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Fluids and Barriers of the CNS

Proteomic interrogation of the meninges 
reveals the molecular identities of structural 
components and regional distinctions 
along the CNS axis
Elise Santorella1, Jeremy L. Balsbaugh2, Shujun Ge1, Parisa Saboori3, David Baker4 and Joel S. Pachter1* 

Abstract 

The meninges surround the brain and spinal cord, affording physical protection while also serving as a niche of neu-
roimmune activity. Though possessing stromal qualities, its complex cellular and extracellular makeup has yet to be 
elaborated, and it remains unclear whether the meninges vary along the neuroaxis. Hence, studies were carried-out 
to elucidate the protein composition and structural organization of brain and spinal cord meninges in normal, adult 
Biozzi ABH mice. First, shotgun, bottom-up proteomics was carried-out. Prominent proteins at both brain and spinal 
levels included Type II collagen and Type II keratins, representing extracellular matrix (ECM) and cytoskeletal catego-
ries, respectively. While the vast majority of total proteins detected was shared between both meningeal locales, more 
were uniquely detected in brain than in spine. This pattern was also seen when total proteins were subdivided by cel-
lular compartment, except in the case of the ECM category where brain and spinal meninges each had near equal 
number of unique proteins, and Type V and type III collagen registered exclusively in the spine. Quantitative analysis 
revealed differential expression of several collagens and cytoskeletal proteins between brain and spinal meninges. 
High-resolution immunofluorescence and immunogold-scanning electronmicroscopy on sections from whole brain 
and spinal cord – still encased within bone –identified major proteins detected by proteomics, and highlighted 
their association with cellular and extracellular elements of variously shaped arachnoid trabeculae. Western blotting 
aligned with the proteomic and immunohistological analyses, reinforcing differential appearance of proteins in brain 
vs spinal meninges. Results could reflect regional distinctions in meninges that govern protective and/or neuroim-
mune functions.

Introduction
The meninges line the skull and vertebral canal, tightly 
enveloping the brain and spinal cord, respectively, in 
apparent custodial manner. Yet, despite having been 
described as early as the third century B.C.E. [30], the 
meninges still remain largely enigmatic in both func-
tion and composition. What is well known is that they 
are comprised of three, overlapping membranes that are 
aptly named in light of their distinct gross features and 
histological presentation (See reviews [Patel and Kirmi, 
[22, 23, 29, 84] for general descriptions and diagrammatic 
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representations). The dura mater (Latin, durable mother) 
lies directly apposed to the bone (skull and vertebrae), 
is the thickest and most fibrous of the three, and, more 
generally, is comprised of an outer periosteal layer and 
inner meningeal layer (the human dura has an innermost 
dural layer called the dural border cell layer [55]). Next, is 
the arachnoid (Latin, spider-like), which is formed of two 
distinct cell layers, and associated subarachnoid space 
(SAS), the latter traversed by a web of arachnoid projec-
tions called trabeculae that extend from the inner layer 
of arachnoid cells. Within the SAS lie large blood vessels 
that send microvessel tributaries into the parenchyma, 
and cerebral spinal fluid (CSF) that percolates through 
SAS channels fashioned by the walls of the anastomosing 
trabeculae. The pia mater (Latin, protective mother) is the 
innermost membrane, closely affixed to the parenchyma, 
and appears continuous with the trabeculae and arach-
noid cells.

By virtue of keeping the brain and spinal cord buoyed 
in CSF, the meninges have been conceived as princi-
pally serving a protective role (Patel and Kirmi, [67, 
84, 114, 120]. However, other responsibilities beyond 
the mechanical realm have begun to emerge. Included 
among these additional roles are secretion of several 
trophic factors, generation of neurons from progenitors, 
generation and formation of the glia limiters, and regula-
tion of cell migration and vascularization [29]. Burgeon-
ing data also point to the meninges as a cradle of immune 
activity in a wide host of neurologic diseases with inflam-
matory involvement, including – but not exclusive to 
– multiple sclerosis (MS, Alzheimer’s disease, cerebral 
amyloid angiopathy, migraines, trauma and stroke (Russi 
and Brown, [96, 95], de Lima et al., 2020). In this capacity, 
the meninges can serve as a launching pad from which 
inflammatory impulses and/or the signals that elicit them 
propagate down into the parenchyma [17, 73, 110].

Likewise, there is increasing awareness of the complex-
ity of the make-up and organization of meningeal compo-
nents. The arachnoid trabeculae are the most elaborate, 
and remain perhaps the most cryptic. As viewed by scan-
ning electron microscopy (SEM), trabeculae manifest 
several morphologies, having variously been described 
as “tree-like,” “veil-like,” and “rod-like” (Saboori, [111]). 
And, in what may reflect still other forms of trabeculae, 
continuous structures referred to as “membranous septa” 
[4, 22, 23, 77] and sheet-like “cisterns” [86] have been 
seen coursing through the SAS in transmission electron 
and light microscopy images. Even the term “menin-
gothelial cells,” to refer to those cells lining the arachnoid, 
pia mater and arachnoid trabeculae [36, 126], imparts a 
compositional vagueness to these elements. Such vari-
ous characterizations contribute to the ambiguity of the 
meninges, and underscore the need for more clarification 

of structure–function relationships. In this regard, the 
composition and labyrinthine nature of the trabeculae 
may hold particular significance for organizing and guid-
ing immune activities and/or developmental processes 
[66].

But fuller characterization of the adult meninges has 
been frustrated by technical challenges that have ham-
pered keeping the intricate cytoarchitecture of this tis-
sue intact during routine histological preparation, and 
impeded assigning molecular and cellular identities to 
meningeal components. For example, maintaining integ-
rity of the meninges for histological analysis is highly 
problematic due to the delicate attachment of this tis-
sue to bone. Craniectomy and laminectomy to access 
the brain and spinal cord, respectively, can significantly 
disrupt the intimate arrangement of the meningeal mem-
branes and the three-dimensional order of their compo-
nents. Particularly susceptible to damage is the delicate 
reticulum of trabecular structures [78]. On the other 
hand, efforts to section adult CNS tissue in situ, typically 
require decalcification of the heavily mineralized cra-
nium and vertebrae by caustic agents that can also cause 
tissue destruction and attenuate immunoreactivity [5, 
63]. These structural obstacles aside, targets for immu-
nodetection of the meninges are sparse, as the protein 
composition of the adult, normal meninges has yet to 
be elaborated, the focus, instead, being on meningiomas 
[1, 82, 112]. Likewise, while differences in the meninges 
between brain and spinal cord have been implied [74], 
they have never been detailed – a gap in the literature 
perhaps due to yet other investigational hurdles. An elab-
orate molecular characterization of the meninges at dif-
ferent CNS sites has, thus, been elusive.

Accordingly, a bifurcated approach was taken to eluci-
date the protein composition and structural organization 
of the meninges at both the brain and spinal cord level 
in normal, adult Biozzi ABH mice, with a focus on the 
reticular network of arachnoid trabeculae. First, shotgun 
proteomics was performed separately on brain or spinal 
meninges. Following bioinformatic interrogation to iden-
tify major structural proteins, high-resolution immu-
nofluorescence imaging and immunogold-SEM were 
performed on sections of intact, whole brain and spinal 
cord still encased within the skull and vertebral column, 
respectively. Proteomic results indicated that while the 
protein repertoires of brain vs spinal cord meninges 
were largely similar, several proteins were differentially 
expressed to a significant extent at the respective locales. 
Immunostaining further identified specific collagens 
associated with varied forms of arachnoid trabeculae, as 
well as clarified cell types that attend these structures. 
These findings are interpreted in terms of factors that 
might dictate immune regulation along the CNS axis, 
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causing brain or spinal cord to be preferentially affected 
during neuroinflammatory disease.

Materials and methods
Mice
Male and female Biozzi ABH H-2 (H-2dq1) mice were 
originally obtained from Harlan UK Ltd, Bicester, UK, 
and bred at Queen Mary University of London, under 
pathogen-free conditions. A breeder pair was then used 
to establish another colony at UConn Health, Farming-
ton, CT. Mice, age 8—10  weeks, were used throughout. 
All mice were maintained under specific pathogen-free 
conditions and all animal protocols were following Ani-
mal Care and Use Guidelines of UConn Health (Animal 
Welfare Assurance # A3471-01).

