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infection is now classified as a chronic, rather than fatal, 
disease, and the majority of affected individuals have 
manageable infections without AIDS development [1–3].

Early after infection, HIV-1 enters the central nervous 
system (CNS) [4] (Fig. 1A). While the mechanisms of this 
process are still not fully understood, the most likely is a 
“Trojan horse” mechanism via HIV-1 infected monocytes 
or T-cells, which act as carriers, allowing the virus to 
pass the blood-brain barrier (BBB) and infect cells of the 
CNS. Among the CNS cells, microglial cells, perivascular 
macrophages, astrocytes, and pericytes have been iden-
tified as possible reservoirs for HIV-1 [5–10]. Although 
the use of ART suppresses the replication of the HIV-1 
virus, the main limitations of this therapy arise due to 
limited ability to effectively bypass the BBB. In addition, 
antiretroviral drugs are being transported out of the 
brain parenchyma by transporter systems. This inability 
of ART to accumulate in the CNS contributes to HIV-1 
infection in the brain, the formation of viral reservoirs, 

Introduction
Human immunodeficiency virus (HIV-1) infection leads 
to a weakened immune system, causing people living 
with HIV-1 (PLH) to become susceptible to other patho-
gens. When the immune system becomes ineffective, an 
individual may develop acquired immunodeficiency syn-
drome (AIDS). In 2022, ~ 39  million people were living 
with HIV-1 and approximately 630,000 individuals had 
AIDS-related deaths. Since the start of the HIV-1 epi-
demic, tens of millions of people have died from HIV-1 
and AIDS-related complications [1]. Due to the devel-
opment of antiretroviral therapy (ART) in 1996, HIV-1 
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Abstract
Compromised structure and function of the blood-brain barrier (BBB) is one of the pathological hallmarks of brain 
infection by HIV-1. BBB damage during HIV-1 infection has been associated with modified expression of tight 
junction (TJ) proteins, including occludin. Recent evidence indicated occludin as a redox-sensitive, multifunctional 
protein that can act as both an NADH oxidase and influence cellular metabolism through AMPK kinase. One of 
the newly identified functions of occludin is its involvement in regulating HIV-1 infection. Studies suggest that 
occludin expression levels and the rate of HIV-1 infection share a reverse, bidirectional relationship; however, the 
mechanisms of this relationship are unclear. In this review, we describe the pathways involved in the regulation of 
HIV-1 infection by occludin. We propose that occludin may serve as a potential therapeutic target to control HIV-1 
infection and to improve the lives of people living with HIV-1.
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and the development of cerebrovascular comorbidities 
[11, 12].

Formed by endothelial cells (EC), astrocytes, neurons, 
pericytes and microglia cells, the BBB forms a highly spe-
cialized barrier that selectively divides the brain paren-
chyma from the systemic blood circulation [13]. One 
of the main structural features of the BBB is the pres-
ence of tight junctions (TJs) formed by transmembrane 
proteins, such as occludin, junctional adhesion mol-
ecules (JAMs), and claudins (Fig.  1B) that interact with 
TJ-associated proteins, such as the scaffolding proteins 
zonula occludens (ZO) 1 or 2. During HIV-1 infection, 
structural modifications of the BBB have been associated 
with changes in the expression of TJ proteins. Recently, 
occludin has attained additional importance, not only for 
its role in maintaining the integrity of TJs, but also for its 
influence on cellular metabolism and regulation of HIV-1 
infection [10, 14–16].

Occludin structure
Occludin was the first transmembrane TJ protein iden-
tified [17]. Occludin is a member of the TJ-associated-
MARVEL (Myelin/lymphocyte And Related proteins 
for VEsicle trafficking and membrane Link) proteins 
(TAMPs) family of TJ proteins containing a MARVEL-
motif which consists of four transmembrane helices [18, 
19]. Occludin is known as MARVEL D1, and additional 
proteins in this family are MARVEL D2 (tricellulin) and 
MARVEL D3 [20, 21]. Studies propose that the MAR-
VEL motif may be responsible for occludin dimeriza-
tion and localization to the basolateral membrane [18]. 
Although the MARVEL proteins have not been found to 
be essential to TJ formation, they appear to be important 
for maintaining the permeability properties of the BBB 
[22]. Although usually classified as being important to 
TJ assembly, function, and regulation, its various roles in 
cellular activities are unclear. For example, occludin-defi-
cient mice maintain normal paracellular permeability and 
normal TJs [23]. Occludin is a 65-kDa integral plasma 

