to the com-
bined result as the “series unidirectional approximation”.

We find the 2nd-order equations to be:

The second-order (and higher-order) corrections consti-
tute “extended” lubrication theory, where pressure does 
vary in the transverse direction, and, most critically for 
this study, depends on spatial variations of the duct cross 
section. Extended lubrication theory has been applied to 
two-dimensional channels, circular ducts, and elliptical 
ducts, and shown to be quite effective at capturing the 
effects of axial variations of the cross section when com-
pared with experiments and full numerical simulations 
[18–20].

(14)v̂ = v̂0 + α2v̂2 + α4v̂4 + O(α6),

(15)ŵ = ŵ0 + α2ŵ2 + α4ŵ4 + O(α6).

(16)0 = ∂û0

∂ x̂
+ ∂ v̂0

∂ ŷ
+ ∂ŵ0

∂ ẑ
,

(17)0 = ∂ p̂0

∂ x̂
= ∂ p̂0

∂ ŷ
,

(18)0 = − ∂ p̂0

∂ ẑ
+

(

∂2

∂ x̂2
+ ∂2

∂ ŷ2

)

ŵ0.

(19)0 = ∂û2

∂ x̂
+ ∂ v̂2

∂ ŷ
+ ∂ŵ2

∂ ẑ
,

(20)0 = − ∂ p̂2

∂ x̂
+

(

∂2

∂ x̂2
+ ∂2

∂ ŷ2

)

û0,

(21)0 = − ∂ p̂2

∂ ŷ
+

(

∂2

∂ x̂2
+ ∂2

∂ ŷ2

)

v̂0,

(22)0 = − ∂ p̂2

∂ ẑ
+

(

∂2

∂ x̂2
+ ∂2

∂ ŷ2

)

ŵ2 +
∂2ŵ0

∂ ẑ2
.

A nonuniform elliptical duct
In this section, we apply the lubrication model to solve for 
the flow in a nonuniform elliptical duct, whose varying 
cross section is an ellipse with semi-major and semi-minor 
axes b(z) and c(z):

While an actual PVS does not have elliptical cross sec-
tions, the nonuniform elliptical duct is a general shape 
for which we can find analytical expressions for the 
velocity and pressure at the 0th and 2nd orders, and which 
illustrates the effect that axial variations in cross-sec-
tional shape and area can have on the resistance per unit 
length beyond what is given by classical lubrication the-
ory. Though we arrived at dimensionless forms of the 0th 
and 2nd order equations in the previous section, to cal-
culate resistances and compare them with those obtained 
with numerical solutions, we will solve the equations in 
dimensional form in the subsequent sections.

Uniform duct approximation (0th-order solution). The 
0th-order, dimensional lubrication equations are:

We see that the z-momentum equation takes the form 
of the Poisson equation, and hence the axial veloc-
ity w0(x, y, z) can be readily obtained numerically for a 
duct of arbitrary cross section. For an elliptical duct, by 
enforcing a no-slip condition on the boundary, the axial 
velocity can be obtained analytically:

The flow rate Q is independent of z, and we can deter-
mine the pressure gradient in the duct by applying an 
integral constraint

(23)
(

x

b(z)

)2

+
(

y

c(z)

)2

= 1.

(24)0 = ∂u0

∂x
+ ∂v0

∂y
+ ∂w0

∂z
,

(25)0 = ∂p0

∂x
= ∂p0

∂y
,

(26)0 = − dp0

dz
+ µ

(

∂2

∂x2
+ ∂2

∂y2

)

w0.

(27)w0 =
1

2µ

dp0

dz

b2c2

b2 + c2

(

(x

b

)2
+

(y

c

)2
− 1

)

.

(28)Q = 4

∫ c

0

∫ b
√

1−(y/c)2

0

w dx dy

(29)

= 4

∫ c

0

∫ b
√

1−(y/c)2

0

(w0 + α2w2 + O(α4)) dx dy.
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To close the problem, we assume that the bulk of Q is 
determined only by the 0th order flux:

the justification for this assumption is given in Appendix 
2. Using this integral constraint, we can determine the 
pressure gradient,

The 0th order hydraulic resistance per unit length is then

which can be expressed alternatively as a function 
of the cross-sectional area A and the aspect ratio 
β(z) = b(z)/c(z) , as

From this expression, we see that the local resistance (per 
unit length) depends only on the geometry of the local 
cross section and is independent of axial changes in the 
geometry. That is, the local resistance is the same as that 
of a uniform duct of the same cross section.

Extension to second order. By extending the lubri-
cation model to higher orders, we anticipate that the 
solution will include effects of axial variations in cross-
sectional geometry, and hence will be in closer agreement 
with three-dimensional numerical solutions. This has 

(30)Q ≈ 4

∫ c

0

∫ b
√

1−(y/c)2

0

w0 dx dy;

(31)dp0

dz
= −4µQ

π

b2 + c2

b3c3
.

(32)R0 =
4µ

π

b2 + c2

b3c3
,

(33)R0 =
4πµ(β2 + 1)

β

1

A2
.

been demonstrated for two-dimensional channels [19]. 
The second-order dimensional equations are as follows:

(34)0 = ∂u2

∂x
+ ∂v2

∂y
+ ∂w2

∂z
,

The working of these equations yields lengthy expres-
sions, so we relegate the details of the second-order 
solutions for velocity and pressure to Appendix 2. The 
resulting expression for pressure gradient is:

where primes denote derivatives with respect to z. Here 
the axial pressure gradient additionally depends on x and 
y. Since the pressure distribution over the cross section is 
difficult to measure, a more relevant quantity is the axial 
pressure gradient averaged over the cross section,

which is a function only of z. Then we can define 
the second-order resistance per unit length as 
R2 ≡ −�∂p2/∂z� /Q , given by

This higher-order resistance depends on the size of 
the duct and also on the slope and curvature of the 
walls. It combines linearly with the lower-order resist-
ance, such that the total resistance per unit length is 
R0 + α2R2 + O(α4) . We can express R2 as a function 
of area A and aspect ratio β , as we did for R0 , if we fur-
ther assume that the aspect ratio is fixed at some value 

(35)0 =− ∂p2

∂x
+ µ

(

∂2

∂x2
+ ∂2

∂y2

)

u0,

(36)0 =− ∂p2

∂y
+ µ

(

∂2

∂x2
+ ∂2

∂y2

)

v0,

(37)0 =− ∂p2

∂z
+ µ

(

∂2

∂x2
+ ∂2

∂y2

)

w2 + µ
∂2w0

∂z2
.

