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Human brain solute transport quantified 
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Abstract 

Whether you are reading, running or sleeping, your brain and its fluid environment continuously interacts to distrib‑
ute nutrients and clear metabolic waste. Yet, the precise mechanisms for solute transport within the human brain 
have remained hard to quantify using imaging techniques alone. From multi-modal human brain MRI data sets 
in sleeping and sleep-deprived subjects, we identify and quantify CSF tracer transport parameters using forward 
and inverse subject-specific computational modelling. Our findings support the notion that extracellular diffusion 
alone is not sufficient as a brain-wide tracer transport mechanism. Instead, we show that human MRI observations 
align well with transport by either by an effective diffusion coefficent 3.5× that of extracellular diffusion in combina‑
tion with local clearance rates corresponding to a tracer half-life of up to 5 h, or by extracellular diffusion augmented 
by advection with brain-wide average flow speeds on the order of 1–9 µm/min. Reduced advection fully explains 
reduced tracer clearance after sleep-deprivation, supporting the role of sleep and sleep deprivation on human brain 
clearance.
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Introduction
The brain and its fluid surroundings form a singular 
environment for solute influx, exchange and clearance, 
marked by intertwined vascular and extravascular path-
ways [1, 2]. Indeed, the privileged absence of lymphatic 
vessels within the brain parenchyma [3] accentuates 

other potential modes of metabolic solute transport such 
as extracellular diffusion [4, 5], advection by cerebro-
spinal or interstitial fluid flow [6, 7], and local clearance 
across the blood–brain barrier [1]. The introduction 
of the glymphatic theory [8] marked the beginning of a 
resurgence of research into these mechanisms, and their 
implication in neurodegenerative disease [1, 9], neuro-
logical disorders [10], stroke [11], edema [12], oncology 
[13], drug delivery [14], and sleep [15–17]. Yet, their con-
tribution and relative roles remain under active debate 
[18–21], in part due to the lack of direct in-vivo meas-
urements, and proxies offered by diffusion tensor imag-
ing (DTI), contrast-based magnetic resonance imaging 
(MRI) or fluorescence microscopy.

In the extracellular space (ECS) and across species, 
diffusion parameters are well-established via experi-
mental, clinical, as well as computational techniques [4, 
22]. Moreover, previous studies arrive at the conclusion 
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that extracellular diffusion appears to dominate advec-
tion by interstitial fluid (ISF) flow in the nanoscale ECS 
[19, 23, 24]. On the other hand, cerebrospinal fluid (CSF) 
velocities are observed at the order of cm/s in human 
[25], and reach tens of µm/s in mice pial perivascular 
spaces (PVSs) [26]. Whether substantial fluid velocities 
also manifest in parenchymal PVSs and across species 
(importantly including in humans) are open questions; 
notably juxtaposed by experimental observations of bulk 
ISF rates of the order µm/min in rats [4, 6, 27], and MRI-
guided computational models revealing effective diffusiv-
ity 10–25× that of interstitial diffusivity in mice [28]. The 
enhanced diffusion may be the result of either dispersion, 
bulk flow or both.

In humans, CSF tracer (gadobutrol) enrichment after 
intrathecal injection is characterized by fast transport in 
the CSF over the first few hours, a brain-wide enrichment 
over the first 24  h, followed by decline from 24–48  h, 
and with no evidence of tracer remaining in the brain 
after 4 weeks [10, 29–31]. Intriguingly, the tracer enrich-
ment patterns differ between sleeping and sleep-deprived 
subjects, both in the cerebral cortex and in the subcor-
tical white matter [17]. Altered brain tracer enrichment 
also accompanies chronic poor sleep quality [32]. These 
observations thus complement previous striking reports 
of the effect of sleep on brain solute influx and clearance 
in mice [15]. Further, contrast MRI-informed biophysics 
models reveal that the tracer spreads faster also within 
the human brain than by extracellular diffusion alone [33, 

34], albeit without pin-pointing or quantifying alternative 
transport parameters.
Forward computational models of macroscale solute 

transport [33], diffusion and flow in the ECS [23, 24, 35], 
and notably perivascular fluid flow and transport [36–42] 
are now effective complementary tools for evaluating 
physiological hypotheses. Yet, there is an untapped tech-
nological potential for inverse computational modelling 
in which biophysics-based models of solute transport 
are synthesized with multi-modal data to systemati-
cally identify and quantify underlying transport param-
eters. Valnes et  al [34] estimate an effective isotropic 
diffusion coefficient based on MRI data in a limited set 
of (three) human subjects, but do not account for other 
mechanisms. In rats, and also leveraging dynamic con-
trast-enhanced MRI, Tannenbaum and colleagues have 
developed and refined an optimal control approach for 
identifying glymphatic vector fields [43–45], but without 
quantifying absolute velocity magnitudes, water influx or 
local clearance rates.