Fig. 1 Blood Brain Barrier (BBB) in HIV-1 infected brain and occludin structure. (A) Schematic representation of CNS invasion by HIV-1. After in-
fecting leukocytes in the blood (monocytes and T-cells), HIV-1 can cross the BBB via the Trojan horse mechanism and infect various CNS cells, such as 
astrocytes, pericytes, and microglia cells. Moreover, brain infection by HIV-1 is associated with a disruption of the BBB integrity by altering tight junction 
(TJ) protein expression and function. (B) Schematic representation of the TJs formed by transmembrane proteins (e.g., occludin, claudins, and junctional 
adhesion molecules [JAM]). (C) Schematic representation of occludin structure, showing the domains and phosphorylation residues
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membrane protein containing 522 amino acids (aa) [17, 
24]; however, there is evidence of additional isoforms 
formed by alternative splicing [25]. Occludin exhibits dis-
tinct domains: (a) a long C-terminal cytoplasmic domain 
(257 aa); (b) four transmembrane domains, including 
TM1 (23 aa), TM2 (25 aa), TM3 (25 aa), and TM4 (22 
aa); (c) two extracellular loops, EL1 (46 aa), which is 
enhanced with tyrosine and glycine residues, and EL2 
(48 aa), which includes two cysteines; (d) one intracellu-
lar loop (10 aa); and (e) a short N-terminal cytoplasmic 
domain (66 aa) [16, 21] (Fig.  1C). The long C-terminal 
domain accounting for almost 50% of its weight and 
which ends in the coiled coil, structurally distinguishes 
occludin from claudins. The N- and C-terminal regions 
are locations for key occludin phosphorylation residues 
and provide the functional variability of occludin at TJs 
[26]. The N-terminal domain bears a Type I WW binding 
motif (PPXY) and interacts with ITCH, an E3 ubiquitin 
protein ligase [27]. Modifications near the N-terminus 
affect TJ localization [28] and barrier properties [29]. 
The C-terminal domain contains an α-helical coiled-coil 
structure of approximately 426–469 aa, interacting as a 
dimerized four-helical bundle. This structure allows one 
occludin molecule to interact with another and estab-
lishes specific interactions with other regulatory proteins. 
Reportedly, C-terminal interactions with regulatory mol-
ecules play an important role in TJ assembly and function 
[30]. Despite some in vitro evidence indicating occludin 
N-terminal phosphorylation [31], more evidence sup-
ports the existence of C-terminal phosphorylation [26].

Cells and organs expressing occludin
Occludin is ubiquitously expressed; however, it is pres-
ent in various amounts in different tissues and cells. For 
example, a mouse study showed that occludin mRNA is 
expressed at similar levels in the duodenum, ileum, liver, 
and lung, with lower amounts in the brain, and higher 
amounts in the colon. Protein and mRNA expression 
levels were found to be mostly consistent across tissues, 
except that kidney cells produced significantly lower 
levels of occludin than other organs, including the brain 
[32]. In the human brain, elevated occludin expression in 
astrocytes, oligodendrocytes, and cerebral cortex pyrami-
dal neurons was detected in both Alzheimer’s disease and 
vascular dementia [33]. Occludin levels were found to be 
inducible by TNF-α treatments in a variety of cell types 
[34, 35], suggesting the existence of common molecular 
pathways for occludin upregulation upon inflammatory 
stimuli. Additionally, a high degree of homology in occlu-
din was reported across animal species [21]. Examples of 
other cell types expressing occludin include mouse hepa-
tocytes [36] and activated T-lymphocytes [37]. A low-
level mRNA occludin expression was also detected in 
HEK293 cells [38].

Regarding the BBB, occludin is expressed primarily in 
brain endothelial cells. Moreover, occludin expression 
was found to be enhanced in mouse brain endothelial 
cells when cocultured with resting microglia [39, 40]. 
Similarly, occludin levels were significantly increased in 
cocultures of rat endothelial cells with astrocytes [41]. 
Occludin is also expressed in mouse astrocytes and neu-
rons, in addition to epithelial and endothelial tissue [42]. 
Several studies have shown that human brain pericytes 
express occludin [6, 9, 14, 43]. In addition, rat pericytes 
induce the expression of occludin through the release of 
angiopoietin via the pericyte-derived multimeric angio-
poietin-1/Tie-2 pathway [39]. Taken together, occludin 
expression shares significant relationships among cells 
from various tissues, including the cells composing the 
BBB.