(38)

∂p2
∂z

=
µQ

3πb5c5
(b2c2

(

2b′
2
(6x2 − 7c2)+ (6y2 − c2)(2c′

2
− cc′′)

)

+ b4
(

−2c2(b′
2
+ 7c′

2
)+ c(c2 − 18y2)c′′ + 72y2c′

2
)

+ 72x2c4b′
2
+ b3c

(

cb′′(c2 − 6x2)+ 6b′c′
(

3(x2 + y2)− c2
))

+ 3bc3
(

b′c′
(

6(x2 + y2)− c2
)

− 6x2cb′′
)

+ b5c(cb′′ − 3b′c′)),

(39)
〈

∂p2

∂z

〉

= 1

πbc

∫

A

∂p2

∂z
dA,

(40)

R2 =− µ

6πb4c4

[

3c4b′c′ + b3c
(

2b′2 − 7cc′′ + 8c′2
)

+ bc3
(

8b′2 − cc′′ + 2c′2
)

+ b4
(

3b′c′ − cb′′
)

+ b2c2
(

6b′c′ − 7cb′′
)]

.
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β = β∗ , i.e., the cross sections are self-similar along the 
length of the duct and dβ/dz = 0 : the resistance is then

Thus the fractional error of the uniform duct ( 0th order) 
approximation in the total resistance as predicted by the 
extended lubrication model is

If the change in area is relatively small along the length of 
the duct, i.e., if

then we can show that, to leading order in ε , the second 
derivative of the area dominates the error:

If we consider this β-dependent prefactor, we can 
show that it is a fairly weak function of β and its value 
is within 13.3% of the β = 1 case for β < 7 . For β = 1 , 
E ≈ α2A′′/6π.

Approximations using a series of uniform ducts (series 
unidirectional approach)
Here we investigate the suitability of approximating the 
hydraulic resistance to flow in an actual perivascular 
space by modeling it as a series of uniform ducts. Each 
duct in the series is constructed to have a cross-sec-
tional shape identical to a corresponding section of the 
PVS, as imaged in 3D. Flow in each is assumed to be 

(41)
R2,fixed β = −

µ

12β2A2
[3A′2

A
(1+ 6β2

+ β4)

− A′′(1+ 14β2
+ β4)

]

.

(42)

E = α2R2 + O(α4)

R0 + α2R2 + O(α4)

≈ (α2R2

R0

+ O(α4))(1− α2R2

R0

+ O(α4))

≈ α2R2

R0

+ O(α4)

≈ α2

48πβ(β2 + 1)

(

−3A′2

A
(6β2 + β4 + 1)+ A′′(β4 + 14β2 + 1)

)

+O(α4).

A = A0(1+ εg(z)), ε ≪ 1

(43)

E ≈ α2A0

48πβ(β2 + 1)

(

− 3ε2g ′2

1+ εg
(6β2 + β4 + 1)+ εg ′′(β4 + 14β2 + 1)

)

≈ α2

48πβ(β2 + 1)
(

−3A0ε
2g ′2(1− εg)(6β2 + β4 + 1)+ A0εg

′′(β4 + 14β2 + 1)

)

≈α2(β4 + 14β2 + 1)

48πβ(β2 + 1)
A′′ + O(ε2).

unidirectional; we neglect the presence of off-axis (not 
parallel to the centerline) velocity components. Such off-
axis velocity components can arise from axial variations 
in cross-sectional area or shape, or from curvature of the 
central axis, and would serve to increase the rate of shear 
at the wall, thereby increasing the hydraulic resistance 
compared to that in a unidirectional flow. We refer to this 
approach as the “series unidirectional” approach.

We compute the velocity profile of unidirectional flow 
along each duct in the series numerically, by solving 

Eq. 26 using Matlab’s PDE solver, “solvepde”, as described 
in [12, 15]. We refer to this solution of the series unidi-
rectional approach as the SUN approach. The mesh size 
is chosen so that the computed resistance for a circular 
duct matches the analytically-known value within 0.5%. 
Instead, for simple cross-sectional shapes like circles, 

we do the same calculation analytically, referring to this 
solution as the SUA approach. Both approaches allow us 
to calculate a resistance per unit length at many locations 
along the PVS.

In addition to solving Poisson’s equation, we also 
approximate the series unidirectional resistance per unit 
length using four different solution methods, which we 
refer to as methods I, II, III, and IV, and which are sum-
marized in Table 1. These methods require considerably 
less computational effort than solving Poisson’s equation 
for each cross section (the SUN method). In method I, 
we predict the series unidirectional resistance per unit 
length at each normal cross section i at z = zi , based on 
the resistance in a single reference cross section with 
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resistance per unit length Rref and area Aref , and the 
local area Ai:

The results depend on the reference cross section, so we 
examine the impact of its selection by choosing two dif-
ferent reference cross sections: the largest and smallest 

(44)RI = Rref

(

Aref

Ai

)2

in the PVS segment. The two resulting resistance predic-
tions are denoted RI,max  and RI,min , respectively. This 
approach is based on the idea that the shape of a PVS 
segment is relatively uniform along its length, so changes 
in local resistance are due to changes in area alone. We 
see this illustrated in the lubrication approximation for 
R0 , Eq.  33, where if the shape factor coefficient is con-
stant, then the resistance depends primarily on A−2.

Fig. 2 a Distance d from the center, normalized by req , the radius of a circle with the same area (shown dashed), for an example cross section. 
b Resistance at each cross section, calculated using the series unidirectional approach either by solving Poisson’s equation (“SUN”) or using one 
of the approximations discussed in the text. c Error in approximation RII for each segment. (d) Error in RII as a function of cross-sectional aspect 
ratio. If the ratio of the lengths of the minor and major axes exceeds 0.7, the error in RII is less than 10%; RII is a reasonable estimate when the shape 
is not too oblong

Table 1 Summary of the different solution methods to the series unidirectional approach, where the resistance per unit length is 
calculated for flow in a series of straight ducts with constant cross section and unidirectional flow

Methods Description

SUN Numerically solve Poisson’s equation for resistance

SUA Analytically solve for the resistance in a circular cross section

I Solve based on a reference area and resistance, assuming resistance scales with area

II Adjust RSUA using shape factor γ based on the distance from the wall to the center

III Lubrication approximation for an ellipse

IV Approximation proposed by Bahrami et al.; uses the polar moment of inertia
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Method II is based on the assumption that radial veloc-
ity variation in a cross section of arbitrary shape is similar 
to that in a circle, such that the shear stress at the wall 
depends primarily on its distance from the centerline. In 
this method, we can predict the resistance per unit length 
of each cross section in the series based on the geom-
etry alone, by multiplying the expression for hydraulic 
resistance in Hagen-Poiseuille flow in a circular duct by a 
shape factor γ that accounts for the non-circularity of the 
shape. Thus,

where req is the radius of a circular cross section of equiv-
alent area and

where the boundary of the cross section has been approx-
imated as a polygon with N vertices, each a distance dj 
from the center (see Fig. 2a). The center is defined as the 
location that minimizes γ and is typically close to the 
location of maximum flow velocity. This is appropriate 
because dj approximates the radius of a circle for which 
the wall shear matches that of the realistic cross section 
at location j. (We originally used the geometric centroid 
of the cross section as the center point but found that 
when the cross section narrowed in the center, resistance 
was considerably overestimated.)

