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Fluids and Barriers of the CNS

Blood–brain borders: a proposal to address 
limitations of historical blood–brain barrier 
terminology
Jerome Badaut1,2*, Jean‑François Ghersi‑Egea3*, Robert G. Thorne4,5* and Jan Pieter Konsman6* 

Abstract 

Many neuroscientists use the term Blood–Brain Barrier (BBB) to emphasize restrictiveness, often equating or reduc‑
ing the notion of BBB properties to tight junction molecules physically sealing cerebral endothelial cells, rather 
than pointing out the complexity of this biological interface with respect to its selectivity and variety of exchange 
between the general blood circulation and the central nervous tissue. Several authors in the field find it unfortu‑
nate that the exquisitely dynamic interfaces between blood and brain continue to be viewed primarily as obstruc‑
tive barriers to transport. Although the term blood–brain interface is an excellent descriptor that does not convey 
the idea of a barrier, it is important and preferable for the spreading of an idea beyond specialist communities to try 
to appeal to well‑chosen metaphors. Recent evidence reviewed here indicates that blood–brain interfaces are more 
than selective semi‑permeable membranes in that they display many dynamic processes and complex mechanisms 
for communication. They are thus more like ‘geopolitical borders’. Furthermore, some authors working on blood–
brain interface‑relevant issues have started to use the word border, for example in border‑associated macrophages. 
Therefore, we suggest adopting the term Blood–Brain Border to better communicate the flexibility of and movement 
across blood–brain interfaces.
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Introduction
The word “barrier” is derived from the Old French ‘bar-
rière’, denoting a palisade or fortification defending an 
entrance, and generally refers to a natural or a man-made 
structure that blocks movement or access. Accordingly, 
definitions of barrier include words such as ‘barricade’, 
‘entrenchment’, and ‘boundary’ (Samuel Johnson Dic-
tionary), phrases such as ‘fence or material obstruction’ 
(Oxford English Dictionary) or, alternatively, ‘a natural 
formation or structure that prevents or hinders move-
ment or action’ (Merriam-Webster). While most of the 
above descriptions are more or less limited to a binary 
interpretation of a barrier as either being intact or bro-
ken, the last description, in referencing the concept of 
hindrance, appears to leave room for some selectivity of 
movement. Interestingly, the authors who first coined 
the term “hemato-encephalic barrier” (translated from 
French) importantly considered it “to play the role of a 
… selective barrier” [1]. Decades later, the advent of elec-
tron microscopy favored a view that came to consider the 
blood–brain barrier in large part as an ‘unbroken belt’ 
of tight junctions between adjacent cerebral endothelial 
cells, even though it was appreciated that certain small 
molecules, such as glucose, must be able to pass through 
via ‘special transport mechanisms’ [2]. Indeed, common 
usage in present day biology most often emphasizes the 
restrictiveness of the blood–brain barrier, equating or 
reducing the notion of barrier properties to tight junction 
molecules physically sealing cerebral endothelial cells, 
thus presenting the brain endothelium as a more or less 
homogenous ‘palisade’ that fails to capture its true selec-
tivity, variety and complexity.

Authors active in the blood–brain barrier field, includ-
ing Bill Banks, Ian Galea, Hugh Perry, and Aravinthan 
Varatharaj have expressed reservations [5–7, 122] that 
these exquisitely dynamic interfaces between blood and 
brain, capable of important adaptations and plasticity 
over the life span, continue to be considered by many 
neuroscientists and others in the wider scientific com-
munity primarily with respect to the blocking aspects of 
barrier properties. Another impediment to the usefulness 
of the blood–brain barrier concept in mainstream usage 
is that it overlooks the fact that exchanges between the 
blood and the brain occur not only across the extensive 
surface area of the brain’s blood vessels, but also at sev-
eral other important anatomical sites (Fig.  1). It is also 
increasingly apparent that there is significant variation 
in brain endothelial cell properties at different sites along 
the brain’s blood vessels, e.g. single cell transcriptomics 
studies have shown dramatic variation in cellular protein 
expression patterns at different points along the cerebro-
vascular tree, a notion referred to as brain endothelial 
arteriovenous zonation [3]. Accordingly, the numerous 