Occludin and HIV-1 Infection
Impairment in TJ expression levels and damage to BBB 
permeability are associated with infection by a variety of 
viruses, such as Zika virus [44], human T-cell leukemia 
virus (HTLV-1) [45], mouse adenovirus type 1 (MAV-
1) [46], and HIV. Besides its role in maintaining BBB 
integrity, occludin has also been characterized to play 
important roles in the entry and progression of several 
viral infections. In influenza/H1N1 [47] and HIV [14] 
infections, a decrease in occludin levels has been shown 
to increase infection. On the other hand, the opposite 
effect has been observed in Hepatitis C infection, where 
occludin was demonstrated to be an essential factor for 
viral entry and allowing cells to be infected [48–50]. In 
this review we will focus on the role of occludin in HIV 
infection.

Recent evidence indicates a bidirectional connection 
between HIV-1 infection and changes in occludin pro-
tein expression levels, pointing to occludin as a criti-
cal regulator in HIV-1 infection [14]. In this regard, the 
effect of the HIV-1 transactivator protein (Tat), which 
recruits elongation factors for RNA polymerase II, has 
been shown to decrease occludin expression levels in 
human endothelial cells [51–53]. Additional studies have 
used transgenic rats to demonstrate that HIV-1 pro-
teins decrease occludin levels in the hippocampus and 
in epithelial cells [54, 55]. In human brain pericytes, a 
dual-stage response pattern has been identified, char-
acterized by a significantly decreased occludin expres-
sion in pericytes 48  h post-infection, i.e., at the peak of 
active infection in these cells, followed by subsequent 
increased occludin levels during the development of 
latent infection [7, 9, 14]. The involvement of occludin in 
the regulation of HIV-1 replication has been confirmed 
in human monocytic U-937 cells, human macrophages, 
and HEK 293 cells [14]. To illustrate this effect, occludin 
silencing resulted in a 75% and 250% increase in HIV-1 
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replication in human primary macrophages and differ-
entiated monocytic U937 cells, respectively [56]. In con-
trast, occludin overexpression in HIV-infected human 
brain pericytes decreased the rate of HIV-1 infection as 
measured by p24 levels by approximately 50% [9].

The findings reported above suggest that occludin 
may be a potential target for preventative and pharma-
cological intervention aimed to eliminate viral reser-
voirs in PLH. In addition, this data raises the prospect 
that patients with inflammatory diseases with lower 
occludin expression may be more susceptible to HIV-1 
infection. However, the mechanisms involved in the regu-
latory interaction between occludin and HIV-1 infection 
remain largely unknown. At present, two complemen-
tary molecular pathways of occludin regulating HIV-1 

infection have been identified in human brain pericytes. 
They include (a) the regulation of the SIRT1 expression 
by modulation of NAD + and (b) modulation of the anti-
viral 2′-5′-oligoadenylate synthetase (OAS) gene family 
through STAT-1 signaling pathway [14, 56, 57] (Fig. 2).

Occludin regulation of HIV-1 Infection through the SIRT1 
pathway
SIRT1 is a highly conserved, nicotinamide adenine 
dinucleotide-dependent class III histone deacetylase 
[58]. The SIRT1 enzyme deacetylates histone proteins at 
H3K9, H3K14, H4K16 [59], and H1K26 [60] to control 
chromatin formation [61]. SIRT1 also deacetylates other 
proteins [62], with the subsequent modulation of their 
activity [63]. Examples of such proteins include p53 [62], 

Fig. 2 HIV-1 infection in human brain pericytes under low (left panel) and high (right panel) occludin levels. A decrease in occludin leads to 
NAD + depletion, decreasing SIRT1 phosphorylation and increasing NF-κB acetylation, which leads to an increase in HIV-1 replication. In contrast, elevated 
occludin levels act as an HIV-1 inhibitor by increasing NAD+, following with an increase in phosphorylation of SIRT1 and a decrease in NF-κB acetylation. 
Moreover, elevated occludin levels increase the expression of interferon-stimulates genes (ISGs) such as the antiviral OAS gene family which degrades 
viral RNA and provides antiviral protection
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the RelA/p65 subunit of nuclear factor kappa-light-chain 
enhancer of activated B cells (NF-κB) [61], forkhead box 
O transcription factors O4 (FOXO4) [64], O3 (FOXO3) 
[59], O1 (FOXO1) [65], peroxisome proliferator-activated 
receptor-γ coactivator-1 alpha (PGC-1α) [66], PGC-1β 
[67], BMAL1:CLOCK heterodimer [59], and endothe-
lial NOS (eNOS) [68]. SIRT1 also regulates genes related 
to mitochondrial uncoupling protein 2 (UCP2) [69]. 
SIRT1 activity decreases PI3K-AKT signaling [70], while 
increasing AKT-glycogen synthase 3 (GSK3) signaling 
pathway [71]. Interestingly, SIRT1 can induce AKT activ-
ity, while AKT activity may be inhibited by SIRT3/6 [72]. 
Finally, SIRT1 represses peroxisome proliferator-acti-
vated coreceptor gamma (PPAR-γ) transcription [73, 74] 
and regulates androgen and estrogen receptor responses 
[75].