(45)RII =
8µ

πr4eq
γ ,

(46)γ = 1

N

N
∑

j=1

(

req

dj

)4

,

Method III predicts the hydraulic resistance of each 
duct in the series using the lubrication model for an 
ellipse, as described in Equation 33:

where β is now the aspect ratio of an ellipse with the 
same second moment as the cross section, and A is the 
cross-sectional area.

Method IV is an approximation proposed by Bahrami 
et al. [21] that considers the shape effect through the sec-
ond polar moment of inertia Ip:

where

and ( x0,y0 ) are the coordinates for the centroid.

Results
Error in the series unidirectional approximation
We calculated the resistance per unit length for PVS seg-
ment S2 from mouse M1, and the results are shown in 
Fig. 1d. We refer to the original geometries as realistic, in 
contrast to the contrived geometries with circular cross 
sections but the same area as a function of axial distance. 
The resistance is calculated by solving numerically or 
analytically for the resistance in a series of straight ducts 
with unidirectional flow with cross sections matching 

(47)RIII =
4µ

πr4eq

β2 + 1

β
.

(48)RIV = 16π2µ

A4
Ip,

(49)Ip =
∫

A
((x − x0)

2 + (y− y0)
2) dA,

Table 2 Error in resistance per unit length, for all 9 PVS segments, as calculated with the series unidirectional approach, without 
and with the � correction. Reference resistances R3D are not local values, but are averages over the entire segment. RMS errors are 
enclosed in parentheses; average errors are not

Realistic Circular

segment R3D 
(mmHg·min
/mL/m)

(RSUN - R3D)
/R3D (%)

(RSUN·� - R3D)
/R3D (%)

(RSUA - R3D)
/R3D (%)

(RSUA·� - R3D)
/R3D (%)

M1 S1 2.8×10
6 − 5.3 (10.4) − 1.2 (5.5) − 2.3 (10.4) 0.1 (5.4)

M1 S2 2.4×10
6 − 4.5 (10.2) − 1.0 (6.2) − 1.7 (10.8) − 0.7 (5.8)

M2 S1 8.9×10
5 − 2.8 (4.7) 0.9 (2.5) − 1.8 (4.7) − 0.9 (3.4)

M2 S2 8.9×10
5 − 0.5 (6.3) 3.0 (5.1) − 1.8 (8.4) − 1.7 (5.4)

M3 S1 2.1×10
6 − 7.1 (12.4) − 2.7 (9.3) − 8.6 (16.4) − 5.2 (14.4)

M3 S2 3.5×10
6 − 9.5 (15.5) − 4.5 (10.8) − 6.0 (14.4) − 3.3 (11.9)

M4 S1 1.7×10
6 − 4.6 (9.8) − 0.8 (5.4) − 1.4 (8.3) − 0.1 (4.7)

M4 S2 9×10
6 − 12.6 (31.1) − 8.2 (30.3) − 5.4 (24.6) − 0.6 (16.1)

M4 S3 5.5×10
5 − 3.5 (11.5) − 0.2 (6.4) − 1.2 (16.0) 0.7 (11.5)
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those from the 3D geometries, or else calculated from 
the three-dimensional flow field. Since a circle has the 
smallest resistance possible for a given cross-sectional 
area, the resistances for the circular geometries are pre-
dictably smaller than those of the realistic geometries. 
For both the circular and realistic geometries, the series 
unidirectional approximation of resistance is reasonably 
close to the resistance from the 3D solution for many 
cross sections. In Fig. 1e, we show box plots of the error 
in resistance from the series unidirectional approxima-
tion (methods SUN and SUA) relative to the 3D simu-
lations for each geometry. The error is less than 20% in 
the majority of cases. In Table  2, we report the average 
resistance per unit length for each of the geometries from 
the 3D simulations. The average resistance was computed 
by averaging the resistance from all of the cross sections 
along the length of the duct. We also report the error in 
the average resistance between the series unidirectional 
approximation and the 3D simulations. Resistance is 
overestimated by the series unidirectional approximation 
in some cases, and underestimated in others, so the error 
in the average resistance is smaller than the typical error 
in a single cross section, which we estimated using the 
root-mean-square (RMS) value. The series unidirectional 
approximation underestimates the average resistance by 
0.5 to 13% for realistic geometries, and 1.2 to 8.6% for cir-
cular geometries.

Alternative solutions to the series unidirectional 
approximation
We show the results for methods I, II, III, and IV in 
Fig. 2b and Table 3. All four approaches require consider-
ably less computational power than numerically solving 
Poisson’s equation (shown in green in Fig. 2b for compar-
ison), and are reasonable approximations.

Depending on the reference cross section, method I 
produces errors in average resistance between − 8 and 

22%, with RMS errors between 2 and 31%. The error is 
calculated with respect to the SUN approach and does 
not include the additional error inherent in the series 
unidirectional approximation in the first place.

Method II performs the best of all the methods, with 
errors in average resistance between − 7 and 5%, and 
RMS errors between 2 and 13%. In Fig. 2c we show a box 
plot of the error in RII (with respect to RSUN , the resist-
ance per unit length calculated using the SUN approach), 
which shows that for most cross sections, the errors are 
less than 10%. This approach breaks down if the cross 
section is very oblong, such that the peak velocity in the 
cross section does not occur at a single central point, but 
along a ridge. To quantify this, we plot error as a func-
tion of the minor to major axis ratio of an ellipse with 
the same second moment as each cross section ( 1/β ) in 
Fig. 2d, and find that when this ratio is greater than 0.7, 
the error is always less than 10%.