Contrast staining of the meninges with Evan’s Blue
To eliminate as much as possible the contribution of 
serum proteins to the meningeal proteomes, mice were 
exsanguinated by cardiac perfusion. Because removal of 
the blood renders the meninges transparent, immedi-
ately following exsanguination mice were perfused with 
Evan’s blue dye to highlight the meningeal vasculature 
and clearly distinguish the meninges from the underly-
ing parenchyma (Additional file  1: Fig. S1). Specifically, 
mice were anesthetized with 300 μL ketamine (100 mg/
ml, Zoetis, USA)/xylazine (20  mg/ml, Akorn Animal 
Health, USA) and initially perfused with 10 mL heparin 
(Sigma-Aldrich, USA)/phosphate buffered saline (PBS) 
pH 7.4, (140u heparin [Sigma-Aldrich]/mL PBS). Mice 
were subsequently perfused with 10 mL of a 0.5% Evans 
Blue (Sigma-Aldrich) in 1X PBS for contrast, followed by 
another 5–10  mL of heparin/PBS to wash out unbound 
dye.

Dissection and protein extraction
The protocol for dissecting the brain meninges largely 
followed the extremely detailed procedure described by 
Derecki and Kipnis, 2014 (https:// doi. org/ 10. 1038/ pro-
tex. 2014. 030), with the exception that, after making the 
incisions, the large bones were not removed. Instead, 
each cut bone fragment was gently lifted while the atten-
dant dura was grasped with forceps. This was repeated 
until the brain was freed of all skull attachments. Regard-
ing the spinal cord meninges, the entire spinal column 
was removed and cleaned of flesh from all aspects of the 
vertebrae. The column was then cut into 3–4 sections, 
slicing each section on a slight diagonal for ease of dis-
section. Within each section, the vertebrae were slowly 
pulled apart exposing the underlying meninges. Menin-
ges were grasped with #5 forceps and gently peeled 
off the spinal cord. The spinal cord was kept hydrated 
with PBS to prevent the meninges from sticking to the 

underlying parenchyma. As with the brain, the Evan’s 
blue staining of the meninges kept this tissue clearly dis-
cernable from the parenchyma underneath.

An extraction buffer consisting of a 1:9 solution of pro-
tease inhibitor cocktail (Sigma-Aldrich) in Pierce™ RIPA 
buffer (Thermo Fisher Scientific, USA) was prepared, 
and 150–200  μl aliquoted into separate 1  ml Dounce 
glass homogenizers (custom-ordered from PerkinElmer, 
USA) kept on ice. RIPA buffer was selected for menin-
geal extraction as it contains both NP40 (nonionic) and 
sodium deoxycholate (ionic) detergents and, thus, is suf-
ficiently chaotropic to allow effective solubilization of 
cytoplasmic, nuclear and membrane proteins, generating 
a whole cell lysate most representative of the respective 
brain and spinal cord meningeal compartments. Follow-
ing craniectomy and laminectomy, brain and spinal cord 
meninges, respectively, were removed to their individual 
homogenizers and manually dispersed, first using the 
looser fitting A pestle (clearance ~ 0.0025–0.0055 in.), 
then the tighter fitting B pestle (clearance ~ 0.0005—
0.0025 in.). Care was taken to scrape the skull and ver-
tebrae for all traces of dura, while avoiding capturing any 
small bone shards. Meninges from two mice were used 
per sample. Following homogenization, the separate 
samples of brain and spinal cord meninges were placed 
in 1.5  mL centrifuge tubes and spun at 14,000 × g for 
20  min. Supernatants were then transferred to 0.22  μm 
centrifuge tube filters (Corning, USA), and spun for an 
additional 5  min at 14,000 × g. Resulting filtrates were 
removed, aliquoted, and stored at − 80 °C until assayed. 
Before proteomics, protein concentration of samples was 
determined by Pierce™ Rapid Gold BCA Protein Assay 
Kit (Thermo Fisher Scientific).

Proteomics
Sample preparation for liquid chromatography and tandem 
mass spectrometry (LC/MS–MS)
Samples of filtered meningeal extract were prepared 
using a slightly modified Filter-Aided Sample Preparation 
(FASP) method in a Microcon YM-10 10kD molecular 
weight cutoff (MWCO) filter (Thermo Fisher Scientific) 
[124]. First, samples were diluted in UA buffer (8  M 
Urea, 0.1 M Tris–HCl, pH 8.5) and reduced for 1.5 h at 
37  °C using 25  mM dithiothreitol. Fully reduced pro-
teins were concentrated onto the filter and the buffer 
was spun through the 10 kD MWCO filter at 14,000 × g 
for 40 min. The proteins and filter assembly were washed 
a second time with 200  µL UA buffer and spun at 
14,000 × g for 40 min. Next, Cys residues were alkylated 
using 50  mM iodoacetamide in UA buffer for 15  min 
in the dark at 37 °C, after which the filters were spun at 
14,000 × g for 30  min and the flow-through buffer was 
removed. Two more buffer exchange steps were instituted 
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against 100 µL UB buffer (8 M Urea, 0.1 M Tris–HCl, pH 
8.0), each time with identical centrifugation conditions. 
A simultaneous protein resuspension and filter wash step 
using 50  µL UB buffer was used to aid removal of the 
proteins from the filter for placement into clean 1.5 mL 
Eppendorf tubes. The filter was washed twice to resus-
pend any remaining proteins with 50 µL aliquots of 0.1 M 
ammonium bicarbonate and pooled with the first protein 
aliquot. Endoproteinase LysC (Pierce, USA) was added at 
a 1:50 enzyme: protein ratio and samples left to digest at 
37  °C for 16 h. Samples were then diluted to < 1 M urea 
with 0.1  M ammonium bicarbonate, and sequencing 
grade modified trypsin (Promega, USA) added at a 1:50 
enzyme: protein ratio and left to digest for an additional 
8 h at 37 °C. Proteolysis was quenched using formic acid 
and the resulting peptides desalted using Pierce™ C18 
Peptide Desalting Spin Columns (Thermo Fisher Scien-
tific) per manufacturer’s instructions.

Untargeted shotgun proteomic analysis by LC/MS–MS
Desalted peptides were injected onto a Waters nanoEase 
m/z Peptide UPLC BEH C18 column (1.7  µm, 130  Å, 
75  µm × 250  cm) and separated using a 300  nL/min 
nanoflow 180  min reversed phase gradient on a Dionex 
Ultimate 3000 RSLC UPLC instrument (Thermo Fisher 
Scientific). The Ultimate 3000 UPLC was coupled directly 
to a Q Exactive HF mass spectrometer (Thermo Fisher 
Scientific) and eluted peptides were subject to nanoflow 
electrospray ionization and direct entry into the mass 
spectrometer. The Q Exactive HF was operated in posi-
tive mode using a Top 15 data-dependent MS/MS acqui-
sition method.

Data processing
All raw files were searched against the Uniprot Mus 
musculus reference proteome database (Reference pro-
teome UP000000589, accessed October 18, 2020) using 
the Andromeda search engine embedded in MaxQuant 
(v1.6.1.0) [25]. The following parameters were used for 
peptide/protein identification: 1% False Discovery Rate 
(FDR) at the protein and peptide levels, variable modifi-
cations include oxidized Met, acetyl protein N-terminus, 
N-terminal peptide Gln to pyro Glu, and deamidation of 
Asn and Gln. Fixed carbamidomethylation on Cys resi-
dues, a minimum value of 5 amino acid per peptide, and 
trypsin digestion specificity with 2 missed cleavages were 
also employed. All other parameters were kept at default 
values.

The mass spectrometry data have been deposited to 
the Proteome Xchange Consortium via the PRIDE part-
ner repository with the dataset identifier PXD039294. 
Reviewers can access the private dataset using 

usernamereviewer_pxd039294@ebi.sc.ukand temporary 
password 5QKqHT2A.

Data analysis
Peptide and protein quantification were performed by 
the MaxQuant LFQ algorithm. All search results were 
uploaded into Scaffold v4.10 (Proteome Software, Inc., 
USA) for visualization and further analysis. High con-
fidence in protein identification was afforded through 
multiple post-informatics search filters. One, an initial 
1% FDR filter using a target-decoy search approach at 
the protein and peptide level was employed to limit the 
number of false positive identifications. Two, a strict two 
unique peptide sequences per protein experiment-wide 
filter in Scaffold was required for identification. Three, 
biological replicate thresholding was imposed, requir-
ing positive identification in each replicate experiment. 
Power analysis calculations indicated increasing from 
N = 3 to N = 5 replicates gave reasonable power while 
greatly decreasing the type I error rate. Replicates were 
further increased to N = 6.

The Average Precursor Intensity (API) quantitative 
unit as a measure of total protein abundance was used 
directly to gauge protein-level differences both within 
and across proteomics experiments. Data files containing 
quantitative values were exported to Microsoft Excel, R, 
or Python for different enrichment analyses. A thresh-
old for frequency of protein detection was implemented 
to underscore reproducibility. Specifically, a protein was 
considered to be a legitimate component of the menin-
geal proteome if it was detected in 4 or more brain or spi-
nal cord samples.