In this study, we identify and quantify extravascu-
lar solute transport parameters in the human brain by 
combining high-fidelity inverse biophysical modelling 
with multi-modal MRI data from 24 subjects over 48 h, 
including seven subjects deprived of sleep. We repre-
sent a comprehensive set of glymphatic-type transport 
mechanisms including (1) extracellular diffusion, (2) α
-enhanced extracellular diffusion, (3) α-enhanced extra-
cellular diffusion combined with local solute clearance, 
and (4) extracellular diffusion combined with advection 
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Fig. 1  Clinical observations (data) versus simulations results for (1) pure diffusion (2) Enhanced diffusion ( α ) and local clearance (r) and (3) Diffusion 
and bulk flow ( φ ). Concentrations are shown as regional averages over all patients at 24 and 48 h after tracer injection. All methods provide 
reasonable alignment with the data after 24 h. However, 48 h after injection, pure diffusion overestimates tracer amount found within the brain. 
Models using enhanced diffusion with local clearance and diffusion with bulk flow give reasonably good agreement with data both after 24 
and 48 h. Sustained concentrations in the white matter as observed in data, is not seen when local clearance is included in the model
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by tissue fluid flow. For the latter two scenarios, we esti-
mate α and the local clearance rates r, and the fluid flow 
velocities φ , respectively. Our findings (Fig.  1) demon-
strate that clinically-observed tracer influx and clear-
ance patterns are compatible with (a) enhanced effective 
extracellular diffusion with α ≈ 3.5 combined with a local 
clearance rate of r ≈ 3.1 ×10−3/min, or (b) extracellu-
lar diffusion augmented by advection with average fluid 
flow speeds of |φ| ≈ 1–8 µm/min. The average fluid flow 
speeds were reduced by a factor of two during the clear-
ance phase (24–48  h) in sleep-deprived subjects com-
pared to sleeping reference subjects.

Results
From multi-modal human brain MRI (T1-weighted, 
T1 maps, DTI) prior to intrathecal tracer injection and 
contrast-enhanced MRI at multiple time points 2–48  h 
after [17], we identify and quantify tracer transport char-
acteristics using forward and inverse subject-specific 
computational modelling. To capture different multiscale 
transport mechanisms, such as diffusion in the extracel-
lular space, dispersion due to pulsatile motion, advection 
by interstitial or cerebrospinal fluid flow, and flux and 

transport between compartments such as e.g.  between 
the vasculature, PVS and ECS [1, 21], we consider a dif-
fusion-advection-reaction equation to model the tracer 
concentration c = c(x, t) (mmol/L) in the brain over time:

Extracellular diffusion is represented by the diffusion 
coefficient D∗

= D∗
(x) of CSF tracer in brain tissue [46], 

while α models a diffusion enhancement e.g. due to dis-
persion associated with pulsatile mixing (without net 
fluid flow) [37, 42]. The vector field φ = φ(x, t) is the 
velocity of an underlying fluid such as e.g. ISF bulk flow 
or CSF/ISF PVS flow [8, 27], and the associated term thus 
models solute advection. Finally, r is the local clearance 
rate and represents solute clearance by rapid transport 
(molecule removal at the minute scale) e.g.  via minor 
leakage across the blood–brain barrier (BBB) [47] or 
perivascular transport.

One‑fourth of the tracers enter the brain
After intrathecal administration, tracer spreads crani-
ally along the SAS, enters the brain tissue, and clears 