Method III underestimates the (average) resistance by 
between 8 and 25%. This makes sense, since it is derived 
for an elliptical duct, which typically would a have lower 
resistance than many of these “realistic” cross sections, 
some of which are concave in spots, and generally not as 
smooth as an ellipse, as described by Racivic et al. [12]. 
The average value of β for each geometry ranges between 
1.1 and 2, so an ellipse with the same β is similar to a cir-
cle, which has the minimum resistance for a given area. 
Accordingly, the (β2 + 1)/β term that is the ellipse cor-
rection factor is typically close to one.

Method IV underestimates the average resistance by 
between 5 and 13%, depending on the geometry.

Test case: a duct with circular cross section 
with sinusoidally varying radius
In order to gain insight into the aspects of the 3D geom-
etry that are not captured in the series unidirectional 
approximation, we studied the simpler case of a duct 

Table 3 Error in resistance per unit length, for all 9 PVS segments, as calculated with approaches I, II, III, and IV. RMS errors are enclosed 
in parentheses; average errors are not

segment ( RI,max – RSUN)
/RSUN(%)

( RI,min – RSUN)
/RSUN(%)

( RII−RSUN)
/RSUN(%)

( RIII − RSUN)
/RSUN(%)

( RIV - RSUN)
/RSUN(%)

M1 S1 1.8 (3.2) 3.2 (4.2) − 3.9 (4.8) − 25.3 (25.8) − 12.5 (12.8)

M1 S2 1.0 (4.4) 12.4 (13.7) − 3.4 (4.5) − 25.1 (25.8) − 12.3 (12.7)

M2 S1 − 3.0 (3.6) − 1.8 (2.7) 0.9 (2.1) − 16.1 (16.5) − 9.3 (9.5)

M2 S2 4.0 (5.2) − 0.6 (2.9) 1.2 (3.1) − 17.3 (20.0) − 9.6 (11.1)

M3 S1 − 1.6 (2.7) 9.8 (12.0) 3.3 (3.9) − 7.8 (8.5) − 5.2 (5.6)

M3 S2 − 8.3 (9.6) 22.2 (31.1) 4.6 (7.2) − 10.7 (10.9) − 6.9 (7.1)

M4 S1 0.6 (3.2) − 0.1 (3.1) 1.9 (2.5) − 18.8 (19.2) − 10.2 (10.4)

M4 S2 − 8.1 (18.3) 6.2 (19.9) 1.8 (13.3) − 28.2 (31.7) − 11.1 (12.6)

M4 S3 3.9 (6.1) 5.2 (7.0) − 6.7 (8.4) − 22.2 (23.9) − 11.0 (11.6)
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having a circular cross section with radius varying sinu-
soidally along its axis according to

where r is the radius (measured in µm, as is z). The 
resulting shape is shown in Fig.  3a. The resistance per 
unit length as calculated using the series unidirectional 
approximation (which can be solved analytically for a 
circular cross section) and the 3D solution are shown in 
Fig. 3b, and the fractional error between these two results 
is shown in Fig. 3c. The series unidirectional calculation 
overestimates the resistance in wide regions and under-
estimates it in narrow ones.

We can predict the difference in resistance between a 
duct with axially varying area and one with constant area 
using extended lubrication theory. In Figs  3b and c, we 
plot the resistance and error predicted using lubrication 
theory, and it agrees well with the 3D solution. The good 
agreement shows that the 2nd-order extension to the 
lubrication approximation captures the majority of the 

(50)r = 50+ 1.5 sin(2πz/50),

difference in resistance between the series unidirectional 
approach (derived from the 0th-order lubrication approx-
imation) and the full 3D solution. Importantly, from the 
extended lubrication theory, we learn that the error in 
the series unidirectional approach scales with the second 
derivative of the area. Some of the difference between the 
2nd-order extended lubrication approximation and 3D 
resistances can be attributed to the discretization of the 
domain boundaries, the presence of higher order effects 
not captured in the 0th-order lubrication approximation, 
and the difference in how the R is calculated between 
the 3D simulations and ELT (discussed in Appendix  3), 
though the latter should account for a difference on the 
order of just 3% for this case.

Here we explain why the resistance differs between 
the 3D and series unidirectional approaches. The resist-
ance is a measure of the pressure drop required to move 
fluid through a duct at a certain rate, and it is calculated 
by measuring the decrease in pressure, or pressure gra-
dient, in the axial direction. The pressure gradient is a 

Fig. 3 a Duct with circular cross sections and sinusoidally varying radius. b Resistance per unit length as calculated from three−dimensional 
simulations (“3D”), from the series unidirectional approach, and from extended lubrication theory (“ELT”), along with cross-sectional area. c Error 
in resistance per unit length predicted by the series unidirectional approximation, compared to 3D simulations and extended lubrication theory. d 
Pressure at the cross section marked with a blue box in (a). e Radial pressure fluctuations in the longitudinal plane marked with a yellow box in (a). 
f Axial velocity profiles at the widest (gray) and narrowest (red) locations in the duct, marked by arrows in e. The error in the series unidirectional 
approach can be predicted with extended lubrication theory and results from the radial pressure variations induced by the axial variation in area
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reflection of the shear rate at the wall, which is dictated 
by the velocity gradient. Axial area variations change the 
velocity gradient, shear rate at the wall, pressure gradient, 
and resistance, relative to a uniform duct. The velocity, 
and thus velocity gradient, are dictated by the pressure. 
In Fig. 3d, we show the pressure from the 3D solution in 
one cross section of the duct shown in panel (a); there is 
a clear radial pressure variation. In Fig. 3e, we show the 
radial pressure fluctuation P − Pmean(z) (where Pmean(z) 
is the radially-averaged pressure), which excludes the 
mean axial pressure gradient that would otherwise domi-
nate. The radial pressure fluctuation modifies the axial 
velocity at the wall. For example, where the wall bulges 
inward at z = 37 µm, relative to a scenario with a duct 
with the same size and constant cross section, there is 
a higher pressure region upstream, and a lower pres-
sure region downstream. This negative pressure gradient 
steepens the axial velocity gradient, as shown in Fig. 3f, 
resulting in larger shear rates and larger pressure gra-
dients, relative to a scenario with a duct with the same 
size and constant cross section. Thus, the series unidi-
rectional approach underestimates the resistance at con-
strictions. Where the wall bulges outward, the opposite is 
true: pressure is lower upstream and higher downstream, 
flattening the axial velocity gradient and reducing shear 
(as shown in Fig.  3f ). Thus, the series unidirectional 
approach overestimates the resistance where the cross-
sectional area is locally maximum.