Gene Ontology (GO) Cellular Component designa-
tions and enrichment data were exported using the 
PSEA-Quant algorithm of Scaffold (Lavellee-Adam et al. 
[62]) and used to generate Venn Diagrams; proteins were 
organized and grouped depending on their membership 
to eleven Cellular Component designations highlighted 
in Scaffold (Cytoplasm, Cytoskeleton, Endoplasmic Retic-
ulum, Endosome, Extracellular Region, Golgi Apparatus, 
Mitochondrion, Nucleus, Plasma Membrane, Extracellu-
lar Matrix, and Ribosome).

Enrichment analysis
Enrichment analysis was performed to determine statisti-
cally significant differences in the frequency of GO terms 
overrepresented in the meningeal proteome. GO term 
repositories are informed by peer-reviewed experimental 
data, scientific literature, and functional annotations [10].

Protein lists were filtered as described in “Data Analy-
sis” and organized into three subsets: “Brain Proteome” 
(proteins shared between brain and spinal cord meninges 
plus proteins expressed above-threshold only in brain 
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meninges), “Spinal Cord Proteome” (proteins shared 
between brain and spinal cord meninges plus proteins 
expressed above-threshold only in spinal cord meninges), 
and “Shared Only” (only proteins shared between brain 
and spinal cord meninges). Each data subset consisted 
of a list of proteins (present in at least 4/6 samples) and 
their respective Uniprot Accession Numbers (Unipro-
tAN). UniprotANs for each data subset were imported 
into GOnet (https:// tools. dice- datab ase. org/ GOnet/) to 
obtain enrichment and annotation data for one of three 
Gene Ontology categories: Cellular Component, Biologi-
cal Process, and Molecular Function. GOnet enrichment 
exports include lists of GO terms and their correspond-
ing p-values.

Gene Ontology annotation and enrichment data for 
Cellular Component, Biological Process, and Molecu-
lar Function was obtained for each sub-divided data 
set through GOnet (https:// tools. dice- datab ase. org/ 
GOnet/). Lists of significantly enriched GO terms and 
their corresponding p-values (p ≤ 0.05)  were then ana-
lyzed using ReViGO’s default parameters (revigo.irb.
hr). ReViGO Tree Map data was exported, manually 
cross-checked for correct parent-term assignment using 
QuickGO (https:// www. ebi. ac. uk/ Quick GO/ annot 
ations), and imported into CirGO to generate two-tier 
enrichment pie charts.

Volcano Plot
The volcano plot was generated in R using the follow-
ing packages: colorspace, dplyr, e1071, ggplot2, ggrepel, 
gplots, RColorBrewer, tidyverse. To be included in the 
volcano plot, a protein had to adhere to the 4 of 6 rep-
licate threshold in at least one meningeal compartment 
(i.e., brain and/or spinal cord) in the proteomic analysis. 
Fold change and p-value for each protein were calculated 
in Microsoft Excel according to the data analysis pipeline 
described by Aguilan et al. [3].

Western blotting
Aliquots of meningeal lysates from proteomic sam-
ples (10  μg of protein) were diluted with Laemmli 
sample buffer (BioRad, USA), adjusted to 2% (v/v) 
β-mercaptoethanol (Sigma Aldrich), and heated at 95 °C 
for 10–15  min. Following clarification at 14,000 × g for 
1  min, samples were then separated by SDS-PAGE on 
4–15% Mini-PROTEAN® TGX™ Precast Protein Gels 
(BioRad). Electrophoresis was initiated at 50–65  V for 
the first 5 min, then voltage was increased to 100–150 V 
for the remaining 60–90 min. After electrophoresis was 
complete, gels were immediately transblotted onto nitro-
cellulose using the Trans-Blot Turbo system (BioRad). 
Successful protein transfer was confirmed by incuba-
tion of blots with Ponceau S solution (Sigma Aldrich, 

USA) for 1  min, followed by brief rinsing in distilled 
 H2O. Blots were then washed 3 × 5 min in a Tris-buffered 
saline solution (TBST) with 0.1%  Tween® 20 detergent 
(Sigma Aldrich, USA). TBST and all derivative solu-
tions were filtered through a 40  μm Falcon cell strainer 
before use (Thermo Fisher, USA). Following washes, 
blots were incubated in a 5% (w/v) solution of non-fat 
dry milk (BioRad, USA) in TBST for 1 h. Blots were then 
washed 3 × 5 min in TBST, and incubated in a 3% (w/v) 
bovine serum albumin solution containing primary anti-
body (Additional file 1: Table S1) overnight on a shaker 
at 4 °C. The following day, blots were removed from pri-
mary incubation and washed 3–5 times with TBST. Blots 
were then incubated with a solution of TidyBlot Western 
Blot Detection Reagent (BioRad, USA) for 1  h at room 
temperature, rinsed 3 × 5 min with TBST, and developed 
with SuperSignal West Pico Chemiluminescent Substrate 
(Thermo Fisher, USA) for 5  min at room temperature. 
Development of blots was quenched by a brief rinse in 
distilled  H2O, then blots were imaged using a Molecular 
Imager Gel Doc XR + System with Image Lab Software 
(BioRad, USA). Subsequent quantitation of blots was per-
formed using Image J (NIH, USA). Relative quantitation 
was calculated as a signal intensity ratio of each protein 
band relative to the loading control. For purposes of re-
probing, blots were stripped by incubation in Restore™ 
Western Blot Stripping Buffer (Thermo Fisher, USA) at 
room temperature for 15  min. Blots were then washed 
3 × 5 min with TBST and blocked in 3% BSA solution for 
an hour at room temperature. Following this blocking 
step, all additional steps were the same as for initial pro-
tein detection.

Histology
Tissue preparation
Mice were anesthetized with 300  µL ketamine/xylazine 
and perfused with 10  mL heparin-Phosphate Buffered 
Saline, pH 7.4 (PBS), followed by 10 mL of 4% paraform-
aldehyde (Electron Microscopy Sciences, USA) in PBS. 
After perfusion, the entire skull and spinal column were 
removed and post-fixed in 4% paraformaldehyde at 4  °C 
for 24 – 48  h (spinal columns requiring more time for 
penetration of fixative). Samples were then transferred to 
a solution of 30% sucrose (J. T. Baker, USA) in PBS at 4 °C 
for cryopreservation. After equilibration, samples were 
embedded in Cryomatrix (Thermo Fisher Scientific) and 
stored at − 80 °C until sectioning.

Cryosectioning
Sections were cut on a Leica CM 1850 cryostat. Frozen 
longitudinal sections of whole mouse spinal cord, with 
vertebrae intact, and frontal and sagittal sections of 
whole brain, encased within the cranium, were sectioned 
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between 5 and 30 μm thickness (depending on the down-
stream application) directly onto to an adhesive tape 
(Cryofilm type II, Section-Lab, Japan), as previously 
detailed [110]. For fluorescence microscopy and imaging 
mass cytometry, the tape was then adhered—tissue-side 
facing up—to a charged glass slide with 1% (w/v) chi-
tosan (Sigma-Aldrich). Slides were next placed on a slide 
warmer at 37 °C for 30–60 min. Tape edges were further 
secured to the slides by outlining the tape with rubber 
cement glue (Pliobond 25, Pliobond, PC-225-LV, Ells-
worth Adhesives, USA) and allowed to solidify for 24 h.

immunofluorescence/confocal microscopy
Permeabilization, blocking and staining of Sects.  (20–
30  μm) were performed essentially as described previ-
ously [85], Shrestha et al. [111]). Primary and secondary 
antibodies used (including sources and working dilu-
tions) are listed in Additional file  1: Tables S1 and S2, 
respectively. After antibody staining, nuclei were labeled 
with 0.1% (v/v) DAPI (Sigma-Aldrich) in PBS for 5 min, 
followed by washing of sections with 0.05% (v/v)  Tween® 
20 (Sigma-Aldrich) in PBS. Sections were then allowed 
to air-dry for 5–10 min, and mounted in Mowiol (Sigma-
Aldrich). Confocal z-stacks (multi-track scan) were 
acquired using a Zeiss LSM 780, with the Zen Blue Edi-
tion software system (Carl Zeiss Microscopy, LLC, USA), 
and 10x/0.45 W C-Apochromat, 20x/0.8 Plan-Apochro-
mat, and 40x/1.2 W C-Apochromat. (Carl Zeiss Micros-
copy, LLC) lenses. Thereafter, z-stacks were imported 
into Bitplane  Imaris® suite version 9.2.1. software (Bit-
plane Inc., USA).