contact points between the blood and the CNS are there-
fore quite complex and varied; far from being a simple, 
single type of interface, they actually include a number 
of unique, heterogeneous interfaces that allow for many 
different types of communication and exchange with the 
rest of the body. Several excellent reviews have recently 
pointed out the limitations of standard blood–brain bar-
rier terminology and have proposed the adoption of a 
more neutral and descriptive concept, e.g. blood–brain 
interfaces [4–7]. We would like to suggest a new concept 
that uses the geopolitical metaphor of ‘border’ to better 
capture properties of these important biological inter-
faces and more easily allow other scientific domains to 
grasp their essence.

Taking into account the selective, dynamic and adap-
tive aspects of the blood–brain interfaces together with 
inspiration from the domain of political philosophy [8], 
we believe that the notion of a ‘border’, rather than that 
of a ‘barrier’, better captures the properties of these inter-
faces. We will review the importance of passive diffu-
sion, transport systems, perivascular cell dynamics and 
immune cell traffic between blood and brain and argue 
in favor of the concept of a blood–brain border to replace 
that of a blood–brain barrier.

Restricting properties of the brain barriers

“The wall is the rule … that unifies all of the various 
divided subgroups into a higher unity while at the 
same time retaining the partition fences and organ-
izing them into bricks.” [8], p. 65).

The discovery and functional characterization of the 
tight junctions have been a major advance in the under-
standing of blood–brain interface ‘fence-wall’ functions, 
but at the same time acknowledgment of brain permea-
tion to endogenous molecules was thus mainly reduced 
to the ‘exception’ of specific transport systems for glucose 
and essential amino acids. Indeed, when the barrier prop-
erties of the blood–brain interface(s) preventing intrave-
nously-injected molecules to enter the brain parenchyma 
via paracellular diffusion were observed with electron 
microscopy to coincide with that of so-called tight junc-
tions between adjacent cerebral endothelial cells [2, 9, 
10], choroid plexus epithelial cells [11], and outer arach-
noid epithelial cells [12], the idea of selectivity was put in 
the background, at least temporarily. Indeed, during the 
second half of the twentieth century, work on the blood–
brain barrier in relation to tight junctions [10, 13, 14] 
somewhat downplayed barrier selectivity concepts that 
had been elaborated half a century earlier [1]. The notion 
of selectivity was then gradually reintroduced when sev-
eral molecules, including hormones, were shown to be 
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transported across the blood–brain interface (see for 
early reviews [15–17]).

Against this historical background, it is not surpris-
ing that brain barriers have initially been viewed only 
as a physical hindrance to therapeutic drug diffusion 
into the brain. For a long time, the permeability of the 
blood–brain barrier to a pharmacological compound was 

considered to dependent simply on the size of the mol-
ecule and its ability to cross the cell membranes. Hence, 
many past efforts from pharmaceutical companies to 
develop CNS drugs were targeted toward the develop-
ment of small molecules and structural modifications 
were oriented toward an increase in the lipophilicity 
of the compound. Once efflux transport proteins were 