(1)∂t c − ∇ · αD∗
∇c +∇ · (cφ)+ rc = 0

Fig. 2  Up to 33% and on average 25% of the intrathecally injected tracer spreads into the brain over a time frame of 24–48 h. A T1-weighted 
MRI at baseline and overlay with tracer concentrations (mmol/L) after ∼ 6, 24, and 48 h in a sample subject; B–D: total amount of tracer (mmol) 
in the brain (B), cerebral cortex (C) or subcortical white matter (D) over time for all subjects combined. Error bars represent standard deviation
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from the brain and SAS on a time scale of hours to days 
(Fig.  2A, [17]). By combining the MR signals with T 1 
maps, we quantify the tracer concentration (mmol/L) 
and amount of tracer (mmol) entering the brain for each 
subject at different time points (Fig. 2B–D). After ∼6 h, 
nearly one-fourth ( 23± 10 %, 0.116± 0.051 mmol) of 
the 0.5 mmol tracer injection has entered the brain. The 
maximal amount of tracers ( 25± 10 %, 0.125± 0.050 
mmol) is found within the brain after 24 h, while 14 ± 7 % 
( 0.068± 0.034 mmol) remains after 48  h. Most of the 
tracer enters the cerebral cortex (Fig.  2C), while less 
than 0.06 mmol also enters the subcortical white matter 
(Fig.  2D). Using subject-specific brain volumes, we find 
that the average concentration ranges between 0.054–
0.377 mmol/L in the cerebral cortex and 0.014–0.113 
mmol/L in subcortical white matter. After 24  h, the 
group mean is 0.146 ± 0.062 mmol/L in the cerebral cor-
tex and 0.056 ± 0.026 mmol/L in the subcortical white 
matter. At this timepoint, there are no significant differ-
ences between sleep and sleep deprivation group nei-
ther brain–wide ( 0.119± 0.054mmol vs 0.137± 0.036

mmol, Student’s t-test, p = 0.45), in the cerebral cortex 
( 0.091± 0.041mmol vs 0.104 ± 0.030mmol, Student’s 
t-test, p = 0.45), nor in the subcortical white matter 
( 0.028± 0.015mmol vs 0.032± 0.009mmol, Student’s 
t-test, p = 0.53). However, higher amounts of tracer lin-
ger in the brain of the sleep deprived subjects after 48 h 
( 0.057± 0.030mmol vs 0.088± 0.031mmol, Student’s 
t-test, p = 0.0496), with the larger concentration differ-
ences in the subcortical white matter ( 0.018± 0.009

mmol vs 0.028± 0.006mmol, Student’s t-test, p = 0.03). 
In the cerebral cortex, no significant differences are 
found after 48  h ( 0.039± 0.021mmol vs 0.060± 0.026

mmol, Student’s t-test, p = 0.07).

Tracer influx and clearance is more rapid 
than by extracellular diffusion
Accounting for baseline transport by extracellular diffu-
sion only ( α = 1 , r = 0 , φ = 0 ), computational predic-
tions of tracer concentrations and amounts qualitatively 
agree with clinical observations (Fig.  3A, B), while key 
quantitative differences emerge (Fig.  3C, D). Simulated 
transport by extracellular diffusion underestimates the 
tracer influx. After ∼6  h, more tracer is observed clini-
cally than diffusion simulations predict both in the cer-
ebral cortex ( 0.098± 0.045 vs 0.057± 0.029 mmol) and 
subcortical white matter ( 0.016± 0.007 vs 0.001± 0.002 
mmol) (Fig.  3E, F, α = 1 ). After 24  h, observations and 
simulations of tracer amounts agree in the cerebral cor-
tex ( 0.095± 0.038 vs 0.105± 0.039 mmol) and sub-
cortical white matter ( 0.029± 0.013 vs 0.038± 0.014 

mmol). But after 48 h, clinically observed tracer amounts 
were smaller compared to simulations ( 0.046± 0.025 
vs 0.072± 0.035 mmol in the cerebral cortex and 
0.021± 0.010 vs 0.050± 0.022 mmol in the subcortical 
white matter, Fig. 3D). Thus, extracellular diffusion alone 
also underestimates the tracer clearance.

Enhanced diffusion predicts inaccurate influx 
and clearance interaction patterns
Enhanced transport in pial murine PVS by cardiac-
induced pulsatile mixing or CSF flow is observed in-
vivo [26, 48]. Within the parenchyma, in-silico studies 
suggest that such enhanced transport may be modeled 
by an increase in the effective diffusion coefficient [28]. 
To investigate this effect for human brain transport, we 
consider effective diffusion coefficients 2–5 times greater 
than DTI-informed values ( α = 2, 3, 4, 5).

As expected, the increase in diffusion coefficient accel-
erates tracer influx (Fig.  3C, D). In the cerebral cor-
tex, substantially enhanced diffusion gives simulated 
tracer concentrations closer to (but still underestimat-
ing) clinical observations after ∼6  h ( 0.098± 0.045 vs 
0.089± 0.045 mmol, α = 5 , Fig.  3C). At 24  h, the dis-
crepancy increases with increasing α . After 48  h, the 
simulated values are essentially independent of α in the 
cerebral cortex ( 0.07± 0.04 for all α ) and around 1.5 
times the tracer concentrations observed. In the subcor-
tical white matter, similar observations hold (Fig.  3D). 
After 6  h, simulations with α ≤ 4 underestimate the 
amount of tracer, while after 24 h, simulations with α = 2 
overestimate the data by a factor 2.1± 0.6 ( 0.029± 0.013 
vs 0.056± 0.022 mmol) with increasing discrepancy for 
increasing α . Moreover, tracer concentrations in the sub-
cortical white matter at 48 h are overestimated by more 
than 2× . We also performed simulations with reduced 
diffusion coefficients yielding reduced influx, also not 
in agreement with the clinical observations (data not 
shown). Overall, these results suggest that neither diffu-
sion nor enhanced diffusion suffice as the sole transport 
mechanism underlying the clinical tracer observations.