SIRT-1 works in concert with AMP-activated protein 
kinase (AMPK), and it has been reported that occlu-
din levels promote AMPK expression and activation in 
human pericytes [56]. A study from our laboratory on 
human brain pericytes showed that occludin, acting as a 
NADH oxidase, can regulate SIRT1 activity, which influ-
ences HIV-1 transcription [14]. Specifically, we identi-
fied that occludin has a putative NADH binding site in 
a pocket formed by complementation of the CC-domain 
binding site, and can convert NADH to NAD+. This pro-
cess is enhanced upon occludin overexpression and its 
importance stems from the fact that NAD+ is a cofac-
tor regulating SIRT1 activity, which can deacetylate (and 
thus inactivate) NF-κB, an important stimulator of HIV-1 
transcription (Fig.  2). The opposite processes occur 
when occludin is depleted, which results in a decrease 
in NAD + levels, decreased p-Ser47 phosphorylation of 
SIRT1, diminished SIRT1 activity, and enhanced activity 
of NF-κB, which drives HIV-1 transcription [14] (Fig. 2). 
Indeed, phosphorylation of Ser27 emerged as central to 
SIRT1-based activation mechanisms [76], and also cor-
related with AMPK activation [77]. In support of the 
described mechanisms, it was reported that HIV-1 Tat 
protein can decrease NAD + levels, leading to the deacti-
vation of SIRT1 and the activation of p53 [78]. Moreover, 
SIRT1 downregulation was linked to increased astrocyte 
NF-κB activation through Tat upregulation of microR-
NAs miR-34a and miR-138 [79] and increased levels of 
SIRT1 functioned as an inhibitor to Tat by upregulat-
ing AMPK [80]. Interestingly, higher SIRT1 levels were 
detected after treatment with anti-HIV integrase transfer 
inhibitors [81]. It was also demonstrated that the SIRT1 
inhibition leads to inflammatory responses in T cells 
via hyperactivation of NF-κB [82]. SIRT1 can reduce 
the expression of occludin by impairing the recovery 
of occludin expression in human brain pericytes [14]. 
Indeed, SIRT1 overexpression was consistently found 

to negatively regulate occludin expression in several cell 
types [83, 84].

Occludin modulation of HIV-1 replication through STAT-1 
molecular pathway
Recently, another study has identified a novel regulatory 
pathway involving occludin as a regulator of the STAT-1 
pathway. The Janus kinase/signal transducer and activa-
tor of transcription (JAK/STAT) signaling pathway is a 
membrane-nucleus signaling involved in the transduc-
tion of antiviral genes such as the OAS gene family [85]. 
After being phosphorylated by the receptor-associated 
kinases, the STAT family members assemble into homo- 
or heterodimers that translocate to the nucleus [86]. In 
the context of HIV-1 infection, STAT-1 was shown to 
regulate HIV-1 promoter activity and was implicated 
in the immunopathogenesis of HIV-1 infection and its 
inflammatory responses [87–90]. Studies have reported 
that the JAK/STAT signaling pathway could be inhibited 
by HIV-1 viral gene products, which involve Vif, Vpu, 
Nef, and Tat, in order to avoid the immune system; how-
ever, HIV-1 infection increases STAT-1 expression and 
overall phosphorylation [88, 91–94].

We reported that occludin levels directly influence the 
expression of the antiviral interferon stimulated genes 
(ISGs), such as the OAS genes in human brain pericytes, 
by regulation of the JAK/STAT-1 molecular pathway. 
Indeed, overexpression of occludin markedly elevated 
mRNA levels of ISGs genes such as OAS1, OAS2, OAS3 
and OASL, with subsequent protein upregulation and 
a decrease in HIV replication. Moreover, silencing of 
occludin (but not silencing of ZO-1) induced an oppos-
ing impact, highlighting the importance of occludin in 
the innate immune regulation to provide antiviral protec-
tion [57].