Fig. 1 Illustration of key borders between the blood and brain and between the blood and cerebrospinal fluid (CSF). Blood–brain border 
(neurovascular unit): cerebral endothelial cells in the parenchyma of the brain contain tight junctions and express numerous transporters 
and receptors that regulate the transfer of substances between the blood and brain (upper right), as shown by the following examples: Efflux 
transporters (e.g. P‑glycoprotein, ABCB1; breast cancer resistance protein, ABCG2) prevent brain entry of many circulating endogenous substances 
as well as xenobiotics (drugs). The glucose transporter 1 (GLUT1, SLC2A1) and transferrin receptor (TfR, CD71) mediate brain homeostasis of glucose 
and iron, respectively, through the uptake of circulating glucose and iron‑bound transferrin. The major facilitator superfamily domain containing 
2a (MFSD2A) is a fatty acid transporter that is specifically expressed in CNS endothelial cells; MFSD2A also serves an important role in inhibiting 
clathrin‑independent caveolae‑mediated transcytosis [37, 38]). Outer blood‑CSF border (meninges): outer arachnoid epithelial border cells contain 
tight junctions and express numerous transporters and receptors (not shown) that potentially assist in the regulated transfer of substances 
between the blood and extraventricular CSF (bottom right). Inner blood‑CSF border (choroid plexus): choroid plexus epithelial cells contain tight 
junctions and express numerous channels, transporters, receptors and enzymes (not shown) that regulate the composition of CSF (bottom left). 
As examples, a finely tuned interplay between apically and basolaterally located inorganic anion transporters and channels is responsible for CSF 
production [39]. Transporters of the ABCC, SLC0, SLC21 families control CSF concentration of potentially deleterious endo and xenobiotics [4], 
helped by efficient enzymatic detoxification mechanisms [40]. The choroidal transport or secretion of growth factors, hormones and proteins 
into the brain participates in processes essential for brain development and homeostatic balance [33, 41]. Schematics based in part on several 
sources [12, 42–44]
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discovered at the blood–brain barrier, beginning with 
p-glycoprotein [18, 19], the notion of an absolute bar-
rier preventing even lipophilic drugs from entering the 
brain was further strengthened. The more recent devel-
opment of large molecules with therapeutic potential, 
e.g. peptides, antibodies, enzymes, oligonucleotides and 
other biologics, has forced a reevaluation of the mecha-
nisms allowing macromolecules to bypass the ‘barrier’ 
and, in the process, opened up new avenues for drug 
delivery into the brain [20]. Targeting brain endothelial 
cell-enriched receptors such as the transferrin receptor 
with antibodies has been pursued for decades [21–24]. 
More recently, engineered transport vehicles harnessing 
transferrin receptor-mediated transcystosis across brain 
endothelial cells [25, 26] have shown promise and are 
now under evaluation in the clinic for the treatment of 
mucopolysaccharidosis type II, a rare, inherited genetic 
disorder with frequently severe neurologic involvement 
(clinicaltrials.gov, NCT 04251026). All of this interest 
in CNS drug delivery has sparked a vast amount of new 
research towards a better understanding of blood–brain 
exchanges and their plasticity.

Despite widespread appreciation among specialists 
that many substances, including certain large hydro-
philic molecules, can in fact be transported across the 
cerebral endothelium, many reviews intended at non-
specialists have continued to focus predominantly on 
tight junction molecules between brain endothelial or 
epithelial cells [27, 28]. After relating the accumulation of 
circulating dyes at the levels of tight junction molecules, 
such reviews would typically state that the “tightness” of 
these junctions “is best reflected by their [high] electrical 
resistance” [27]. This measure of transendothelial or tran-
sepithelial electrical resistance (TEER) has today become 
a widely accepted quantitative technique to evaluate 
cell culture models of biological barriers, including the 
blood–brain barrier [29].

The barrier between the blood and the ventricular cer-
ebrospinal fluid (CSF), located at the epithelium of the 
choroid plexuses, is often qualified as more ‘leaky’ than 
the blood–brain barrier. Among the reasons put forward 
are the ability of the epithelium to secrete fluid, along 
with a reportedly low TEER (~ 150 Ω·cm2 in bullfrog; 
[30]) as compared to what has been measured across 
endothelial cells of pial blood vessels (~ 1500–2000 
Ω·cm2; [31, 32]). However, these particularities are not 
the result of mere loose tight junctions. The word ‘leaki-
ness’ does not do justice to the multiple channels, carri-
ers, and receptor-mediated transcytosis systems that are 
active at the blood-CSF barrier. Rather, it is likely that 
multiple highly regulated and energy-demanding mecha-
nisms (necessitating a high mitochondrial activity), along 
with higher rates of vesicular trafficking, explain the fluid 

secretion and particular border functions of the choroi-
dal epithelium. While choroidal epithelial cells display 
efficient tight junctions that hinder water-soluble com-
pounds from reaching the CSF by a paracellular path, 
they also allow regulated transcellular transport and 
secretion of a variety of nutrients, hormones, cytokines, 
and other plasma components through mechanisms that 
often differ from those at the blood–brain barrier proper 
[33]. For example, it has long been appreciated that 
small amounts of numerous circulating plasma proteins 
may efficiently access the CSF, with CSF:serum ratios 
that drop with protein molecular weight [34], and that 
selected epithelial cells are dedicated to the blood-CSF 
transfer of plasma proteins [35, 36].