Macroscale tracer dynamics agree with enhanced diffusion 
augmented by local clearance
The observation that enhanced diffusion results in more 
accurate estimation of tracers early on, but overestima-
tion at later time points, suggests that a form of local 
clearance may occur. Turning to inverse computational 
modelling [34, 49], we estimate a local clearance rate 
r > 0 and diffusion enhancement 1 < α < 10 that give 
the best match between simulated (1) and observed 
tracer distributions for each subject. In all subjects but 
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one, this optimization algorithm produced numerically 
reliable results (Additional file 1: Tables S7, S8, S9).

The resulting models (n  =  23), which thus repre-
sent local clearance in addition to enhanced diffu-
sion, agree better with the clinical data for all subjects 
and particularly at the 6 and 48  h time points – both 
qualitatively (Fig. 1) and quantitatively in terms of the 
amount of tracer in the cerebral cortex and subcortical 
white matter (Fig.  4A, B). However, some differences 
in the spatial tracer distribution persist (Fig.  1). The 
optimal parameter configurations varied from subject 

to subject with α ∈ (1.1, 7.0) and r ∈ (11, 62)× 10−4/
min, and only a weak correlation ( r = 0.38 ) between 
α and r is found Fig. 4C). The mean optimal diffusion 
enhancement factor was α = 3.5± 1.5 , while the opti-
mal clearance rate was r = (31± 15)× 10−4/min.

Tracer patterns are compatible with extracellular diffusion 
augmented by advective flow at the µm/min scale
The multifaceted evidence for bulk flow of interstitial or 
cerebrospinal fluid through the brain [27], in particular 

Fig. 3  Simulations of transport by extracellular diffusion alone predict delayed influx and efflux compared to clinical observations, with delayed 
efflux also for enhanced diffusion. A Subject-specific computational brain mesh with segmentation of the cerebral cortex (blue) and subcortical 
white matter (green); B simulated tracer distribution after 24 h in a sample subject; C–D predicted versus observed group–averaged amount 
of tracer in the cerebral cortex (C) and subcortical white matter (D) under extracellular diffusion ( α = 1 ) and enhanced diffusion ( α > 1 ). Error bars 
represent standard deviation
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the last decade of glymphatic research [8, 21], naturally 
underpins the question of to what extent advection con-
tributes to human brain tracer transport. Longitudinal 
image sets of tracer distributions allow for using high-
dimensional inverse modelling to identify and quantify 
subject-specific flow velocity fields. More precisely, for 
each subject and pairs of time intervals ( ∼6–24 and ∼
24–48 h), we estimate a spatially-varying advective veloc-
ity field φ that gives the minimal misfit between tracer 
observations and advection–diffusion simulations. Our 
optimization algorithm (see Methods) yielded numeri-
cally robust results for all subjects with data availability 
for the time interval 6–24  h (n =  22) and all but three 
subjects for the time interval ∼24–48  h (n =  18, Addi-
tional file 1: Tables S3 and  S4).

The simulations reveal that the clinically observed 
tracer transport is compatible with persistent flow fields 
within the brain parenchyma at mean speeds of ∼1–8 µ
m/min (Fig. 5), corresponding to average bulk flow rates 
of ∼0.02−0.16 µL/(g min) [46]. The estimated velocity 
fields express non-trivial fluid flow patterns (Fig. 5B–C), 
and moderately vary between subjects, time intervals and 
regions. Between ∼ 6 and 24  h, the flow speed is 2.32 ± 
0.75 µm/min on average brain-wide (Fig. 5D, Additional 
file 1: Table S5). Flow speeds are higher in the brain stem 
(2.97 ± 1.30 µm/min) and cerebral cortex (2.48 ± 0.81 µ
m/min) than in the subcortical white matter (2.11 ± 0.67 
µm/min). Turning to the tracer clearance phase (24–
48 h), simulations continue to identify complex advection 
flow fields with brain-wide average flow speeds ranging 
from 1.25 to 8.39 µm/min (Fig. 5E). The flow fields thus 
differ between the two phases: there is only a very weak 
(negative) correlation ( ∼ −0.3) between the estimated 
average flow velocities at 6–24 h and 24–48 h (Additional 
file 1: Fig. S6).