Imaging mass cytometry (IMC)
Maximal thickness of sections was 10  μm. Permeabili-
zation and blocking steps were as for immunofluores-
cence. Metal-conjugated primary antibodies (Standard 
BioTools Inc., USA) were used throughout. To ensure 
that the signal of each metal-conjugate did not interfere 
with another,  Maxpar® Panel Designer (Maxpar Panel 
Designer v2.0, DVS Sciences and Standard BioTools Inc.) 
was employed. All primary antibodies were combined in 
a single cocktail in 0.5% Bovine Serum Albumin (BSA) 
(Sigma-Aldrich) in PBS. Slides were incubated with pri-
mary antibodies overnight at 4  °C. Following antibody 
incubation, slides were washed with PBS and stained 
with Cell-ID™ Intercalator-Ir (Standard BioTools Inc.) 
and  OsO4 (Sigma-Aldrich) in PBS for 2—3  h to label 
DNA and lipids, respectively, then washed with distilled, 
deionized water twice for 5 min before air-drying.

IMC data was obtained using the Hyperion™ imag-
ing system in tandem with a Helios™ Mass Cytometer 
(Standard BioTools Inc.). Briefly, samples stained with 
metal-conjugated antibodies were scanned and vaporized 

by laser-ablation in 1  μm2 increments. The resulting 
vaporized samples were captured by the mass cytom-
eter and analyzed using time-of-flight mass spectrom-
etry (CyTOF) (Standard BioTools Inc.). Individual signals 
for each isotope detected in a sample were resolved and 
compiled with time-of-flight mass spectrometry data into 
a high-dimensional.mcd image file of the target area.

Immunoelectron microscopy
Permeabilization, blocking and staining of Sects.  (10–
20  μm) were performed as for immunofluorescence/
confocal microscopy, with the exception that the diluent 
used was 0.1 M Tris-buffered saline, pH 7.4. The change 
in buffer was to ensure compatibility with FluoroNano-
Gold™ secondary antibodies Alexa  Fluor® 488—Fluoro-
Nanogold™ Fab’ rabbit anti-goat IgG (H + L) and Alexa 
 Fluor® 594—FluoroNanogold™ Fab’ goat anti-mouse 
IgG (H + L) (Nanoprobes Inc., USA) and later gold 
enhancement. Gold enhancement was performed using 
the GoldEnhance™ EM Plus enhancement kit (Nano-
Probes). Immunogold labeled/gold enhanced spinal cord 
sections were fixed in 1% glutaraldehyde in 0.1 M caco-
dylate buffer for 30 min, then rinsed three times in 0.1 M 
sodium cacodylate buffer, pH 7.4. Samples were post-
fixed with 1%  OsO4 /0.8%  C6N6FeK3 in 0.1 M cacodylate 
buffer for 1  h, then rinsed five times in distilled water. 
Next, samples were dehydrated in 50%, 75%, 95% etha-
nol and three changes of 100% ethanol for at least 10 min 
per solution. Samples were further dehydrated in 1:2, 
then 2:1 hexamethyldisilazane (HMDS, electron micros-
copy sciences): ethanol for 20  min per solution, then in 
two changes of 100% HDMS, remaining in 100% HMDS 
overnight. The sections were trimmed and attached to a 
1 cm diameter SEM stub with double sided carbon tape 
(electron microscopy sciences), then sputter coated with 
gold target in a Denton Vacuum Desk V for 60 s. Samples 
were imaged on a Jeol JSM5900LV, in secondary electron 
or backscatter mode.

Results
Proteomes of brain vs spinal meninges
Total proteins detected in brain and spinal meninges are 
listed in Additional file 2: Table S3. Bottom-up proteomic 
interrogation (Chait, [19]) indicated that Type II collagen, 
alpha-1 (Col2A1) and intermediate filament (IF)-forming 
Type II keratins (keratin 76 or keratin 8) were among the 
twenty-five most abundant proteins recognized at both 
locales. Specifically, Type II collagen was prominent at 
both locales, while keratin 76 was prevalent in brain, and 
keratin 8 in spinal cord (Table 1). The substantial menin-
geal presence of Type II collagen coincides with the 
depiction of the arachnoid trabeculae as “spongy connec-
tive tissue made of collagen fibers and fibroblasts” [29]. 
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Expression of Types II keratins, on the other hand, is in 
line with several descriptions in the literature referring to 
the arachnoid as possessing epithelial qualities [18, 94].

The vast majority of total proteins detected were shared 
between brain and spinal meningeal compartments 
(Fig.  1a). Overall, 2028 proteins were found in both 
domains, with 911 proteins being detected uniquely in 
brain, and 181 proteins exclusively noted in spinal tissue. 
Upon further subdividing total proteins by Cellular Com-
partment, the majority of proteins in each compartment 
were similarly found in both brain and spinal meninges 
(Additional file  1: Fig. S2). However, as in the case of 
total proteins, brain meninges generally contained con-
siderably more “unique” proteins when compared across 
compartments. Differing from this pattern was the Extra-
cellular Matrix category, which is most likely to reflect 
structural components of the SAS. Brain and spinal 
meninges each had nearly an equal number of “unique” 
Extracellular Matrix proteins  (Fig.  1b), with two colla-
gens, Type V and Type III, registering exclusively in the 
spine according to the proteomics criteria used. A similar 

restriction of Type III collagen to human spinal meninges 
was also previously noted [74]. Though not yet described 
in the meninges, Type V collagen is a form of fibrillar col-
lagen found in association with tissues containing Type 
I collagen (Weis et al., 2010). In contrast to the selective 
expression of Types III and V collagen, multiple α-chains 
of Type I, Type II, and Type VI collagen were shared 
between brain and spinal meninges.

To next examine differences in the overall protein 
profile of brain and spinal meninges, respectively, two-
dimensional pie charts were generated using the Python 
package CirGO in combination with the web based 
ReViGO server [59, 115]. While proteins of the spinal 
meninges showed less diversity of enriched inner-circle 
parent categories and outer-ring child terms, they were 
significantly enriched in those mapping to Extracellu-
lar Matrix and Cell Junction parent categories (Fig. 2a). 
Major derivative terms for the Extracellular Matrix 
category included “collagen trimer” and “collagen-con-
taining extracellular matrix,” reflecting the expression 
of the varied collagen peptides. And the Cell Junction 

Table 1 The 25 most abundant proteins in brain and spinal cord meninges

Proteomes were established for 6 samples each of naïve Biozzi mouse brain and spinal cord meninges. Data was filtered to include only those proteins present in 
at least 4/6 samples. The 25 most prominent proteins present in each category are listed. Notably, bolded proteins Type II collagen, alpha-1 and Type II keratins are 
represented in brain (keratin 76) and spinal cord (keratin 8)

Brain Spinal Cord

Predicted gene 17087 Predicted gene 17087

Type II Collagen, alpha 1 Inactive phospholipase (Fragment)

Nucleoredoxin Myosin light chain 4 (Fragment)

Myosin light chain 6B Parvalbumin alpha

Histone H1.3 Beta-actin-like protain2

Actin, alpha skeletal muscle Casein kinase cell subunit alpha

ADP/ATP translocase 4 Spartin

Actin, gamma-enteric smooth muscle (Fragment) Actin, gamma-enteric smooth muscle (Fragment)

Actin, cytoplasmic 1 (Fragment) Nucleoredoxin

Beta-actin-like protein 2 Keratin 8
Actin, gamma-enteric smooth muscle Alpha globin 1

Histone H1.2 Type ll Collagen, alpha-1
Superoxide dismutase (Cu–Zn) Hemoglobin subunit beta-2

Actin, aortic smooth muscle Ubiquitin-405 ribosomal protein S27a

Alpha globin 1 Myelin protein P0

14–3-3 protein sigma ADP/ATP translocase 4

ATP synthase subunit delta, mitochondrial Histone H1.4

Keratin 76 Actin, cytoplasmic 1 (Fragment)

Hemoglobin subunit beta-2 Creatine kinase M-type

Histone H3.3C Splicing factor 3A subunit 3

Actin, cytoplasmic 2 Cluster of Myelin protein P0

Tropomyosin alpha-1 chain Myelin peripheral protein

Malate dehydrogenase, mitochondrial Cluster of Creatine kinase M-type

Nuclear pore complex protein Nup85 Actin, alpha skeletal muscle

Histone H1.4 Actin, aortic smooth muscle
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category encompassed “adherens junction” and “focal 
adhesion” terms, consistent with reports of E-cadherin-
expressing cells in the arachnoid membrane [31, 32]. The 
brain meninges, by comparison, failed to record enrich-
ment of the Extracellular Matrix category by this analy-
sis (Fig.  2b). Though the brain meningeal proteome did 
contain extracellular matrix proteins (Fig. 1b), these were 
not of sufficient proportion to be considered enriched. 
However, the brain meninges evidenced enrichment of 

the parent terms Cytoskeleton and Cellular Projections, 
along with the derivative child terms “plasma mem-
brane-bounded cell projections.” There are thus appreci-
able differences in brain vs spinal meninges with regard 
to selective enrichment of proteins serving structural 
functions.