Flexibility of the blood–brain interfaces

“The first port wall is the transport wall, which regu-
lates the circulation ….” [8], p. 81)

“The Romans were the closest to achieving this kind 
of port at Hadrian’s Wall. The primary function of 
Hadrian’s Wall was not to defend against barbarian 
invasion, but to regulate the ports of entry into the 
empire and collect taxes from those who wanted to 
pass across its numerous gates built at each milecas-
tle.” [8], p. 86)

The importance of the selective trading/exchange at the 
borders between the central nervous system tissues and 
the blood stream is well illustrated by the idea of multiple 
gates allowing for exchanges of different nature between 
blood and brain, and by the differentially-expressed 
transport proteins at these borders contributing to selec-
tive influx and efflux of substrates in and out of the cen-
tral nervous system (Fig. 1).

In addition, the dynamics and plasticity of blood–brain 
interfaces are lifelong phenomena that are observed as 
early as the brain is developing. For example, it is well 
established that many amino acids and metabolically-
active compounds are transported into the developing 
brain at much higher rates than into the adult brain [45]. 
This observation is consistent with the greater metabolic 
demand of the developing brain and is due to regulated 
transport, even though some authors have incorrectly 
suggested that greater uptake may be due to a leaky 
and/or immature blood–brain interface [46]. The latter 
idea seems to be based, in part, on a widespread mis-
taken belief regarding ‘immaturity’ of blood–brain bar-
rier properties [47]. With respect to an elevated need 
for amino acids during brain development, it is not sur-
prising that recent work has shown higher expression 
of many specific transporters at blood–brain interfaces 
of the cerebral endothelium and choroid plexuses in 
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neonatal animals as compared to adults [48, 49]. Many 
members of the solute carrier (SLC) superfamily trans-
porters are expressed at higher levels in the developing 
brain compared to the adult, thus accounting for the 
earlier observations of higher entry of specific amino 
acids into the developing brain [50]. The need for higher 
expression of some transporters in relation to metabolic 
demand should be considered against the background 
that nascent blood vessels express tight junction mol-
ecules that impair paracellular diffusion at the moment 
they initially grow into neural tissue, i.e. ‘barrier’ proper-
ties arise with the onset of vasculogenesis [51–54]. One 
way to interpret this phenomenon is that the blood–
brain interface adapts transport according to the need 
to ‘import’ certain substrates required for the adequate 
development and functioning of neural tissue.

Today, it is appreciated that many hormones and 
cytokines are selectively transported across the blood–
brain interface made up by tight-junction-expressing 
endothelial cells [55, 56] and that pro-inflammatory 
cytokines can signal across the blood–brain interfaces 
during systemic inflammation [57]. It is also acknowl-
edged that developmental stage-specific secretion or 
transport of trophic factors occurs at the blood-CSF bor-
der according to neural precursor needs [58], and that 
plasma-to-brain transport of circulating proteins may 
change with ageing [59, 60].

In addition to amino acids, hormones and cytokines, 
endothelial cells at the blood–brain interface can also 

regulate transport of energy substrates such as lactate 
and other monocarboxylates into and out of the brain 
by controlling expression of the monocarboxylate trans-
porter 1 (MCT1), e.g. increasing MCT1 expression when 
the organism is on a ketogenic diet in order to facilitate 
extraction of plasma ketone bodies by the brain [61, 
62]. Ketone bodies can be used as an energy substrate 
by the brain when a diet not containing any glucose is 
consumed such as during lactation. At the time of wean-
ing, expression of MCT on endothelial cells decreases in 
parallel with the shift to glucose use (Fig. 2). Regulation 
of transporters has also been demonstrated in the study 
of the effects of brain ischemia. This condition induces 
expression of the transcription factor hypoxia-inducible 
factor-1 (HIF-1) in brain endothelial cells, which, in turn, 
upregulates glucose transporter 1 (GLUT1) expression 
and thus facilitates the entry of glucose into the brain 
[63]. Hence, work spanning the last decades has greatly 
expanded our knowledge of regulated substrate trans-
port at the different interfaces between the blood and 
neural tissue. This type of regulation of substrate move-
ment is in many respects similar to what countries do 
with regards to import and export rules (e.g. Switzerland 
and E.U. countries) in order to sustain their economic 
activity despite the existence of borders with other coun-
tries. Trading and taxes on importation and exportation 
change over time for countries depending on their spe-
cific needs (Fig. 3).