The fluid contribution to changes in tracer concen-
tration ( ∇ · (cφ) ) is naturally decomposed into a purely 
advective component ( φ · ∇c ) and a volume change com-
ponent ( c∇ · φ ) where the divergence of the velocity field 
∇ · φ quantifies the local fluid influx rate. This influx may 
be interpreted as CSF production/absorption via capil-
lary filtration. Computing the brain-wide average diver-
gence of the estimated velocity fields (Fig  5F), we find 
that the fluid influx rate during the 6–24 h interval is 0.72 
± 0.93 ×10−4/min and higher overall in the clearance 
phase (24–48 h): 2.77 ± 1.54 ×10−4/min.

In summary, extracellular diffusion alone overestimates 
the total amount of tracer in the brain during the clear-
ance phase (24–48  h), enhanced extracellular diffusion 
combined with local clearance provides a reasonable 
match in the tracer distribution and amount compared to 
clinical data, while extracellular diffusion with DTI-based 
values combined with advection by an extravascular flow 
field varying in space and time gives a near perfect match 
(Fig.  1). We do however note that of the two inverse 
modelling approaches, the former uses only two control 
variables, while the advective field allows for much more 
variation.

Tracer clearance by advection is reduced in sleep 
deprivation group
Seven of the 24 subjects underwent total sleep depriva-
tion during the first 24 h after injection. The MRI signal 
intensity of these subjects differ compared to sleeping 
controls, as previously reported [17]. To quantify, we 
here find that during the early influx phase (0–6 h), the 
amount of tracer within the brain is comparable for the 
two groups ( 0.111± 0.056mmol vs 0.127± 0.030mmol, 
Student’s t-test, p = 0.54). However, higher amounts of 
tracer linger in the brain of the sleep deprived subjects 

Fig. 4  Predicted versus observed average tracer concentration in cerebral cortex (A) and subcortical white matter (B) under diffusion 
and diffusion–reaction for sleep and sleep-deprived groups combined. Error bars indicate standard deviation. C Optimal enhanced diffusion factors 
α and local clearance rates r 
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after 48  h ( 0.057± 0.030mmol vs 0.088± 0.031mmol, 
Student’s t-test, p = 0.0495), with the larger concen-
tration differences in the subcortical white matter 
( 0.018± 0.009mmol vs 0.028± 0.006mmol, Student’s 
t-test, p = 0.027). Importantly, to assess whether differ-
ences between the groups stem from differences in tracer 
availability at the pial surface, we also evaluated the total 
amount of tracer (per unit depth) over the brain sur-
face for each group: these differences were found to be 
non-significant (p = 0.55, 0.40, 0.14 for ∼ 6, 24, 48 h after 
injection, respectively).

One can then ask whether the effect of sleep depriva-
tion is also captured by the tracer transport parameters; 
i.e. enhanced diffusivity, local clearance, or advective 
flow velocity? Interestingly, the delayed tracer clearance 
after sleep-deprivation is captured by marked differences 
between the groups in terms of fluid flow velocities and 
thus advection over the 24–48 h time interval (Fig. 5E). 
Flow speeds are lower by nearly a factor two in the sleep-
deprived ( n = 7 ) compared to the sleep ( n = 11 ) group 
(2.11 ± 0.59 µm/min vs 4.23 ± 1.98 µm/min, Welch’s 

t-test, p = 0.0057) brain-wide, in the cerebral cortex (2.24 
± 0.69 µm/min vs 4.62 ± 2.03 µm/min, p = 0.0033), and 
in the subcortical white matter (1.96 ± 0.47 µm/min vs 
3.77 ± 1.98 µm/min, p = 0.014). Moreover, the reduced 
flow speeds are mirrored by reduced fluid influx rates 
between 24 and 48  h: 1.68 ± 0.79 ×10−4/min for the 
sleep-deprived vs 3.48 ± 1.51 ×10−4/min (Welch’s t-test, 
p = 0.0051) for the sleep group.

With respect to the diffusion–local clearance 
model, the diffusion enhancement factor ( α ) and 
clearance (r) was found to be slightly higher in 
the sleep ( α = 3.7± 1.6, r = (34 ± 14)× 10−4

/

min) than in the sleep deprived group 
( α = 2.9± 0.9, r = (23± 11)× 10−4

/min). However, 
these differences are non-significant (p = 0.22 and p = 
0.11 for α and r, respectively).