Occludin phosphorylation as a possible target for HIV-1 
Infection in the brain
The occludin function as a BBB structural protein is reg-
ulated by phosphorylation processes [95]. Because alter-
ing occludin phosphorylation can trigger TJ assembly 
or disassembly, there is likely a delicate balance between 
kinase and phosphatase activities acting on occludin. 
Several protein kinases (PKs) were shown to alter the 
occludin phosphorylation. Specifically, serine, threonine, 
and tyrosine occludin residues have been recognized as 
phosphorylation sites for these kinases [96, 97]. Table  1 
summarizes the locations of phosphorylation sites and 
the kinases that have been identified to modify occludin 
phosphorylation status. Interestingly, the modification 
of occludin phosphorylation determines its dimerization 
and membrane location [98].
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Src kinases in occludin phosphorylation and HIV-1 Infection
Src kinases are known regulators of occludin phos-
phorylation (Fig.  3) [28]. For example, c-Src was shown 
to phosphorylate tyrosine398/402,473 on the C-terminus of 
occludin [99, 101, 102]. Another member of this family of 
Src kinases is c-Yes, which can also phosphorylate occlu-
din. c-Yes inhibition can lead to occludin redistribution 
in the cell membranes and altered membrane permeabil-
ity [113, 114]. Interestingly, some studies reported that 
c-Src-kinase can regulate HIV-1 infection of immature 
monocyte-derived dendritic cells [115]. In contrast, other 
studies have suggested that c-Src activation in HIV-1 
infection can prevent early CD4 T-cells infection [116]. 
An association between the extracellular vesicle-associ-
ated c-Src and an increase in latent HIV-1 activation via 
the PI3K/AKT/mTOR pathway in monocytes and T cells 
was recently reported [117].

PKC kinases in occludin phosphorylation and HIV-1 Infection
Various PKC isoforms can participate in occludin phos-
phorylation (Fig. 3) [118, 119]. Occludin Ser338 has been 
identified as a potential phosphorylation site for these 
kinases [106, 120]. PKCα, which can phosphorylate this 
residue, can also regulate occludin expression [121–123]. 
In addition, PKCβ activation can also induce occludin 
phosphorylation [124]. Of the novel PKCs, PKCη tar-
gets Thr403,404,438 occludin residues. Phosphorylation of 
more of these target residues increases the presence of 
occludin in cells membranes [108, 109, 125]. Further-
more, PKCε-mediated phosphorylation can dissociate 

the ZO-1-occludin complex, thereby disrupting TJ com-
plexes [126]. Atypical PKCζ has also been associated with 
phosphorylation of occludin and its subsequent reorga-
nization. PKCζ is believed to phosphorylate occludin 
Thr403,404,424,438 residues [108, 110, 127–129].

Interestingly, PKC modulators were being studied to 
eliminate HIV-infected cells by reactivating latent HIV-
1, and then destroying it in an approach named “shock 
and kill”. Unfortunately, these approaches were not fully 
successful. While PKC agonists can function as latency-
reversing agents to reactivate the virus, they increase 
cellular resilience to apoptosis [130]. Furthermore, mod-
ulators of PKC activation, such as phorbol myristate ace-
tate, can result in the nuclear translocation of NF-κB and 
enhanced HIV-1 transcription via activation of the HIV-1 
long terminal repeat (LTR) [131, 132].

Rho and ROCK signaling in occludin phosphorylation and 
HIV-1 Infection
The Rho–ROCK signaling pathway is formed by Rho 
GTPase and its downstream effector, Rho-associated 
kinase (ROCK). The ROCK family contains two isoforms, 
ROCK1 and ROCK2. The Rho GTPase family contains 
three subfamilies, Rho (RhoA, RhoB, and RhoC), Rac 
(Rac1, Rac2, and Rac3), and cell division cycle 42 (Cdc42). 
Active GTPases are bound to GTP and associated with 
cell proliferation [133]. Several studies have shown the 
critical role of the Rho–ROCK pathway in modulat-
ing TJs [134–138], including phosphorylation of occlu-
din (Fig.  3) [139]. In mice, occludin residues Thr382 and 

Table 1 Occludin phosphorylation sites
Kinase Phosphorylation Site Model Mutational analysis Physiological changes Refer-

ences
c-Src Tyr 398, Tyr402, Rat-1, MDCK

(Cell culture
Yes Regulation of ZO-1, -2, -3.  [99–

101]
Tyr473 MDCK

(Cell culture)
No p85α recruitment.  [102]

CK2 Thr400, Thr404, Ser408 Caco-2, MDCK
(Cell culture)

Yes CK2-mediated barrier 
regulation.
Regulation of ZO-2.