Fig. 2 Illustration of the physiological adaptation of a number of transporters on brain endothelial cells with the transition from the use 
of the ketone bodies during lactation to that of mostly glucose after weaning. The endothelial cells adapt the number of monocarboxylate 
transporters (MCT in Blue) in function of the need of the energy substrate, with higher number of MCT during lactation to facilitate the ketone 
bodies to fuel the brain than in the adulthood with the use of glucose from the general blood circulation. It is similar to a country facilitating 
product importation in function of its needs (Fig. 3)



Page 6 of 12Badaut et al. Fluids and Barriers of the CNS            (2024) 21:3 

In brain endothelial cells, selective transporters facili-
tating the entrance of some substrates co-exist with ‘gate-
keepers’ that limit the entry of molecules that are toxic 
to neural tissue. Many of these ‘gatekeepers’ are part 
of the ATP-binding cassette (ABC) transporters, e.g. 
p-glycoprotein (P-gp; ABCB1). P-gp contributes to limit 
the entry of toxins into the CNS from the bloodstream 
as well as to the brain-to-blood clearance of beta-amy-
loid. Importantly, the level of expression of this trans-
porter decreases with ageing [64] and after a traumatic 
brain injury [65]. Decreased P-gp expression leads to 
increased transport of certain substrates across the bor-
der into the brain while efflux of beta-amyloid out of the 

brain decreases, with resulting detrimental effects to the 
CNS microenvironment [65, 66]. This situation further 
illustrates how key properties of the blood–brain inter-
face may change over time. In contrast, increased brain 
endothelial P-gp expression has been demonstrated 
in a model of peripheral inflammatory pain, and this 
mechanism may participate to the reduced efficacy of 
morphinic analgesic drugs by reducing their delivery to 
the central nervous system [67]. Interestingly, the level 
of P-gp expression in endothelial cells appears to be be 
under the control of Caveolin-1, a key scaffolding/traf-
ficking protein that is composed of plasmalemmal cho-
lesterol and sphingolipid-rich raft subdomains that take 
part in endocytosis of caveolae, which, in turn, control 
transcellular permeability of this blood–brain inter-
face [37, 68]. The clathrin-coated caveolar membranes 
can contain receptors for transferrin, insulin, albumin, 
ceruloplasmin, RAGE, LDL, LRP1, HDL, interleukin- 1, 
and vesicle-associated membrane protein-2 [69], which 
strengthens the idea that transcytosis across the endothe-
lial blood–brain interface occurs only under the control 
of specific receptors, a situation not unlike what occurs 
at the borders between countries. Although studies of 
transcytosis across the blood-CSF interfaces are more 
limited, it has emerged that transcytosis pathways are 
typically receptor-mediated and highly regulated also 
at these sites [70]. These, as well as the efflux processes 
clearing the CSF from deleterious metabolites, call upon 
carriers and receptors that differ from those present at 
the cerebral endothelium (Fig.  1), illustrating the func-
tional complementarity of the different ‘check points’ 
along blood–brain borders.

With these examples, it becomes clear that the blood–
brain interfaces are genuinely complex molecular 
machineries. And just as country borders evolve over 
time, blood–brain borders also change throughout life 
depending on both physiological and pathophysiological 
conditions.