Following qualitative enrichment analysis of protein 
sub-category distribution, quantitative comparison of 
brain and spinal meningeal proteomes was performed. In 

Fig. 1 Shared and unique proteins in brain and spinal cord (SC) meninges. Proteomes were established from naïve Biozzi mice (Additional file 1: 
Fig. S3) and comparisons made between brain and spinal cord meninges. a Total Proteins. A total of 2027 proteins were shared between the two 
meningeal locales, 911 proteins unique to brain and 181 unique to spinal cord. b Comparison and distribution of specific Extracellular Matrix 
proteins. This category was expanded as it most likely contributes to the meningeal trabeculae. Note, not all 40 shared Extracellular Matrix proteins 
are listed

Fig. 2 CirGo plots of highly enriched Gene Ontology (GO) terms in meninges. Proteomes were subject to qualitative enrichment analysis. (a) Spinal 
cord (“SC”) meninges. (b) Brain meninges. The inner circle slices represent broad (“parent”) GO Cellular Compartment clusters, while the outer 
ring represents specific GO (‘child’) terms that fall within each parent cluster. Color gradients emphasize the largest to smallest value distribution 
within the outer ring child terms
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order to determine if proteins were disparately expressed 
in either meningeal locale, fold change of protein abun-
dance levels in brain and spinal cord were calculated 
(Fig. 3). The majority of proteins observed in either com-
partment showed no significant difference in expression. 
However, a greater number of brain meningeal proteins 
were significantly upregulated when compared to those 
of the spinal cord. The top 25 proteins upregulated in 
brain and spinal cord meninges, respectively, are listed in 
Table 2. The full listing of proteins differentially expressed 
between the two meningeal locales is shown in Addi-
tional file 3: Table S4. Notable structural proteins promi-
nently upregulated in brain meninges include tenascin-R 
(Fig. 3, Table 2) and Keratin 13 (Fig. 3). Tenascin-R (TnR) 
is an extracellular matrix glycoprotein exclusive to the 
CNS [8], where it affects cell migration, adhesion and dif-
ferentiation, and has been localized in human fetal brain 
meninges by the end of the third trimester [35]. Keratin 
13 (Krt13), a type I keratin [104], is considered a marker 
of non-keratinized squamous epithelium, and has yet to 
be described in normal meninges. Though overall fewer 
in number, proteins significantly upregulated in spinal 
cord are largely glycoproteins and fibril-forming colla-
gens, complementing the enriched representation of the 
“collagen-containing extracellular matrix” and “collagen 

trimer” sub-categories in the pie-chart analysis. In par-
ticular, several collagens were significantly upregulated 
in the spinal meninges (Fig.  4a), namely α1, α2, and α3 
chains of Type VI collagen, and the α1 chain of Type XV 
collagen. Type VI collagen expression has been described 
in the meninges previously, where it is found in the basal 
lamina of meningeal vessels  [40]. Likewise, Type XV 
collagen has been reported around blood vessels in the 
brain, as well as along the pial interface separating the 
brain parenchyma from the extra parenchymal tissues 
(meninges and blood vessels) [30].

Histological localization of meningeal proteins
The localization of several structural proteins was next 
established by immunofluorescence and aligned with 
the proteomic data. Significantly, structural features 
revealed by fluorescence aligned spatially with those seen 
by SEM, allowing for molecular identification of exter-
nal morphology (Fig.  4a, b).Type II collagen, one of the 
most abundant proteins detected proteomically in both 
brain and spinal meninges, localized most obviously to 
the pia in addition to cellular and extracellular elements 
of the SAS (Fig. 4b). Some staining also appeared along 
the arachnoid and what might be the innermost layer of 
the dura (Fig. 4c). Images depict what appear to be Type 

Fig. 3 Volcano plot of differential expression in brain vs spinal cord meningeal proteomes. The quantitative proteomics data was used to determine 
individual proteins upregulated in brain vs spinal cord meninges. Upregulation refers to an increase in the magnitude of protein abundance in one 
compartment vs the other  (log2(Fold Change) Brain/Spinal Cord). Colored points above the dotted line indicate statistically significant upregulation. 
Several, but not all, differentially expressed proteins are identified. Select ECM proteins upregulated in spinal cord meninges are specifically 
highlighted in bold boxes
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II collagen fibrils bundled in varying sizes and shapes, 
and forming a scaffold onto which cells of the SAS are 
wrapped, the two elements forging the trabecular mesh-
work connecting the arachnoid and pia (Fig. 4b, c). This 
is in agreement with prior descriptions of transmission 
electron micrographs characterizing the SAS as contain-
ing extracellular collagen closely associated with “arach-
noid trabecular cells” [41, 117]. In particular, trabeculae 
have been reported as composed of collagen bundles and 
“leptomeningeal cells” [4], as well as denoted as “colla-
gen-reinforced material” stretching between the arach-
noid and pia membranes (Mortazavi et al. [75]). Scanning 
electron micrographs have also imparted “collagen fibrils 
constitute the internal structure” of trabeculae [99]. The 
web-like nature of Type II collagen was accentuated fol-
lowing isosurface rendering of immunostained trabecu-
lae (Additional file 1: Fig. S3).

Type I collagen—also detected in both brain and 
spinal meninges by proteomics—failed to show con-
sistent localization at either locale, despite evaluation 
with four different antibodies to the subunit protein 
Col1A1. The reason for this irregularity is unclear, and 
might reflect that Type I collagen is only present in low 

amounts in highly discrete meningeal domains, e.g., a 
distinct subpopulation of trabeculae or SAS structures 
along the brain and spinal cord, and thus not reliably 
detectable by less sensitive immunohistology. In fact, 
our proteomic assessment found Type I collagen to be 
repeatedly lower abundant than Type II collagen. Both 
Type I and Type II collagen did, however, show robust 
immunofluorescence localization in the meninges of 
the optic nerve (Fig. 4d), in what are suggestive of tra-
becular structures, septa or pillars previously described 
by transmission (Anderson, [7]) and scanning electron 
microscopy [54] at this locale and containing collagen-
ous fibrils. Notably, the fluorescence patterns were not 
overlapping, suggesting different collagens might pre-
vail at different meningeal sites and form distinct tra-
beculae or other retiform elements in the SAS. This is 
in agreement with previous findings of considerable 
“structural variability” within the meninges depending 
on location along the optic nerve [54], and variations 
of the spinal SAS “from one segmental level to the next 
within the same specimen” [76]. In a similar vein, the 
volume fraction attributable to arachnoid trabeculae, as 
determined by optical coherence tomography, has been 

Table 2 Top 25 significantly upregulated proteins in brain and spinal cord meninges

Proteins significantly upregulated in each compartment vs the other are listed in descending order of log2 p-value

Brain Spinal Cord

Solute carrier family 22 member 6 Myotilin

Sideroflexin-5 Nebulin

Brevican core protein Type VI collagen, alpha 3

Solute carrier family 12 member 5 AMP deaminase 1

Folate receptor alpha Myomesin 2

Autotaxin (ENPP2) Myomesin 1

Band 4.1-like protein 1 Tripartite motif-containing protein 72

Sodium-coupled neutral amino acid transporter 3 Ryanodine receptor 1

OCIA domain-containing protein 2 SH3 domain-binding glutamic acid-rich protein

Phosphatidylinositol transfer protein beta isoform Kelch-like protein 40

Tenascin-R Cluster if Ryanodine receptor 1

Neuronal growth regulator 1 Fatty acid-binding protein, adipocyte

Synapsin-2 Phosphoglucomutase-1

Inward rectifier potassium channel 13 Neurofilament medium polypeptide

Neurotrimin Kelch-like protein 41

Opioid-binding protein cell adhesion molecule-like Carbonic anhydrase 3

Cluster of Synapsin-1 Myosin-binding protein C, fast-type

Cluster of Opioid-binding protein cell adhesion molecule-like Alpha-actinin-2

Cluster of Sodium-driven chloride bicarbonate exchanger (NDCBE) Cluster of Fatty acid synthase

Haloacid dehalogenase-like hydrolase domain-containing protein 3 (HDHD3) Fatty acid synthase

Sodium-driven chloride bicarbonate exchanger (NDCBE) Calsequestrin-1

Metallothionein-3 Myozenin-1

4-aminobutyrate aminotransferase, mitochondrial Decorin

Cochlin Myosin-binding protein C, slow-type
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described as “significantly region-dependent in the cer-
ebrum” [12].