 [103]
 [104]

Thr375, Ser379 Xenopus laevis Yes  [105]
cPKC Ser338 MDCK

(Cell culture)
No  [106]

Ser490 BREC
(in vivo)

No Inhibits TJ trafficking  [107]

nPKCη Thr403, Thr404, Thr438 Caco-2, MDCK
(Cell culture)

Yes Delays assembly at the TJs  [108, 
109]

aPKCζ Thr424, Thr438, Thr403, 
Thr404

Rat-1, MDCK, Caco-2
(Cell culture)

Yes Delays assembly at the TJs  [110]
 [108]

ROCK Thr382, Ser507 COS-7 (Cell culture), BMEC (in vivo) No  [111]
VEGF Ser490 BREC

(Cell culture)
Yes Inhibits TJ trafficking  [112]

Abbreviations. Ser, serine; Thr, threonine; Tyr, tyrosine; c-Src, cellular tyrosine-protein kinase Src; CK2, casein protein kinase 2; cPKC, conventional protein kinase C; 
nPKC, novel protein kinase C; aPKC, atypical protein kinase C; VEGF, vascular endothelial growth factor; ROCK, Rho-associated protein kinase; MDCK, Madin Darby 
canine kidney cells; Caco-2, human colorectal epithelial adenocarcinoma cells; T84, human colon carcinoma cells; BMEC, brain microvascular endothelial cell; BREC, 
regulatory B cell; COS-7, African green monkey kidney cells (SV40 transformed)
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Ser507 were the target sites of GST–ROCK [111]. Also, 
ROCK signaling caused re-localization and regulation 
[140] [141] of occludin, which suggests that inhibiting the 
RhoA–ROCK2 pathway can reverse occludin downregu-
lation [141]. However, other investigators indicated that 
inhibition of ROCK can upregulate occludin [142]. Nev-
ertheless, different ROCK1 and ROCK2 isoforms, as well 
as different experimental models, may account for this 
discrepancy.

Interestingly it has been demonstrated that inhibition 
of Rho-ROCK played a protective role in the BBB main-
tenance by limiting occludin downregulation in endo-
thelial cells after HIV-1 Tat-treatment [52]. Recently, a 
potential role of Rho/ROCK in Tat-induced occludin dys-
regulation, among other TJ proteins, has been shown in 
C57BL/6 mouse brains [143].

PI3K-AKT-PTEN signaling in occludin phosphorylation and 
HIV-1 Infection
The PI3K–AKT pathway is involved in the regulation of 
several cell functions, such as cell survival, growth, prolif-
eration, motility, metabolism, angiogenesis, and immune 

responses [144]. This regulation is, in part, facilitated by 
AKT-mediated activation of the protein kinase complex, 
which is the mammalian target of rapamycin (mTOR) 
[145, 146]; moreover, AKT1, AKT2, and AKT3 have 
unique functions in cell growth [147].

PI3K is a family of lipid kinases capable of phosphory-
lating the inositol ring 3′-OH group in inositol phos-
pholipids. Class I PI3Ks are heterodimers formed by a 
catalytic subunit (p100) and a regulatory subunit (p85) 
that together catalyze the phosphorylation of phosphati-
dylinositol 4,5-bisphosphate (PIP3) to phosphatidylino-
sitol 3,4,5-triphosphate (PIP3) [148, 149]. PIP3 promotes 
the translocation of the serine/threonine protein kinase 
AKT to the cell membrane, where it is activated by 
phosphorylation at the Thr308 site by phosphoinositide-
dependent kinase 1 (PDK1), while PDK2 phosphorylates 
the Ser437 site [150, 151]. PDK1 is also activated by PIP3 
since PDK2 is part of the mTORC2 complex [152]. PIP3 
can be dephosphorylated by phosphatase and tensin 
homolog (PTEN), which inhibits AKT activity [153–155]. 
Meanwhile, AKT can also be directly dephosphorylated 
at Thr308 by protein phosphatase 2 (PP2A) [156] and at 

Fig. 3 Proposed model of signaling pathways influencing HIV-1 infection by modulation of occludin expression and function. Occludin func-
tions are regulated by phosphorylation processes. Src, PKC, Rho-ROCK, VEGF, and PI3K-AKT-PTEN kinases can both alter occludin phosphorylation status 
and influence HIV-1 infection in several cell types. We propose that occludin phosphorylation may serve as one of the targets to modulate HIV-1 infection
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Ser473 by the PH domain and leucine-rich-repeat-con-
taining protein phosphatases 1 and 2 (PHLPP1/2) [157].