Surveillance at the blood–brain borders

“Like all border limits, the territorial wall does not 
define a permanent or fixed place, but a defensive 
buffer zone or supply line that retraces the military 
march.” [8], p. 79)

The CNS has long been considered to be an immune-
privileged site within the body. However, this idea 
has often been translated to the brain being immune-
deprived as many prototypical immune cells, such as 
T-cells and dendritic cells, were only sporadically found. 
Moreover, in the mind of many scientists and clinicians 
the idea of a blood–brain barrier implied that no immune 

Fig. 3 Schematic Illustration of the trade between Switzerland 
and E.U. with changes and adaptations over time depending 
on the needs of each partner. The supply exchange at the custom 
border is controlled and selective with potential taxes fixed (before) 
by the partners
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cells could enter the CNS [71, 72]. In this part, the emer-
gence of the idea that immune cells enter the CNS even 
in the absence of blood–brain barrier ‘breakdown’ will 
be developed [73, 74]. Here, the case will be made that it 
makes heuristically more sense to try and articulate the 
military-inspired metaphors for immune cells [73, 74] 
with a border, rather than with a barrier metaphor for the 
blood–brain interface.

Activated T-lymphocytes, regardless of their antigen 
specificity, have long been known to cross the blood–
brain interfaces and enter the brain [33, 75, 76]. They 
have been proposed to take part in patrolling and surveil-
lance of the CNS [77–80], even though they do not nor-
mally leave the interconnected perivascular/CSF spaces 
[81]. Interestingly, astrocytes have been proposed to form 
borders with their endfeet along all perivascular spaces 
and meninges that separate immune-cells from neuronal 
tissue and to restrict CNS parenchymal access of leuko-
cytes and hence inflammatory responses [82]. For these 
T-cells to exert action, they need to be presented with 
antigen. Although dendritic cells, as professional antigen-
presenting cells are scarce in the CNS, some resident 
brain cells have the capacity to present antigen. Among 
these, perivascular and meningeal myeloid cells, together 
with the choroidal macrophages, are part of fully func-
tional macrophages situated at the different blood–brain 
interfaces [83–88], in contrast to brain parenchymal 
microglia that require several hours of activation time 
before they display macrophages characteristics, such 
as phagocytosis. Interestingly, in recent publications, 
perivascular macrophages have also been referred to 
as “border-associated macrophages” (BAMs) [89–91]. 
Given that perivascular, meningeal and choroid plexus 
macrophages have many cell markers in common [88], 
it would make sense to refer to all of these cells as “bor-
der-associated macrophages”, the idea of border being 
introduced in order to illustrate patrolling of cells along 
the endothelial or epithelial layer which can be viewed as 
gates to the brain.

Brain perivascular macrophages are thought to consti-
tute a ‘line of defense’ through phagocytosis of particles 
present in the perivascular space and to play a role in 
immune surveillance [85, 92–94]. Both phagocytosis and 
immune surveillance may be facilitated by the continu-
ous retraction and protraction of macrophage processes 
along blood vessels [95], like ‘patrols guards’ present at 
the ‘border gate’. In addition to brain perivascular mac-
rophages, it will also be interesting to elucidate the func-
tion of meningeal macrophages and their relationship to 
the lymphatic vessels that have been described within 
the dura mater [96, 97]. Finally, the particular immune 
cell content and distribution within the choroidal tis-
sue deserve mention. Dendritic cells and macrophages 

are located on the blood side within the choroid plexus 
stroma, while macrophages (Kolmer cells) can be found 
attached to the epithelium on the CSF side (Fig. 1). Each 
of these cell types can also be interpreted as and likened 
to patrol guards on different sides of a border with com-
munication occurring between both sides. Indeed, this 
organization might be related to the controlled traffic of 
both acquired and innate immune cells occurring at this 
interface both during neuroimmune surveillance and in 
pathological situations [33, 98–100].

In crisis situations, brain meningeal and perivascu-
lar macrophages have been shown to be protective in 
a model of bacterial meningitis and this may be related 
to their role in promoting the recruitment of circulat-
ing leukocytes [101]. Depletion of meningeal and brain 
perivascular macrophages also decreases the clearance of 
extracellular fibrinogen in the meninges after mild trau-
matic brain injury indicating that these cells play a role in 
wound healing [102]. However, the role of meningeal and 
brain perivascular macrophages in granulocyte recruit-
ment and in the increase of the permeability of pial and 
cortical blood vessels does contribute to neurological 
dysfunction during the acute phase of ischemia/reperfu-
sion [89].