The error in the series unidirectional approximation 
correlates with d2A/dz2

From the extended (second order) lubrication model, 
we know that for a duct with circular cross sections, 
the error from the series unidirectional approach 
approximately scales with the second derivative of the 
cross-sectional area with respect to axial distance. In 
Fig.  4 we show the error as a function of d2A/dz2 . As 
expected, there is a clear correlation for the ducts with 
circular cross sections (p value < 0.0001). For the realis-
tic geometries, the variation in area is not radially uni-
form, and the change in area does not fully capture how 
the geometry changes; despite this, however, there is 
still a strong correlation ( p < 0.0001).

In order to quantify the uncertainty associated with 
this correlation, we also show conditional statistics for 
scattered data, with the circles showing the median 
error, binned according to d2A/dz2 . The dashed lines 
indicate the 5th and 95th percentiles.

We fit a first-order polynomial to the data 
(shown in the right panel in Fig.  4), and the equa-
tions of the fit lines for realistic and circu-
lar shapes are errreal = −1.8 · d2A/dz2 − 3.2 and 
errcirc = −4.4 · d2A/dz2 + 0.22 , respectively. The slope 
of the fit line for the geometries with circular cross sec-
tions is -4.4, which is close to the slope of 100/(6π) , or 
-5.3, predicted from extended lubrication theory.

We used the equation of the fit lines to find a cor-
rection factor � for the series unidirectional approach 
that accounts for the three-dimensional nature of the 
flow, and we plotted the resulting predicted resistances, 
RSUA·� and RSUN·� , in Fig.  1d, with corresponding 
errors in Fig. 1e. We report the average and RMS error 
in Table 2. This correction factor reduces the error sig-
nificantly, by more than half for most of the geometries.

Discussion
We gained insight into those aspects of the 3D configu-
ration that result in errors in the series unidirectional 
approach by studying a circular duct with sinusoidally 
varying radius. We found that the error (between the 
series unidirectional approximation and the full 3D solu-
tion) is largest at locations where the second derivative 
of the radius with respect to the axial distance has maxi-
mum magnitude, or in other words, where the slope of 
the channel wall (relative to the central axis) is chang-
ing most rapidly. We used extended lubrication theory 
to define a correction factor for the series unidirectional 
approximation for a circular duct, and it agrees well with 
the full 3D simulations.

There is some error introduced by the discretization of 
the geometry, which is determined by the spatial resolu-
tion of the microscope images. For both the 2D and 3D 

Fig. 4 Error in resistance between the series unidirectional 
approximation and the three-dimensional solution for all 
cross sections, as a function of the second derivative of the cross 
sectional area with respect with the axial direction. Pale markers 
indicate values for individual cross sections. In the left panel, curves 
indicate the 5th (dashed), 50th (solid), and 95th (dashed) percentiles. 
In the right panel, solid lines show linear fits, and dashed lines 
indicate 95% confidence bounds. The error correlates strongly 
with the second derivative of the area for both the realistic 
and circular cross sections, though the correlation is slightly stronger 
for the circular cross sections. Across all normal cross sections, 
for the realistic cross sections the Pearson correlation coefficient ρ 
= − 0.49 and p value < 0.0001, and for the circular cross sections ρ 
= − 0.80, p < 0.0001.
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numerical simulations, we reduced the internal mesh size 
until the errors were quite small, but the external domain 
boundaries remained the same. The non-smooth varia-
tion of the resistance in the sinusoidal geometry is evi-
dence of this discretization error, which is accentuated 
when taking the numerical derivative of the pressure.

None of our simulations account for any increase in 
hydraulic resistance due to curvature of the centerline of 
a PVS. However, for these slow viscous flows this effect 
is generally very small and negligible. For duct flows in 
general, the contribution of off-axis flow components 
arising from centerline curvature is usually measured 
by the Dean number De, a dimensionless group relat-
ing inertial and centripetal forces to viscous forces in a 
flow: De ≡ Re

√
re/rc where Re is the Reynolds number, 

re ≡
√
A/π  is the radius of a circle with the same area, 

and rc is the radius of curvature of the vessel center-
line. Flows in pial PVSs have Reynolds numbers on the 
order of 10−3 [22], and these PVSs have cross-sectional 
areas of about 100 µm2 , or re ≈ 6 µm. In the PVS geom-
etries used in this work, the average value of rc is about 
400 µm and is rarely less than 100 µm. Therefore, pial 
PVSs are expected to have a maximum Dean number of 
De ≈ 2.5× 10−4 , and hence the contribution of center-
line curvature to the resistance is clearly negligible [23].

We constructed circular ducts with varying cross-
sectional area that matched the variation in area in the 
realistic geometries in order to determine how much the 
variation in shape along the duct affects the accuracy of 
the series unidirectional approach. One could imagine 
a duct that maintained nearly constant cross-sectional 
area, but where the cross-sectional shape changed from 
a circle to a square or a triangle. Depending on the rate 
of change, this change in shape alone could introduce 
significant off-axis velocity components and errors in 
the series unidirectional approach. In the realistic ducts, 
both the cross-sectional area and the shape vary in the 
axial direction, but in the circular ducts only the area var-
ies, so the difference in error between the two cases can 
be attributed to the change in shape. As evident in Fig. 1e 
and Table 2, the average and RMS error are comparable 
in the two types of ducts, and either one can be larger.

In the circular ducts, the non-axial velocity compo-
nents and the radial variation in pressure are axisymmet-
ric, but that does not necessarily minimize the error in 
the series unidirectional approach. One could imagine a 
situation where the change in area and shape occur only 
within a very narrow azimuthal range, such as at a sud-
den and narrow protrusion on one side of the duct. In 
this case, the error in the series unidirectional approach 
for the realistic geometry might be less than that in the 
circular geometry, because the effects causing the error 
are concentrated near a small portion of the boundary. 

For realistic PVSs, variations in shape and area do not 
necessarily induce significantly more error in the series 
unidirectional approach than does the variation in area 
alone.

For most practical applications, including modeling 
flow in PVSs, the total resistance R, rather than the local 
resistance per unit length R , is the quantity of interest. 
For 3D simulations, R can be calculated directly, but 3D 
simulations are computationally expensive and imprac-
tical for simulating flow through large systems of ducts 
like the glymphatic system. For the series unidirectional 
approach, R can be obtained by averaging R and mul-
tiplying by the length of the duct: the error is then the 
average resistance error given in Tables  2 and  3. The 
error in the series unidirectional approach for any single 
cross section is likely to be larger than the average error, 
as indicated by the RMS error, since the series unidirec-
tional approach sometimes overestimates and sometimes 
underestimates the resistance.