Discussion
Our findings support the notion that extracellular dif-
fusion alone is not sufficient as a brain-wide tracer 
transport mechanism. Instead, we show that human 
MRI observations align well with transport by either (i) 

A B C

D E F

Fig. 5  A Advective fluid flow fields for two sample subjects (upper/lower) during 6–24 h (left) and 24–48 h (right), glyph scale: 3 × . B Locally (over 
∼180 local subregions) averaged velocity field magnitudes for two sample subjects (upper/lower) during 6–24 h (left) and 24–48 h (right), scale 
as in C. C Streamline visualization of sample flow field over 24–48 h. (D Estimated 6–24 h flow speeds (velocity magnitude, see Methods) averaged 
brain-wide, over the cerebral cortex, over the subcortical white matter and in the brain stem for sleeping versus the sleep-deprived groups. E As 
for (D) but for 24–48 h interval. F Brain-wide fluid influx average for the sleeping and sleep-deprived groups over 6–24 h and 24–48 h
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substantially enhanced (3.5× ) extracellular diffusion in 
combination with local clearance rates corresponding to 
a tracer half-life of up to 5 h, (ii) or extracellular diffusion 
augmented by advection with advective ISF or CSF/ISF 
flow speeds of 1–8 µm/min on average. The estimated 
local clearance rates and the flow speeds are within the 
range reported in the literature (as detailed below), while 
the effective enhancement is much larger than what is 
previously reported in humans while still lower than that 
reported in mice.

Our quantification of tracer transport into the brain 
parenchyma reveals that 23–25% ± 10% of the injected 
tracers were found within the brain between 6 and 24 h. 
The peak tracer concentrations in the cerebral cortex and 
subcortical white matter compare well with the respec-
tive concentrations reported by Watts et  al in a single 
subject [30]. These results, in conjunction with tracer 
concentrations in the cranial CSF [30], suggest that no 
more than 33% of injected tracers are located within the 
intracranial compartment at any given point in time; con-
versely, that 67% of the injected tracer has not passed 
from the intrathecal to the intracranial compartment. It 
is not possible to quantify spinal versus cranial outflow 
from these numbers, however they suggest that a domi-
nant unidirectional flow directed towards the upper 
convexities of the brain, as suggested by Cushing’s third 
circulation [50], is unlikely. Previous studies have sug-
gested that 15–35% of CSF is drained along the spinal 
cord [51–53], mainly via spinal nerve roots [54]. As no 
more than ∼ 25% of the tracer remains in the brain at 
any given point, the present data suggest that a relatively 
large portion of CSF may be drained from regions out-
side the cranium. These observations also highlight the 
importance of accounting for flow and transport within 
the CSF compartment, or via the availability of tracer at 
the pial surface as a proxy, when quantifying brain tracer 
influx [16].

Diffusive transport within the interstitium is expected 
to dominate transport over short distances [5, 23, 24, 
44]. However, at the scale of the human brain, previ-
ous studies support the presence of additional trans-
port mechanisms such as enhanced diffusion [34] or 
directional flow [33], although the additional transport 
needed is relatively small. In mice on the other hand, 
Ray et  al. [28] found that diffusive transport with effec-
tive diffusion coefficients 10–25 times greater than 
extracellular diffusion could explain parenchymal tracer 
transport. It should be noted that the dynamics of gad-
olinium-based contrast agent transport are much faster 
in rodents where peak concentration within the brain 
occurs around one hour after injection into the cisterna 
magna [55]. In addition, mice have a CSF turnover time 
three times shorter than humans [56], suggesting higher 

fluid velocities in the SAS. Recently, we have also shown 
that higher SAS velocities reduce time to peak concentra-
tion in the parenchyma [57]. Different SAS dynamics may 
thus at least partially explain the discrepancy between 
estimated dispersion coefficients in mice [28] versus 
humans, both in previous [34] and present studies. Inter-
estingly, as shown here enhanced diffusion may explain 
clinical observations during the influx phase (t < 24  h), 
but not during the outflux phase.