These findings indicate that meningeal, choroidal 
and brain perivascular macrophages are important in 
response to acute infection and brain injury [94]. The 
roles that these brain macrophages play, in addition to 
their strategic positioning in what can be considered to 
be defensive buffer zones along blood–brain interfaces, 
fully justifies the name border-associated macrophages 
and further encourages us to consider these interfaces 
as biological borders. It is, however, important to keep 
in mind that just like some changes in endothelial cell 
properties can be beneficial to functioning of the neuro-
vascular unit whereas other modifications can contribute 
to the pathophysiology of CNS diseases, some changes in 
brain border macrophages may also turn out to be ben-
eficial for cerebral function.

Why ‘border’ would be a better metaphor 
than ‘barrier’ to convey the complexity 
of the blood–brain interface
Experimental scientist often tend to think that words 
have little importance and that all matters are observa-
tions and measures. It is, therefore, key to point out that 
metaphors are present in science, including in immunol-
ogy and neuroscience, and often serve to communicate 
ideas not only between different fields and disciplines of 
science, but also towards a lay audience. However, a met-
aphor used to communicate scientific ideas may be more 
or less heuristically useful, valid or relevant and these 
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questions have given rise to a lot of debate [103–105]. 
One common position in such debates is the recom-
mendation to stop using a metaphor because “outdated 
metaphors may limit scientific inquiry and contribute 
to public misunderstanding” [106]. With this in mind, 
the recent proposal by some authors of the descriptive 
blood–brain interface rather than the metaphoric blood–
brain barrier [5, 6] is a welcome step forward.

It is however important to consider “the explanatory 
function of metaphor” [107], p. 157) in that a “metaphor 
has the power to further the students’ understanding of 
the scientific concept at hand” [108], p. 89). More broadly 
speaking, metaphors can help to motivate and mobilize 
certain resources as well as to influence the direction of 
research programs [109]. For example, and as alluded to 
above, military-inspired metaphors are widely used for 
immune cells. Numerous metaphors are being used to 
try and characterize our understanding of brain structure 
and function [110, 111]. Interestingly, the metaphor of 
the brain as a fortress or castle that has to be opened is 
often used [111]. Although, the sense in which fortress is 
used for the brain is mostly that of a black box containing 
secrets that need to be rendered visible, it is neverthe-
less interesting to relate this to the image of the brain as 
a castle, which has been employed to present the blood–
brain interface as the “two-walled castle moat surround-
ing the CNS castle” with endothelial cells as a first wall 
and astrocyte endfeet as a second wall [112, 113]. How-
ever, the idea of a two-walled castle moat still seems close 
to that of a barrier with the addition of the perivascular 
space as a place for cell circulation behind the first wall 
represented by endothelial cells. It misses the selectivity 
aspect of the initial definition given by Stern & Gautier 
of the term hemato-encephalic barrier. In contrast, the 
metaphor of a border seems to do justice to this selec-
tivity aspect of the blood–brain interface and is therefore 
worthwhile exploring.

As pointed out above, several recent publications have 
referred to meningeal and choroid plexus macrophages 
as border-associated macrophages [89–91]. Furthermore, 
the term border has repeatedly been used to describe the 
choroid plexus epithelium [114, 115] as well as the outer 
arachnoid epithelium (arachnoid border cells [12]. The 
idea to apply the metaphor of border to the blood–brain 
interfaces in addition to that of the blood-CSF interface is 
corroborated by the fact that several authors have already 
employed the word border to refer to the blood–brain 
barrier proper. For example, when considering strategies 
for delivery of molecules of therapeutic interest to brain 
tissue, a science writer relates how researchers “hope 
to find out how this border control manages to pick 
and choose which particles it lets through, in the hope 
that it will help drug designers to target the brain more 

effectively” [116]. Several review papers on immune cell 
extravasation in relation to the blood–brain interface 
refer to it as the “endothelial [cell] border” [117, 118] or 
“border structures” [119].

Any given border between countries is known to evolve 
over time, as demonstrated both by historical and recent 
examples, with changes in the ‘filtering capacities’ of a 
border in reaction to conflicts and trading agreements. A 
brain endothelial cell can modulate the level of expression 
of its transporters or transcytosis properties in response 
to changes in physiological and pathophysiological status 
[120, 121]. These adaptations show the flexibility and the 
dynamic complexity of blood–brain interfaces.