Active AKT is involved in regulating many downstream 
targets, including mTOR, p21 proteins, Bad, caspase-9, 
the Wnt–β-catenin pathways, a p53 inhibitor, glyco-
gen synthase kinase (GSK-3β), mouse double minute 2 
homolog (MDM2), NF-κB, FOXOs, and cyclic adenos-
ine monophosphate responsive element binding protein 
1 (CREB-1) [158–164]. The PI3K-AKT pathway has been 
described as being involved in TJ alterations [165, 166], 
and the PI3K regulatory p85 subunit can, among other 
targets, directly bind to the C-terminus of occludin [167, 
168].

The p85 subunit of PI3K is involved in several func-
tions, such as PTEN regulation [169] and phosphory-
lation of p70S6K [170]; however, it largely serves to 
regulate PI3K activity. Specifically, phosphorylation of 
the p85 subunit can enhance PI3K signaling [171]. In 
contrast, p85 may have primarily inhibitory effects on 
PI3K signaling in hepatocytes [172]. Binding of PI3K to 
occludin during oxidative stress was shown to reduce 
transepithelial electrical resistance (TEER) [168]. How-
ever, whether PI3K can directly phosphorylate occludin 
and the identity of the amino acid targets involved in 
this phosphorylation both remain unknown. The PI3K–
AKT–mTOR pathway of cascading phosphorylation 
may lead to enhanced occludin production [173], and 
it has been shown that inducers of this pathway (e.g., 
celastrol) [174] can prompt occludin expression. It was 
demonstrated that activation of the PI3K-AKT-Rac1 
pathway with acidic fibroblast growth factor (aFGF) can 
upregulate occludin [175]. Likewise, basic FGF (bFGF) 
can enhance occludin expression by activating the down-
stream signaling pathway PI3K-AKT-Rac-1 [176]. In 
addition, inhibition of PI3K-AKT activity by LY294002 
suppressed occludin expression in response to anticancer 
drugs [177], ferulic acid [178], and/or resveratrol [179]. In 
human brain microvascular endothelial cells (HBMEC), 
PI3K inhibition was shown to negate occludin upregula-
tion after silent information regulator 5 (SIRT5) silencing 
[180], suggesting that PI3K upregulation of occludin may 
be dependent upon SIRT5 deacetylase activity.

Activation of the PI3K-Akt pathway was demonstrated 
to induce HIV-1 transcription by activating latent HIV-1 
in monocytes and T cells [181]. In addition, PI3K-Akt can 
prevent the formation of latent HIV-1 reservoirs. As such, 
PI3K-Akt inhibitors and subsequent downregulation of 
the PTEN protein resulted in the death of HIV-infected 
macrophages [182]. Moreover, exposure to HIV-1 Tat 
protein leads to increased inflammatory cytokine pro-
duction through the PI3K/Akt and ERK1/2 pathways in 
astrocytes [183]. Finally, a cross-talk between STAT1 and 
PI3K-Akt can result in BBB dysfunction in human brain 
microvascular endothelial cells (Fig. 3) [184].

Occludin expression and HIV-1 Infection in response to 
stimulation by vascular endothelial growth factor (VEGF) and 
the cell cycle regulators
Vascular endothelial growth factor (VEGF) is an angio-
genic factor that was shown to induce phosphorylation 
and downregulation of occludin [119, 185, 186]. The 
Ser490 occludin residue is the downstream phosphoryla-
tion site responsible for inducing ubiquitination of this 
protein [107, 112, 187, 188]. Interestingly, VEGF can lead 
to PKCβ activation, with target Ser490 occludin phos-
phorylation. Indeed, it has been shown that inhibition 
of VEGF blocks occludin Ser490 phosphorylation down-
stream of PKCβ activation [107] (Fig.  3). Additionally, 
occludin Ser490 phosphorylation was demonstrated to be 
associated with mitotic entry, in which occludin facili-
tates the process and increases cell proliferation [189]. 
Recently, research has also suggested that activating 
the VEGF-Flk-1-ERK pathway causes occludin tyrosine 
phosphorylation [190].