A scenario with local clearance with a clearance rate r 
combined with enhanced diffusion gives reasonable 
match with clinical observations, not only brain-wide but 
also in the cerebral cortex and in subcortical white mat-
ter. The cohort average α = 3.5 corresponds to an effec-
tive diffusion coefficient of Deff = 3.25× 10−4 mm2 s −1 . 
This value is close to the free diffusion coefficient of 
gadobutrol in water D = 3.8× 10−4 mm2s−1 [34]. Inter-
preting the results as enhanced diffusion thus suggest a 
tortuosity of �2 = D

Deff
= 1.082 , far below the expected 

tortusity of the extra-cellular space in which gadobutrol 
is confined. In the literature, based on experimental dif-
fusion data � ∼ 1.6 [46], though the geometrical 
( � = 1.18 ) and viscous ( � = 1.20 ) components of the tor-
tuosity are much smaller [22] and not sufficient to 
account for � = 1.6 . Based on the DTI, the group average 
of the tortuosity in our study were 1.9, 1.8 and 1.7 in the 
subcortical white matter matter, cerebral cortex, and 
brain stem, respectively (see Additional file 1). Moreover, 
the estimated local clearance rate of r = 31± 15× 10−4/
min corresponds to an exponential decay half-life of 
log 2/r = 287 min. The clearance pathways described by 
this parameter relate to minor leakage across the blood–
brain-barrier, or very rapid transport along paravascular 
pathways at scales not detectable with MRI. As such, our 
clearance rate estimate could be compared to the half-life 
of gadobutrol to the blood (from the subarachnoid space) 
of 3.83 h or 230 min as reported by Hovd et al. [47]. Also 
note that the subject variation is similar when comparing 
the clinical data (ibid) and our estimation (150 versus 153 
min). The clearance is comparable although somewhat 
larger than the blood–brain leakage observed in demen-
tia of 1− 20× 10−4/min, as discussed in the review [58]. 
Similar rates in both directions would suggest that the 
transport across the BBB is diffusive, while the somewhat 
increased rate here may be indicative of an advective 
component such as for example perivascular transport.

The 2004-review by Abbott [27], in part based on 
experimental research by Cserr, Rosenberg and coauthors 
during the 1980s [59–62], highlights “clear evidence for 
the presence of a bulk flow of brain ISF at a rate of 0.1-−
0.3 µL/(g min)”. Nicholson [4] interprets the same experi-
mental studies to support bulk flow velocities of 5.5-−
14.5 µm/min. Our values are in remarkable agreement 
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with these classical estimates: modelling human tracer 
movement as governed by extracellular diffusion in com-
bination with advection by fluid flow with average flow 
speeds of 1.25-−8.39 µm/min gives excellent agreement 
with clinical data. The estimated flow speeds are higher 
in regions around the cerebellum, in agreement with rela-
tive results reported by Koundal et  al. [44]. As the esti-
mated flow speeds represent volume averages, we may 
use porous media theory to estimate corresponding aver-
age local velocities. First, assuming that PVSs occupy 1% 
of the brain volume, and ignoring interstitial velocities, 
our findings are compatible with average PVS velocities 
of 2.1-−14.0 µm/s, i.e.  velocities of the same order or 
somewhat lower than in pial PVS in mice [26]. On the 
other hand, ignoring PVS flow and assuming an extra-
cellular volume fraction of 15%, we obtain average extra-
cellular velocities of 0.14-−0.92 µm/s, which are in line 
with the analysis of Ray et al. [63], but 1–2 orders higher 
than the upper estimates reported by Holter et al. [24].

The advective flow fields identified via high-dimen-
sional inverse modelling admit, and are indeed sup-
ported by, a non-trivial and non-vanishing average fluid 
influx rate on the order of −0.5–4×10−4/min. Interest-
ingly, this net fluid production changes from the tracer 
influx phase (low fluid influx or even fluid outflux) to the 
tracer clearance phase (higher fluid influx) suggesting 
that flow always contributes to speed up the transport. 
This is not in line with a constant production/filtration 
over capillaries [64], where a positive fluid influx would 
be expected. The rate of net fluid production reported 
here (on the order of 10−4/min = 0.14/day) corresponds 
to around 100–200 mL/day depending on the brain vol-
ume, which would correspond to blood vessel filtration 
playing a large role in CSF production of around 500 mL/
day [65]. In comparison Cserr et  al. estimated that 10% 
of total CSF production comes from the ISF within the 
brain [66]. Considering that the fluid velocities and pro-
duction estimated here represent time-averaged (net) 
quantities over time intervals with varying cardiac, res-
piratory, sleep, posture and other levels of activity, some 
variation in time is not unexpected. Comparing our 
inverse flow estimation approach with the optimal mass 
transport methods introduced and refined by Tannen-
baum, Benveniste and coauthors [43–45], we emphasize 
that we here explicitly include extracellular diffusion in 
the underlying transport problem, directly use the veloc-
ity field to represent advection rather than e.g.  aniso-
tropic diffusion, allow for local fluid influx/efflux, target 
numerical robustness by simultaneous approximation of 
the velocity and concentration fields, and provide quanti-
tative (absolute) flow field estimates.