On average, the series unidirectional approach always 
underestimates the resistance in a realistic PVS because 
the non-axial velocity components generated by changes 
in duct area and cross section increase the shear rate at 
the wall. This is reflected in the nonzero constant term 
in the linear fit describing the error as a function of the 
second derivative of the area. The constant is much larger 
for realistic ducts than that for circular ducts, suggesting 
that the change in shape gives rise to the nonzero aver-
age error. The nonzero average error is present in the 
extended lubrication theory through the term contain-
ing the first derivative; this term is small compared to the 
second derivative, but generally nonzero when the sec-
ond derivative is zero.

The realistic ducts analyzed here were all derived from 
murine pial PVSs in the vicinity of the middle cerebral 
artery, and thus the error magnitudes and correction fac-
tors calculated here are most appropriately applied to 
estimate the error in neglecting off-axis flow velocities 
in PVSs in similar locations, since it is unclear how the 
shape of PVSs in other locations (and species) may dif-
fer. Further, the analysis here is only applicable to PVSs 
that are predominantly open, as pial PVSs have been 
shown to be [13], rather than filled with connective tis-
sue and porous, as penetrating PVSs are likely to be [14]. 
We describe in detail how porous PVSs can be treated in 
Appendix 1. However, one point can be extended to open 
PVSs in other locations and to any duct with low Reyn-
olds, Womersley, and Dean numbers and where the duct 
is much longer than it is wide: regardless of shape, the 
error in neglecting off-axis velocity components scales 
with the second derivative of the area with respect to 
axial distance, as we show with the lubrication approxi-
mation. This principle can be used to estimate the error 
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that arises from neglecting off-axis velocity components 
regardless of the shape of the duct, as long as the shape 
of the duct remains relatively constant. The exact cor-
rection factor may differ for differently shaped PVSs, but 
the existence of a scaling will translate. At present, it is 
unclear how much variation in shape exists in PVSs at 
other locations and across species, but we suppose that 
the error will in general scale with the second derivative 
of the area.

Additionally, we show that approach II typically has 
errors less than 10% as long at the ratio of the minor-
to-major axis is less than 0.7. We expect this would be 
true for a wide variety of mostly convex shapes so that 
approach II could likely be used to estimate the resistance 
in many types of PVSs that have a bi-lobed shape, and we 
suppose this would be true for pial PVSs in other regions 
and species. Approach II may not work as well for esti-
mating resistance in penetrating PVSs.

Conclusions
Assuming a uniform duct and neglecting off-axis veloc-
ity components underestimates the average resistance 
by as much as 15%, depending on the configuration. We 
gained insight into the aspects of the geometry that cause 
errors in the series unidirectional approach by studying 
a circular duct with sinusoidally varying radius, and we 
showed, using extended lubrication theory, that the error 
in a circular duct can be predicted based on the second 
derivative of the area with respect to the axial distance. 
We showed further that the error in approximating the 
resistance in realistic, non-circular ducts using the series 
unidirectional approach correlates strongly with the sec-
ond derivative of the area. We can predict this error, with 
a 95% confidence interval, based solely on this second 
derivative. We suggested a specific correction factor for 
the series unidirectional approach based on the second 
derivative that significantly reduces the error.

We approximated the series unidirectional resistance 
in four different ways that use considerably less computa-
tion power and find that they each predict the resistance 
reasonably well (errors comparable to those arising from 
neglecting off-axis velocity components), with little com-
putational cost. The first approach uses the resistance in 
a single cross section and the cross-sectional area along 
the length of the duct. The second approach yields a cor-
rection factor for ducts of arbitrary cross-sectional area. 
The third approach is based on the solution for an ellip-
tical duct, with a correction factor that is a function of 
the major-to-minor axis ratio. The fourth approach uses 
a correction factor based on the polar moment of inertia 
of the cross section. Of these four approaches, the second 
results in the smallest errors, on average.

Based on these results, we make the following recom-
mendations for estimating the hydraulic resistance in 
an actual PVSs, given its full 3D configuration, or a sin-
gle cross section. If the 3D configuration is known and 
resistance is to be predicted without solving the full 
3D Navier-Stokes equations, the series unidirectional 
approach (solve the 2D Poisson’s equation numerically 
for each cross section, the SUN solution) is a useful 
method, resulting in average errors on the order of 0 to 
20%, depending on the geometry. The error correlates 
with the second derivative of the cross sectional area, and 
generally |d2A/dz2| < 2 results in less than 20% error. If 
the axial area variation is known, the series unidirectional 
approximation can be improved with the � correction. In 
order to use less computational power than is required 
for solving Poisson’s equation numerically, approach II is 
a useful method, resulting in additional errors < ± 10%, 
as long as the minor-to-major axis ratio of the ellipse 
with the same second moment as the cross sectional 
shape is less than 0.7.

Appendix 1: Flow and hydraulic resistance 
in porous perivascular spaces
Here we consider PVSs that contain enough connecting tis-
sue that they can be treated as a porous medium, with CSF 
flow governed by the Darcy equation. Little is currently 
known about the detailed configurations of these PVSs, so 
here we just present a method of calculating the hydraulic 
resistance in anticipation of better data becoming available 
with improved in vivo imaging techniques. To simplify the 
analysis, we assume that the size and shape of the cross sec-
tion vary slowly along the PVS, in which case the non-axial 
components of velocity make a negligible contribution to 
the resistance, the axial flow velocity is essentially uniform 
over the cross section, and the hydraulic resistance per unit 
length depends only on the area of the cross section.