The meninges also showed clear and reproducible 
immunostaining of the SAS and trabeculae with antibod-
ies against vimentin and cytokeratins. Vimentin, the Type 
III IF protein expressed by mesenchymal cells (Damjanov 
et al. 1982), localized to trabecular cells, as well as cells 
of the pia and arachnoid (Fig. 5a, d; Additional file 1: Fig. 
S4). This agrees with previous reports of immunohisto-
chemical detection of vimentin in embryonic [13], nor-
mal [4] and pathologic human meningeal tissue [44, 79]. 
Vimentin staining – particularly of trabecular cells—was 
clearly distinguished from the neighboring Type II col-
lagen staining, however immunoreactivity of both pro-
teins was evident in cells of the arachnoid and, to a lesser 

extent, in the pia (Additional file 1: Fig. S4). Keratin 76, 
prominently detected during proteomic assessment, was 
also widely distributed within the pia, arachnoid, and 
cells of the trabecular meshwork, though in non-over-
lapping manner with vimentin (Fig. 5a, b). Certain cells, 
however, appeared to display staining of both filamen-
tous proteins, in accord with description of leptomenin-
geal tissue as manifesting both fibroblastic and epithelial 
qualities [31, 128]. Staining with pancytokeratin anti-
body, which detects multiple cytokeratins, likewise high-
lighted cells in the pia and arachnoid (Figs. 4b, 5c, d), as 
well as cells traversing the SAS that appear in singular 
form in association with thin, Type II collagen + filamen-
tous structures (Fig. 4b) or in sheets (Fig. 5c). These dis-
tinct filamentous and sheet-like forms possibly represent 
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Fig. 4 Immunofluorescence detection of trabeculae. (a) SEM of rat meninges, performed as described (Saboori, [111]), highlighting reticular 
network of diverse trabeculae. (b)Immunofluorescence of mouse spinal meninges, carried out on a tissue section cut from intact mouse spinal 
column and transferred to adhesive tape as described in Methods. Structural features of spinal meninges align with near superimposition to those 
in the SEM, highlighting staining of trabeculae by anti-collagen II and pan-cytokeratin antibodies. (c) Collagen II staining of mouse spinal meninges 
highlights plate-like (✻), tree-like ( ←), veil-like (✭), and rod-like (◀) trabeculae seen in SEM (Saboori, [111]), as well as the dura. (d) Mouse optic nerve 
meninges indicating non-overlapping collagen I and collagen II staining
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filiform trabeculae/chordae and  membranous septa, 
respectively, described in ultrastructural studies [4, 83]. 
Some cells also appeared positive for both pancytokera-
tin and Type II collagen staining (Fig. 4b). Of note, pan-
cytokeratin staining of the pia appeared to highlight a 
wider swath of membrane than did keratin 76 staining 
(contrast Figs. 5a, c, d), possibly suggesting that keratins 
in addition to keratin 76 contribute to pial composition.

Brain meninges were also analyzed to show they, too, 
remain intact through our tissue sectioning protocol 
(Additional file 1: Fig. S5). Staining of Type II and Type 
III collagen was evident at a region near the cerebral-
cerebellar border (Additional file 1: Fig. S5a). The pat-
terns were clearly distinct, but multiple cells appeared 
to express both proteins. Though Type III collagen 
was considered one of the proteins of the Extracellular 
Matrix category to be exclusive to the spinal menin-
ges (Fig. 1b), this was based solely on the thresholding 

criterion of needing to be detected in 4/6 samples. Type 
III collagen was only detected in 3/6 samples of brain 
meninges and, thus, not considered reproducibly pre-
sent at this local. Staining of tenascin-R, which was 
one of the Extracellular Matrix proteins that registered 
unique to the brain meninges, seemingly localizes along 
the pial interface at the parenchymal surface, as well as 
within the subarachnoid space (Additional file  1: Fig. 
S5b).

Imaging Mass Cytometry (IMC) was used as another 
platform to resolve Type I collagen localization, in the 
off chance that immunofluorescence posed unique and 
unrecognized staining challenges for brain or spinal 
meninges. As seen in spinal section (Additional file  1: 
Fig. S6), collagen I staining was largely confined to bone, 
though immunoreactivity along the pia was also seen. No 
patent staining of trabeculae or other structures within 
the SAS was observed.

Fig. 5 Vimentin and cytokeratin identify trabecular and other meningeal cells. Immunofluorescence of mouse spinal meninges, performed 
as in Fig. 4. (a) Vimentin staining highlights cells within the SAS associated with trabeculae, as well as a thin layer of pial cells most closely 
apposed to the SAS. Keratin 76 (KRT76) staining is also seen in cells of the pia and arachnoid, as well as diffusely throughout the trabecular mesh, 
but does not overlap with vimentin. (b) Keratin 76 is associated with sheets of trabecular cells in addition to pial and arachnoid membranes. (c) 
Pancytokeratin staining of cellular sheets ( ←), characteristic of epithelial cells; cytokeratin-filled, cell processes (◆) may contribute to trabeculae 
of the filform type [4]. (d) Pancytokeratin staining of cells in the pia and arachnoid, and filamentous processes in the SAS; vimentin highlights cell 
bodies associated with trabeculae
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Ultrastructural localization of meningeal proteins
To further examine protein localization at higher reso-
lution, tissue samples were examined using immuno-
scanning electron microscopy (immuno-SEM). The pia, 
arachnoid, dura, SAS with its varied forms of trabeculae 
and other traversing structural elements, and attached 
vertebral bone were evident in spinal samples (Additional 
file  1: Fig. S7). Findings further replicated observations 
made by immunofluorescence (Fig.  6, Additional file  1: 
Fig. S8). Gold-labeling of Type II collagen was observed 
in association with varied trabecular forms, including 
sheet-like (Fig. 6e, f ) and filiform (Additional file 1: Fig. 
S8) structures. Type I collagen staining was not observed 
in the meningeal tissue, but only in the surrounding ver-
tebrae (Fig.  6a, b), where it was consistently detected 
across samples. Pancytokeratin immunoreactivity was 
also confirmed at the ultrastructural level (Fig.  6c), 
reflecting the staining seen in immunofluorescence 
(Fig. 6b, d).

Confirmation of meningeal protein expression
Lastly, Western blotting was used to confirm expression 
of some prominent structural proteins that did not show 
reproducible staining patterns by immunofluorescence 
or immuno-SEM (Additional file  1: Fig. S9), as well as 
to reinforce earlier quantitative assessment. Type I col-
lagen α1 peptide was detected at similar levels in both 
brain and spinal meningeal samples, which aligned with 
the proteomic results. In agreement with the volcano 
plot analysis, Type VI collagen was present in higher 
amount in the spinal meninges compared to meninges 
of the brain. Keratin 8—among the 15 most abundant 
proteins expressed in spinal meninges (Fig. 1)—likewise 
was in greater abundance in spinal meninges by western 
blot. However, Type III collagen, which was only detected 
in 3/6 samples and, thus, didn’t satisfy the 4/6 criterion 
for being considered present in brain meninges (Fig. 1b), 
showed similar levels in both meningeal compartments. 
This was most likely the result of Type III collagen being 
just below the limit of proteomic identification reproduc-
ibility in the brain meningeal samples.

Discussion
Proteomic interrogation provided a first-hand account-
ing of the molecular nature of prominent structural com-
ponents of the meninges, revealing several proteins that 
had not yet been identified in the meninges. It addition-
ally illuminated potential differences that exist in this tis-
sue between the brain and spinal cord. (Fig. 1, Table 1). 
Specifically, meninges of the brain displayed a greater 
number and diversity of proteins. Enrichment analysis 
allowed for a ‘bird’s eye view’ of both proteomes, showing 
differential and diverse function in cellular components 

and protein expression (Figs. 2 – 4 and Table 2). Expres-
sion and localization of prominent structural proteins 
were further confirmed by immunostaining at the fluo-
rescence microscopic and ultrastructural levels (Figs.  5, 
6), assigning protein identities to meningeal features 
previously described mainly morphologically by electron 
microscopy. Western blotting further validated prot-
eomic evaluation, in some cases reinforcing examples of 
differential protein expression (Additional file 1: Fig. S9).

Notwithstanding protein validation by several means, 
the prospect of contamination of meningeal samples 
was a valid concern. It need be underscored that perfu-
sion of Evan’s blue dye before dissection was critical in 
making the large meningeal vessels stand out, clearly 
differentiating the meninges from the underlying paren-
chymal tissue and overlying bone. Specifically, the entire 
meninges, even outside the large vessels, retained a dis-
tinct blue hue, while the parenchyma and skull, in stark 
comparison, were left off-white. This overt difference 
was due to the larger macrovasculature of the meninges 
binding considerably more dye than did the decidedly 
smaller microvasculature of the extra-meningeal tissue, 
and significantly facilitated distinguishing the meninges 
from their surrounds. Moreover, clarifying the meningeal 
extracts by spinning through 0.22  μm centrifuge filters 
excluded small bone chips, further limited bone contami-
nation. Detection of tight junction protein, claudin-11 
(Additional file  1: Fig. S3), which has been localized to 
arachnoidal cells (Uchida et al., 2019), but not other tight 
junction proteins characteristic of parenchymal vessels, 
reinforces that contamination was kept to a minimum. 
Despite the preventative steps taken, it is acknowledged 
that elimination of contaminating extra-meningeal tissue 
could not be completely assured.