VEGF has been characterized to have neuroprotective 
effects and was present at higher levels during neurocog-
nitive disorders [191, 192]. This was possibly due to its 
role in maintaining proper functions of neurons and glial 
cells, as well as in blood vessel formation [193]. On the 
other hand, VEGF is a strong proinflammatory factor. In 
PLH, T cells have been shown to upregulate VEGF due to 
inflammatory signals [194]. An inverse relationship was 
observed between blood VEGF-D concentrations and 
amnestic mild cognitive impairment in older people with 
HIV-1 [191]. In patients with HIV encephalopathy, the 
serum concentration of VEGF was increased in compari-
son to PLH without this comorbidity [192]. In addition, 
the HIV-1 Tat protein was found to damage microves-
sels and reduce VEGF levels, suggesting a possible role in 
neurocognitive decline in HIV-1 infection [195].

The casein kinase 1 and 2 (CK1 and CK2) are serine/
threonine kinases that, among other proteins, phos-
phorylate occludin. There may be multiple regulatory 
regions on occludin that are affected by CK1-ε; at the 
same time, the C-terminal region of occludin can inhibit 
CK1-ε phosphorylation [196]. However, much more is 
known about the involvement of CK2 in occludin phos-
phorylation. CK2 phosphorylates three amino acid resi-
dues- Thr404, Ser408, and Thr400 - in the human occludin 
C-terminus. Thr375 and Ser379 have also been described 
in Xenopus laevis as potential CK2 phosphorylation sites 
[103–105, 197]. Also, inhibiting CK2 leads to overexpres-
sion of occludin [103]. Several papers have described a 
link between CK2 and HIV-1 replication proteins [198]. 
While the substrate of this interaction remains unknown, 
it has been shown that HIV-1 Rev can activate CK2, 
which then can induce HIV-1 Rev phosphorylation [199]. 
Moreover, it also has been described that multiple HIV-1 
gene products can be phosphorylated by CK2 [198, 199].
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Concluding remarks and future perspectives
Occludin plays a key role in maintaining the integrity and 
permeability of the BBB [200] and it has been reported 
that modification or loss of occludin expression levels are 
associated with increase neurological damage in several 
diseases such as ischemic stroke [201, 202] or status epi-
lepticus [203]. A recent study has also shown an increase 
in serum zonulin and ocln levels in people with bipolar 
disorder [204] and children with autism spectrum dis-
order [205]. Importantly, structure and function altera-
tions of the BBB are characteristics hallmarks in brains 
infected by HIV-1. In fact, alterations in occludin expres-
sion levels have been associated with BBB damage during 
HIV infection.

Traditionally, occludin has been considered a multi-
functional TJ protein regulating endothelial and epithelial 
structure and function. However, occludin is ubiquitously 
expressed in several cells and tissues, which suggests 
much broader functions than those assigned to regu-
lating the integrity of tissue barriers. In fact, although 
is mainly known for its role as a TJ, occludin protein is 
also a multifunctional protein that can influence cellular 
metabolism acting as a NADH oxidase.

Recently, occludin has attracted importance due to its 
newly discovered metabolic functions and its role in con-
trolling HIV-1 infection. Various mechanistic pathways 
have been proposed to be involved in this effect, such as 
regulating the expression of the OAS gene family through 
the STAT-1 signaling pathway, or by regulating the SIRT1 
activity through NAD+. Occludin functions appear to be 
influenced by its phosphorylation, and several signaling 
pathways can be involved in this process including Src, 
PKC, CK2, Rho-ROCK, VEGF, and PI3K-AKT-PTEN 
(Table  1). Importantly, the kinases involved in occlu-
din phosphorylation can also influence HIV-1 infection 
(Fig.  3). The present review describes the cross-talks 
between phosphorylation of occludin and regulation 
of HIV-1 infection; however, it is not fully understood 
whether these are unrelated or causative associations. 
Unfortunately, no preclinical study has focused on occlu-
din as a possible target in HIV-1 infection. We propose 
that a better understanding of the occludin-HIV-1 infec-
tions may identify occludin as a possible target to control 
HIV-1 infection and improve the life of people living with 
HIV-1.
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