Consider a PVS in the form of an annular tube whose 
cross section varies along the tube. Let z be an axial cur-
vilinear coordinate running along the tube, and let A(z) 
denote the varying internal cross-sectional area of the tube. 
In this case, the Darcy law for steady flow along the tube 
has the differential form

where Q is the constant volume flow rate, κ is the per-
meability, µ is the dynamic viscosity, and p(z) is the pres-
sure, which varies long the tube. Note that the pressure 
gradient ∂p/∂z (and hence the hydraulic resistance per 
unit length) varies inversely with the cross-sectional area 
A(z). Now consider a finite section of this PVS of length 

(51)Q = − κ

µ

(

∂p

∂z

)

A(z),
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L, running from z = 0 to z = L . The total pressure drop 
�p along this section is given by

If we define an effective cross-sectional area Aeff by the 
relation

then the total pressure drop �p is given by

which is the same as the pressure drop along a uniform 
tube of constant cross-sectional area Aeff . For an actual 
PVS segment, if we have experimental data from which 
we can construct an approximate relation A(z) for the 
varying cross-sectional area, then we can calculate Aeff 
by numerical integration, which will then give us the 
pressure drop �p and the total hydraulic resistance R of 
the segment,

Note that the total hydraulic resistance of the PVS seg-
ment depends only on its geometrical configuration (its 
length L and effective cross-sectional area Aeff ), its per-
meability κ , and the viscosity of the flowing CSF. Note 
also that in the definition of the effective cross-sectional 
area, the smallest values of A(z) (the narrowest parts of 
the PVS segment, where the flow is most constricted) 
contribute the most in determining Aeff and hence the 
hydraulic resistance R.

If the permeability κ varies significantly along the PVS 
segment, we can account for this in estimating the hydrau-
lic resistance. Supposing that the permeability varies as 
κ(z) , equation (52) can be replaced by the relation

which can be evaluated for experimental data by numeri-
cal integration.

As a simple model, consider a tube of length L with a cir-
cular annulus cross section, having a uniform inner radius 
r0 (representing the surface of the blood vessel) and an 
outer radius that varies uniformly from r1 at the entrance 
( z = 0 ) to r2 at the exit ( z = L ), i.e., r(z) = r1 − αz , where 
α = (r1 − r2)/L . In this case the effective cross-sectional 
area is

(52)

�p = −[p(L)− p(0)] = −

∫ L

0

(

∂p
∂z

)

dz =
µQ
κ

∫ L

0

dz
A(z)

.

(53)
1

Aeff

≡ 1

L

∫ L

0

dz

A(z)
,

(54)�p = µQ

κ

L

Aeff

,

(55)R ≡ �p/Q = µ

κ

L

Aeff

.

(56)�p = Qµ

∫ L

0

1

κ(z)A(z)
dz,

Note that this expression holds for both r1 > r2 (narrow-
ing tube) and r1 < r2 (expanding tube), corresponding to 
the reversibility of the direction of Darcy flow. It can be 
shown that this expression for Aeff has the limiting form 
Aeff = π(r21 − r20) when r2 = r1 , i.e, the effective cross-
sectional area is equal to the actual cross-sectional area 
in the case of a uniform annular tube.

To illustrate simply how the narrowest parts of a tube 
contribute most to its hydraulic resistance, suppose the 
inner tube of the annulus is absent, i.e. r0 = 0 , in which 
case the effective cross-sectional area is given directly by

and it can be shown that the expression (57) for Aeff of 
the annular tube has this limiting form for r0 → 0 . Note 
that this effective area is the same as that of a uniform 
tube of radius equal to the geometric mean √r1r2 of r1 
and r2 . The geometric mean radius √r1r2 is always less 
than or equal to the arithmetic mean radius (r1 + r2)/2 , 
which in turn is always less than or equal to the quadratic 
mean radius 

√

(r21 + r22)/2 , i.e.,

Thus, the effective cross-sectional area Aeff = πr1r2 of 
the tapering tube is always less than the cross-sectional 
area Am = π [(r1 + r2)/2]2 of a uniform tube with the 
arithmetic mean radius (r1 + r2)/2 , which in turn is less 
than the cross-sectional area Aqm = π(r21 + r22)/2 of a 
uniform tube with the quadratic mean radius 
√

(r21 + r22)/2 . (Note that Aqm is the average of the areas 
at each end of the segment.) Hence, Aeff ≤ Am ≤ Aqm , 
and the hydraulic resistances are correspondingly 
ordered Reff ≥ Rm ≥ Rqm . (The equal signs correspond 
to the case r1 = r2 .) This simple example shows the domi-
nating effect of the narrowest sections of a porous PVS in 
determining its hydraulic resistance.

Returning to the case of the annular tube, the hydraulic 
resistance is given by

Now consider an annular tube consisting of a continuous 
sequence of segments of uniformly varying outer radius, 
for which the total hydraulic resistance will be the sum of 
the resistances of the individual segments (analogous to 

(57)

Aeff =

[

∫ L

0

dz
π(r0 − αz)2 − r20

]−1

=
2πr0(r1 − r2)

ln
[(

r1−r0
r1+r0

)(

r2+r0
r2−r0

)] .

(58)Aeff =
[
∫ L

0

dz

π(r1 − αz)2

]−1

= πr1r2,

(59)
√
r1r2 ≤ (r1 + r2)/2 ≤

√

(r21 + r22)/2 .

(60)
Reff =

µ

κ

L
Aeff

=
µ

κ

L
2πr0(r1 − r2)

ln
[(

r1 − r0
r1 + r0

)(

r2 + r0
r2 − r0

)]

.
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electrical resistors in series). Suppose the tube starts with 
outer radius r1 , and consists of N segments with lengths 
Ln , entry radii rn , and exit radii rn+1 , n = 1, 2, 3, ...,N  . The 
hydraulic resistance of the nth segment is

and the total hydraulic resistance of the tube is 
R =

∑N
1 Rn . This model can be used to estimate the 

hydraulic resistance of a real porous PVS if we approxi-
mate its configuration as a connected series of circular 
annular segments of uniformly varying outer radius. The 
PVS may not have a circular outer boundary, but we can 
choose outer radii of the segments so that the areas of the 
ends of each segment match the actual local cross-sec-
tional area of the PVS. This model can be easily extended 
to a case in which the porosity varies along the PVS, by 
allowing for different values κn in equation (61).

Appendix 2: Velocity and pressure in the extended 
lubrication model
The derivation that follows can be deduced from the 
solution for an elliptical duct [18] and the presentation of 
the general extended lubrication theory for a 2D channel 
[19].