The abundance of collagen proteins was expected, as 
arachnoid trabeculae have been described as “a system of 
branching and anastomosing collagen bundles” (Ander-
son, [7]), and a “spongy connective tissue made of colla-
gen fibers and fibroblasts” [29]. Ultrastructural analysis 
has further revealed “the SAS containing collagen fibrils 
in longitudinal and cross section [26]. Less anticipated 
in our findings was the preeminence of Type II collagen, 
which has restricted distribution and predominates in 
the hyaline cartilage of articular surfaces [11, 65], where 
it provides tensile strength by resisting to swelling pres-
sure [60]. Transcripts (Col2A1) from the Type II collagen 
gene have been detected at low level in human fetal brain 
[53], with concentration in the meninges [64, 100]. But, 
until now, there has been no documentation of which we 
are aware of this gene being expressed in adult meninges 
or of Type II collagen protein localized to this tissue at 
the fetal or adult stage. In the present studies, Type II col-
lagen protein was expressed in meninges of both brain 
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and spinal cord, histologically localizing to both sites and 
within those of the optic nerve as well. It also manifested 
immunostaining patterns consistent with descriptions 

of diverse trabecular structures and other elongated ele-
ments within the SAS that connect the arachnoid and 
pial membranes (Anderson, [4, 7, 22, 23, 54, 77, 83]. The 
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Fig. 6 Immuno-SEM of meninges. Sections of normal mouse spinal meninges adhered to adhesive tape, and processed for immuno-SEM, 
or immunofluorescence/confocal microscopy as described in Methods. (a) Immuno-SEM of collagen I staining (backscatter mode), showing 
1 nm gold labeling (white dots) localized to the bony vertebrae. (b) Immunofluorescence of collagen I exclusively staining the bony vertebrae 
overlying the meninges; the dura and arachnoid membranes show intense pancytokeratin staining. (c) Immuno-SEM of pancytokeratin staining 
(backscatter mode), showing 1 nm gold staining (white dots) of what appear to be trabecular sheets (arrows); gold labeling can be seen extending 
toward the arachnoid membrane. (d) Immunofluorescence of pancytokeratin staining, highlighting similar sheets of trabeculae as seen in SEM, 
as well as arachnoid and pial membranes. (e) Low magnification immuno-SEM (secondary electron mode) of collagen II staining, highlighting 
sheet-like forms of trabeculae. (f) High magnification immuno-SEM of collagen II staining (backscatter mode), showing enlarged region (red box) 
in (e) containing 1 nm gold labeling (white dots)
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elaborate lattice appearance of Type II collagen in the 
SAS offers the prospect of providing a trap and/or sup-
port for immune cells migrating into the meninges from 
the calvarial and vertebral bone marrow [27, 43], periph-
eral circulation [105], or CSF [92]. Type II collagen might 
further cooperate with other collagens to organize leuko-
cytes with the SAS. For example, Type III collagen, also 
found in the meninges, can cross-link the surface of Type 
II collagen and modify its fibril network [125]. As Type 
III collagen forms the reticulin fibers that organize lymph 
nodes [46, 58], it, together with Type II collagen as a sup-
port, might establish an analogous reticular network in 
the meninges to retain and/or segregate leukocyte popu-
lations during neuroinflammation [71]. The appearance 
in the SAS of specialized immune cell aggregates called 
tertiary lymphoid organs (TLOs,also referred to, among 
other names, as tertiary lymphoid structures and B cell 
follicles during progressive phases of the demyelinating, 
neuroinflammatory disease Multiple Sclerosis and its ani-
mal model, experimental autoimmune encephalomyelitis 
(EAE [107, 129] might designate such a capacity. In this 
case, leukocytes trapped in a web of arachnoid trabecu-
lae would be an example of compartmentalized inflam-
mation [50]. Such a prospect is supported by descriptions 
of reticular networks in association with or enveloping 
immune cell aggregates within the meninges of mice 
with EAE [68], Pikor et al. [87]).Type II collagen has addi-
tionally been recognized as a major target for peripheral 
autoimmune responses [38, 103] and exhibits a known 
common splice variant that binds TGFß [131]. Thus, 
besides acting in a structural capacity, it might also serve 
as substrate for and/or determinant of meningeal inflam-
matory activity in CNS autoimmunity [70]. Type VI col-
lagen, found in both brain and spinal meninges, consists 
of monomers that aggregate linearly to form beaded fila-
ments or laterally through their globular domains [9], 
and might further lend to creating a 3D network in these 
tissues capable of filtering cellular and soluble elements 
[56].

Particularly surprising, however, was that Type I col-
lagen was not observed in the brain or spinal meninges 
by immunofluorescence or immuno-SEM. As both these 
immunostaining techniques did detect considerable dis-
tribution of this protein in the surrounding bone, anti-
body reactivity was not problematic. It is further unlikely 
that the observed meningeal staining by anti-Type II col-
lagen actually reflected covert Type I collagen reactivity, 
as none of four different anti-Type I collagen antibodies 
evaluated reproducibly stained the meninges. These find-
ings are seemingly at odds with assertions that cranial 
arachnoid trabeculae are “predominantly made of Type 
I collagen” [12], and may call into question prior recog-
nition of this protein by non-biochemical methods.  In 

this regard, its presence in the adult meninges has largely 
been implied from structural features revealed by elec-
tron microscopy (Mortazavi et  al. [75], Saboori, [111]), 
second harmonic generation imaging [24], and polarized 
light microscopy [74], with confirmation of its expres-
sion restricted to developing meningeal fibroblasts [32, 
51]. According to transmission electron micrographs, 
“the periodicity seen with alternating light and dark 
periods’’ confirmed the presence of this particular fibril-
lar collagen (Mortazavi et al., [75]). Perhaps the periodi-
cal D-band pattern, which is generally recognized as a 
unique ultrastructural characteristic shared by all fibril-
forming collagens [80], lent to this assumption. Distinc-
tive negative-staining band patterns displayed by Type II 
collagen could potentially resolve this matter [81]. And 
in a lone report listing histological immunopositivity of 
Type I collagen in fetal and adult meninges, no support-
ing microscopic images accompanied this classification 
[74].

Equally notable to the absence of immunodetectable 
Type I collagen from sections of adult mouse brain and 
spinal meninges, was its overt histological expression, 
along with Type II collagen, in meninges of the optic 
nerve. Such regional variability in collagen expres-
sion in the meningeal landscape could reflect a diver-
sity in functional performance of this tissue along the 
CNS axis. Moreover, that the Col1A1-GFP transgenic 
marker has been reported to label a diverse population 
of regionally segregated meningeal fibroblasts in E14 
mouse embryos [32] might further indicate Type I col-
lagen plays a more prominent role during embryonic 
development than in adulthood. A few non-mutually 
exclusive possibilities may be considered for the seem-
ingly inconsistent detection of Col1A1by proteomics 
and Western blot, but not microscopy. The prominence 
of Type I collagen in the walls of large blood vessels, 
particularly arteries [93, 127], and the tenuous attach-
ment of these structures to the leptomeninges, could 
be contributing factors. While these vessels would be 
retained in samples directly solubilized for biochemical 
analysis, they could have been dislodged when tissue 
sections were repeatedly washed during immunostain-
ing—leading to Col1A1 appearance in the former but 
not the latter. Alternatively, as Col-1 contributes to 90% 
of the total organic component of bone matrix [21], 
the Col1A1peptide detected in meningeal proteomes 
of both brain and spinal cord could have been due to 
minor contamination from various bone cell popula-
tions or extracellular collagen that accompanied scrap-
ing of the dura from skull and vertebrae [102]. Despite 
its absence from trabeculae, Type I collagen may be 
associated with the pia, as reflected by IMC analysis. 
The detection by IMC, alone, of Type I collagen along 
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the pial membrane might reflect the unique sensitiv-
ity of this technique and/or application of the specific 
metal conjugated antibody.