We believe it is also important to highlight that the 
word barrier is prone to generate misconceptions regard-
ing brain endothelial cell pathophysiology. For example, 
oft-used terms such as barrier disruption, barrier rup-
ture, barrier breakdown and barrier opening clearly do a 
disservice to the complex, multifaceted processes under-
lying dynamic changes in permeability at the blood–brain 
and blood-CSF interfaces. Indeed, it is well established 
that changes in permeability at the blood–brain inter-
faces may occur independently of the physical loss of 
tight junctions, and can be mediated by physiological 
responses regulating tight junction permeability as well 
as transcytosis, e.g. through increased formation of cave-
olae [121–123]. In this regard, we are convinced that the 
term border does more justice to the flexibility observed 
in the (patho)physiology of the blood–brain interface, 
while avoiding the negative connotation of disruption or 
rupture. It is also quite important to realize that changes 
in endothelial cell properties can be beneficial to the neu-
rovascular unit and its functioning.

Finally, the political philosophy reference we referred 
to throughout this article considers that the term bor-
der covers historical examples of wall-based enclosures 
[8]. However, the author aims “to reveal the mutable and 
arbitrary nature of … dominant border regimes” and 
“to interpret … them according to the very thing they 
are supposed to control: movement” [8], p. 5). It is our 
goal to try and transpose this idea to borders controlling 
movement of biological entities.

We hope that adoption of the border instead of 
the barrier as a metaphor to describe blood–brain 
and blood-CSF interfaces might stimulate new drug 
approaches to modulate the properties of CNS 
endothelial and epithelial layers or take advantage of 
endogenous systems rather than finding ways to’break 
the barrier’ to facilitate drug delivery to the CNS. 
Adoption of the border metaphor will acknowledge 
all the recent work describing the dynamic and plas-
tic nature of the blood–brain interfaces. The border 
metaphor may also be easily extended to a vast range 
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of other sites of contact between different CNS com-
partments, e.g. the ependyma within the ventricles, the 
pia-glia limitans at the brain surface, and the leptome-
ningeal cells forming the interface between the CSF and 
the perivascular fluid of subarachnoid blood vessels. 
For example, while the concept of a ‘barrier’ between 
the brain interstitial fluid and CSF strikes many as inac-
curate, there can be no debate that the pia-glia limitans 
and ependymal borders between brain and CSF regu-
late transport and exchange in complex ways that are 
only just beginning to be better understood [43]. Taken 
together, all of the different CNS borders can be appre-
ciated as unique and varied places of communication 
and exchange with the rest of the body.

Conclusion

“Borders … are neither statist, nor fixed, nor 
designed to stop human movement. Borders are not 
permeable membranes that people pass through. 
They are themselves mobile processes designed to 
redirect, recirculate, and bifurcate social motion-
not stop it.” [8], p. 221)

In summary, we have reviewed classic and more 
recent literature to make the point that the blood–brain 
interfaces should not be considered a simple physical 
barrier, but rather as a selective barrier as initially pro-
posed [1]. Although the term blood–brain interface is 
an excellent descriptor that does not convey the idea of 
a barrier, it is important and preferable for the spread-
ing of an idea beyond specialist communities to try to 
appeal to well-chosen metaphors. Recent knowledge 
shows that blood–brain interfaces are more than “per-
meable membranes” but also that “they are mobile pro-
cesses” and are thus more like “borders” in the sense of 
the recent “theory of the border” elaborated by Thomas 
Nail in political philosophy [8], p. 221). Furthermore, 
some authors working on blood–brain interface-rele-
vant questions have started to use the word border, for 
example in border-associated macrophages. Therefore, 
we believe that it is time to adopt the concept of mul-
tiple Blood–Brain Border (BBB) sites to reflect all the 
recent work describing the flexibility of and movement 
across membranes located between the CNS and the 
blood. To accompany this proposal to move from ‘bar-
rier’ to ‘border’, conference symposia and surveys will 
be organized.
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