To obtain the transverse velocities u0 , v0 , we combine 
the 2nd order x and y momentum equations (Eqs.  35 
and 36) to eliminate p2:

For this to be satisfied, 
(

∂2

∂x2
+ ∂2

∂y2

)

u0 must be a function 
only of x (or a constant), and similarly, 

(

∂2

∂x2
+ ∂2

∂y2

)

v0 
must be a function only of y (or a constant). Moreover, u0 
and v0 likely have a similar form as the axial velocity w0 
and must also satisfy no-slip on the boundary. These con-
ditions are satisfied by

(61)

Rn =
µ

κ

Ln
2πr0(rn+1 − rn

) ln
[(

rn − r0
rn + r0

)(

rn+1 + r0
rn+1 − r0

)]

,

(62)
∂

∂y

((

∂2

∂x2
+

∂2

∂y2

)

u0

)

−
∂

∂x

((

∂2

∂x2
+

∂2

∂y2

)

v0

)

= 0.

and by enforcing continuity we find

Next we can solve for the second-order pressure p2 by 
integrating the x and y momentum equations:

where C1(z) is a function to be determined later. We can 
then obtain the second-order axial velocity w2 from the 
z-momentum equation

By inspection, the right-hand side of this equation is 
a function of x2 and y2 , so we can guess that w2 has the 
general polynomial form

Substituting this expression in the momentum equation 
and collecting like terms, we can solve for the constants 
Dn to yield

where

u0 = k1x
(

−1+
(x
b

)2
+

(y
c

)2
)

,

v0 = k2y
(

−1+
(x
b

)2
+

(y
c

)2
)

,

(63)u0 =− 2Q

π

b′

b2c
x

(

(x

b

)2
+

(y

c

)2
− 1

)

,

(64)v0 =− 2Q

π

c′

bc2
y

(

(x

b

)2
+

(y

c

)2
− 1

)

.

p2 = C1(z)µ−
2Qµ

πbc

(

c′y2

c

(

3
c2

+
1
b2

)

+
b′x2

b

(

3
b2

+
1
c2

)

)

,

µ

(

∂2

∂x2
+ ∂2

∂y2

)

w2 =
∂p2

∂z
− µ

∂2w0

∂z2
.

w2 =

(

(x
b

)2
+

( y
b

)2
− 1

)

(

D1 + D1x2 + D2x4

+D3y2 + D4y4 + D5x2y2
)

.

w2 =
K

πbc

(

1− x2

b2
− y2

c2

)

,

K

Q
=− 4b5cb′c′ + 8b3c3b′c′ + 4bc5b′c′ + 20b2c4b′2 + 4c6b′2 + 4b6c′2 + 20b4c2c′2

2
(

7b4c2 + 7b2c4 + b6 + c6
) − b56πc5 + b3πc7 + πb7c3

2Q
(

7b4c2 + 7b2c4 + b6 + c6
)C ′

1+

−8b2c3b′c′ − 3c5b′c′ − b4cb′c′ + bc4
(

2b′2 + cc′′ − 2c′2
)

+ b5
(

cc′′ − 4c′2
)

+ 6b3c2
(

cc′′ − 4c′2
)

bc2
(

6b2c2 + b4 + c4
) y2

+
2b4c

(

c′2 − b′2
)

− 24b2c3b′2 − 4c5b′2 + b5
(

cb′′ − 3b′c′
)

+ 2b3c2
(

3cb′′ − 4b′c′
)

+ bc4
(

cb′′ − b′c′
)

b2c
(

6b2c2 + b4 + c4
) x2.
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Finally, we obtain C ′
1(z) by applying the integral 

constraint

to find

which must be integrated numerically to obtain C1(z) . 
We then have a complete expression for the second-order 
pressure gradient, Eq. 38.

The integral constraint assumption. In our solution, 
we have assumed that the 0th order flux Q0 dominates 
the total flux Q, such that the second order flux Q2 is 
negligible:

and

We can justify that Q2 ≪ Q0 by referring to Equation 37. 
In this equation, all of the terms are of equal order, so 
comparing the 2nd and 3rd terms

and since w0 ∼ Q0 and w2 ∼ Q2,

and hence Q2/Q0 ∼ b0c0/L
2 , which is small for long, nar-

row ducts.

(65)0 = 4

∫ c

0

∫ b
√

1−(y/c)2

0

w2 dx dy

C ′
1(z) =

Q
3πb4c4

(−3c4b′c′ + b3c
(

−2b′2 + cc′′ − 14c′2
)

+ bc3
(

−14b′2 + cc′′ − 2c′2
)

+ b4
(

cb′′ − 3b′c′
)

+ b2c2
(

cb′′ − 6b′c′
)

),

(66)Q0 = 4

∫ c

0

∫ b
√

1−(y/c)2

0

w0 dx dy ≈ Q

(67)Q2 = 4

∫ c

0

∫ b
√

1−(y/c)2

0

w2 dx dy ≈ 0.

(68)
(

∂2

∂x2
+ ∂2

∂y2

)

w2 ∼
∂2w0

∂z2

(69)
Q2

b0c0
∼ Q0

L2

Appendix 3: Calculation of the hydraulic resistance
The pressure gradient in the calculations of hydraulic resist-
ance per unit length is calculated from the 3D simulations 
according to §3, which is a discretized approximation of

which is not equivalent to the quantity we calculate 
through lubrication theory (§ 4.1)

since it does not take into account the rate at which the 
area changes axially. We can show, however, that these 
are approximately equal, that is,

if the amplitude of the change in area is relatively small. 
We demonstrate this with the circular duct, whose radius 
varies as a(z):

The last term arises from the Leibniz rule, and takes into 
account a′(z) . The middle term is the quantity 〈∂p/∂z〉.

If the radius a can be expressed as a = a0(1+ δg(z)) , 
where δ ≪ 1 and g(z) is of O(1), then

(70)
d

dz

[

1

A

∫

A(z)
p dA

]

(71)
〈

∂p

∂z

〉

= 1

A

∫

A(z)

∂p

∂z
dA

(72)
d

dz

[

1

A

∫

A(z)
p dA

]

≈ 1

A

∫

A(z)

∂p

∂z
dA

(73)
d

dz

[

1

A

∫

A(z)
p dA

]

= d

dz

[

2

a2

∫ a(z)

0

pr dr

]

(74)=2

[

d

dz
(a−2)

∫ a(z)

0

pr dr + a−2 d

dz

∫ a(z)

0

pr dr

]

(75)

= 2

[

−2a−3a′
∫ a(z)

0
pr dr

+a−2

(

∫ a(z)

0

∂p
∂r

r dr + (pr)|a(z)a′
)]

.

(76)

d
dz

[

1
A

∫

A(z)
p dA

]

=

〈

∂p
∂z

〉

+ 2a′
[

−2a−3
∫ a(z)

0
pr dr + a−1p|a(z)

]

.

(77)d

dz

[

1

A

∫

A(z)
p dA

]

≈
〈

∂p

∂z

〉

+ 2a0δg
′
[

−2(1− 3δg + O(δ2))

a30

∫ a(z)

0

pr dr + a−1
0 (1− δg + O(δ2))p|a(z)

]
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