Aside from various collagens, IF-forming keratin and 
vimentin proteins were prominently detected and dis-
tributed throughout the pia, arachnoid and SAS. Type 
II keratins are basic or neutral, high molecular weight 
(50—70 kD) fibrous proteins expressed in epithelial 
cells [37, 45], wherein they perform a scaffolding func-
tion while affording resistance to stress and damage [72]. 
Keratin 76, in particular, is required for barrier-forming 
tight junctions in skin squamous epithelial cells [34] and, 
in what might portend a role in CNS autoimmunity, has 
been shown to possess immunomodulatory proper-
ties [108]. Keratin filaments and desmosomes have also 
been described in “arachnoidal sheaths” of some higher 
vertebrates [2], and keratin 8 immunoreactivity detected 
in cells of normal human spinal leptomeninx [48] and 
various meningiomas [69]. By comparison to other 
cytoskeletal and structural proteins, IFs possess unique 
viscoelasticity properties [20], enabling them to con-
trol viscous dissipation of energy (Bonifasi-Lista et  al., 
2005). This feature may contribute to meninges lowering 
the potential for brain or spinal injury following trau-
matic incidents [91]. The presence of both keratin and 
vimentin proteins is supportive of the dual characteri-
zation of meningothelial cells as being at once “special-
ized epithelial cells” [94] and “fibroblast-like cells” [128]. 
While keratins are conventionally recognized as the IF-
forming subunits of epithelial cells (Karantza, [47]), and 
expression of these proteins taken as evidence of a cell’s 
epithelial origin (Werner et  al., [122]), there have been 
reports of keratin gene and protein expression, along 
with that of vimentin, in cells of mesenchymal derivation, 
including fibroblasts [49, 116]. In the present study, pat-
terns of keratin 76 and vimentin distribution were non-
overlapping but, in some cases, both proteins appeared 
to be expressed by the same cell. Thus, some menin-
gothelial cells might be in a transitional state between 
fibroblast and epithelial type. That arachnoid cells can 
change between epithelial and mesenchymal states dur-
ing meningeal reconstruction following injury [18] 
further conveys such a transitional nature of the menin-
gothelial population. While most of the collagen staining 
was extracellular in the images shown here, some cells 
appeared immunoreactive for both pancytokeratin and 
Type II collagen, implying a proportion of meningeal col-
lagen might originate from cells with epithelial qualities. 
Though contrary to the prevailing opinion that fibro-
blasts are the predominant collagen-producing cell type 
[39, 52], this agrees with prior findings that collagens 
Type I and II are secreted by epithelial cells in corneal tis-
sue [42].

The observed differences between the brain vs spinal 
cord meningeal proteomes echo previous assertions of 
segmental variation in microsurgical anatomy within 
the SAS and region-dependent diversity in the density 
and morphology of trabecular structures [12, 74, 76]. 
From the histological perspective, most striking was 
the exclusive distribution of Type I collagen within 
the meninges of the optic nerve, where it took the 
form of bundles suggestive of the trabeculae and pil-
lars previously described at this CNS level [54]. What 
significance this heterogeneity holds is only a matter 
of speculation at this time. But, given the increasing 
role attributed to the meninges as a cradle of immune 
activity (Russi and Brown, [22, 23, 66, 95, 96], Di Marco 
Barros et al. [33, 14], such disparities in structural and 
ECM proteins might provide a basis for differences in 
the neuroinflammatory response between the brain 
and spinal cord [106, 130]. Reflecting this possibility is 
the finding that resident, meningeal fibroblastic stro-
mal cells undergo remodeling during EAE, in a process 
directed by infiltrating Th17 cells and accompanied 
by production of ECM, recruitment of inflammatory 
cells, and establishment of TLOs Pikor et  al. [87, 88]. 
Though it is unknown if the identity of these particu-
lar stromal cells is the same as the  keratin+ and/or Type 
II  collagen+ cells associated with trabecular structures 
in the present study, what is clear is the reticulum of 
meningothelial cells and derivative ECM has the poten-
tial to establish immune cell niches in the CNS and 
influence the course of neuroinflammation [16, 87, 88, 
90]. In turn, organization and regulation of specific 
immune cell populations by the meninges could stem, 
in part, from the ability of epithelial and fibroblastic 
cells to secrete chemokines and/or provide leukocyte 
binding sites [113], Shaykhiev and Bais, [109, 119]. It 
is further significant that meningeal stromal cells, in 
particular, can release proinflammatory cytokines and 
inflammatory mediators [87, 123], that foster and mod-
ulate focal leukocyte habitats in the SAS.

Several elaborate efforts employing single-cell analy-
sis to interrogate its immune cell repertoire have laid 
bare that the meninges—far from a historical lone pro-
tective role—is an immunological niche of considerable 
complexity [16, 57, 97, 101, 102, 118]. Future work to 
compare changes in the composition and arrangement 
of the meningeal landscape at the brain and spinal lev-
els during neuroinflammatory episodes could shed light 
on how and why inflammatory foci develop where they 
do, and bring the meninges into the drug orbit of thera-
peutics targeting MS and other neurodegenerative dis-
eases (Russi and Brown, [61, 66, 96].
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Additional file 1:  Fig. S1. Removal of meninges from mouse brain and 
spinal cord. Following initial perfusion with PBS to remove blood, Evans 
Blue dye was perfused to stain the meningeal vessels. (Top row) Brain, 
with meninges containing stained blood vessels. (a) Before removal of 
brain meninges. (b) After removal of meninges from the left side of the 
brain; the right side of the brain shows meninges still adherent. (Bottom 
row) Spinal cord. (c) Before removal of meninges. (d) After removal of 
meninges from the caudal end of the spinal cord (left side of image); 
spinal meninges are shown still adherent to the rostral end. Fig. S2. Com-
partmental analysis of shared and unique proteins in brain and spinal cord 
(SC) meninges. Total Proteins from proteomes in Figure 2 were further 
subdivided into the respective subcellular compartments and numbers 
of shared and unique proteins within each compartment of brain and 
spinal cord meninges indicated. Fig. S3. Meningeal trabeculae form a 3D 
meshwork. Iso-surface rendering (Imaris software) of collagen II-stained 
trabeculae, highlighting a dense meshwork that permeates the subarach-
noid space. This could act to filter leukocytes in the CSF, and aid in nucle-
ating formation of mELTs. As lymphoid chemokines can bind collagen 
peptides, trabeculae may help set-up concentration gradients necessary 
to drive immune cell recruitment. Fig. S4. Vimentin and collagen II show 
divergent networks in the SAS. Collagen II staining within normal mouse 
spinal meninges casts a diffuse net through the SAS, and is distinct from 
the focal vimentin staining highlighting trabecular cells. Select cells of the 
arachnoid and pial layers exhibit staining of both structural proteins. Fig. 
S5. Immunofluorescence of brain meninges. Sections were cut through 
whole mouse skull, at a region near the junction of the cerebrum and cer-
ebellum, and adhered to adhesive tape. Brain meninges remain intact as 
in sections through spinal column (Figs. 4 and 5). (a) Staining of collagen II 
and collagen III within an apparent dural fold. (b) Staining of ECM protein, 
tenascin-R, and cytoskeletal protein, vimentin. Fig. S6. IMC of meninges. A 
section of normal mouse spinal meninges adhered to adhesive tape and 
processed by IMC as described in Methods. Metal-conjugated antibodies 
(collagen I and MHC II) and a cationic nucleic acid intercalator containing 
natural abundance iridium 191Ir and 193Ir) were used. Collagen staining 
is most prominent in vertebral bone but is also seen along the pia. MHC 
II identifies some antigen presenting cells in the vertebral bone marrow, 
while the DNA intercalator highlights a high density of nuclei in the bone. 
Fig.S7. SEM of subarachnoid trabeculae. Sections of normal mouse spinal 
meninges adhered to adhesive tape and processed for SEM as described 
in Methods, highlighting different shaped trabeculae with attached 
structures. (a) Filiform (←), rod-like (✻), and tree-like (◂) trabeculae. (b) 
Sheet-like structures (←) between the bone (B), dura (DM) and pia (PM), 
the latter having been torn away from the underlying parenchyma. (c) 
Veil-like trabeculae (✻) and what may be trabeculae-associated cell bodies 
(←). Fig. S8. Immuno-SEM of collagen II. Sections of normal mouse spinal 
meninges adhered to adhesive tape and processed for immuno-SEM as 
described in Methods. Fig. S9. Western blotting of meningeal proteins. 
Western blotting was carried on a sampling of meningeal proteins to 
compare with proteomic and immunohistological results. Gel images 
highlighting the respective protein bands are depicted on the left, and 
corresponding quantification of protein bands is shown on the right. 
Boxes are denoted for ease of grouping like samples together. For each 
protein being assessed, three samples each of brain and spinal cord 
meninges, respectively, were run on the same gel and blotted onto the 
same membrane. (a) Type III collagen; (b) Type VI collagen; (c) Keratin 8; 
(d) Type I collagen. Table S1. Primary antibodies used for immunofluores-
cence, immune-SEM, and Western. Table S2. Secondary antibodies used 
for immunofluorescence.

Additional file 2:  Table. S3. Total proteins detected in brain and spinal 
meninges. Proteomic analysis was performed on 6 samples each of naïve 
Biozzi mouse brain and spinal.

Additional file 3:  Table S4. All proteins significantly upregulated in brain 
and spinal cord meninges.
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