CSF and glymphatic function change according to 
circadian rhythm and/or sleep in animal models. In 

particular, extra-cellular volume fraction, perivascular 
intake and interstitial clearance [15], lymphatic efflux 
[16], choroid plexus gene expression [67], AQP4 polari-
zation and drainage to lymph nodes [68], perivascular 
pulsations [69], posture [70] all display significant vari-
ations. In humans, much less is known about CSF flow 
and exchange. However, [71] demonstrated a direct link 
between CSF dynamics, hemodynamics, and neural 
activity during sleep. Further, in [17], CSF tracer distri-
bution differed in subjects that were sleeping and sleep-
deprived, most notably after 48  h and in particular in 
subregions such as the limbic system. Based on our mod-
eling, we find that the average advective velocity here 
is nearly halved in sleep-deprived and the differences 
between the groups are statistically significant. For the 
enhanced diffusion and clearance parameters we found 
differences but they were not statistically significant. The 
simulated differences in velocity magnitude were always 
less than or equal to a factor 2 between sleeping and sleep 
deprived individuals, and optimized clearance param-
eters ( α , r) did not differ between the groups. These rel-
atively minor differences are in sharp contrast to influx 
curves by e.g. Xie et al. [15] (Fig. 1C) in mice showing an 
apparent 20-fold increase in influx during sleep. On the 
other hand, our results are consistent with other human 
studies showing more subtle differences within the brain 
between sleeping and sleep deprived individuals [17, 72] 
than those seen in mice. Larger differences have, how-
ever, been observed in the CSF [71]. We further note that 
posture and movement was not recorded in [17], but pos-
ture has been observed to be important in mice [70]. The 
participants in this study were requested to stay in bed 
from the intrathecal injection in the morning until the 
evening the first day. After that they had no restrictions. 
This difference in posture and movement between 0–24 
and 24–48 h may be a confounding factor.

In Fig.  1, we observe a noticeable difference between 
the two models representing (1) enhanced diffusion and 
local clearance (without bulk flow) and (2) diffusion 
and bulk flow. These two models differ both in terms of 
the underlying physics and in terms of the optimization 
used to obtain model parameters. With local clearance, 
substances may be drained equally fast from deep white 
matter and from the cortex, which is not the case when 
bulk flow is responsible for clearance. In addition, the 
model assuming bulk flow set an initial condition based 
on the MRI at a given timepoint t > 0 and ran until the 
next datapoint, while the enhanced diffusion with local 
clearance case ran from the initial condition c = 0 at 
t = 0 until 48 h. The MRI data hence enters only via the 
boundary condition into the enhanced diffusion–local 
clearance model, while it enters as initial condition (eve-
rywhere in the brain) in to the diffusion–bulk flow model.
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We note that differences between the groups occur in 
the period between 24 and 48 h, after the sleep depriva-
tion phase. It is not clear why differences only occur dur-
ing this phase, but may involve differences in activity or 
posture between the groups post treatment, or by the fact 
that the diffusion and bulk flow model does not include 
dispersion, which may over or underestimate velocities 
depending on phase (influx or outflux). It is also known 
that CSF production via the choroid plexus vary between 
day and night [73].

From a mathematical point of view, the forward dif-
fusion-advection-reaction problem  (1) is a well-posed 
problem. This implies that solutions are unique, and sta-
ble in the sense that small variations in input data give 
only small variations in the output quantities. Moreover, 
the numerical methods used are guaranteed to provide 
numerically reliable approximations. In contrast, for 
the inverse optimization problems, there may be mul-
tiple solutions (r,α) or (φ, c) that give an optimal fit to 
the MRI data and satisfy (1), and minor variations in the 
data (e.g. due to noise) may strongly affect the estimated 
parameters. For instance, the (α, r) parameters may can-
cel out in the sense that a high α combined with a high r 
may (in certain regions depending on the scales in space 
and time and in an average sense) yield similar trans-
port dynamics as combinations of smaller α, r . We note 
though that the correlation between α and r is weak (cor-
relation coefficient 0.38, cf.  Additional file  1: Table  S9). 
We also cannot guarantee that a global optimum is 
attained, but rather that the parameters are optimal in a 
local neighborhood of potential values.

The mathematical challenges related to optimization 
are addressed by the presence and choice of regulariza-
tion terms in the objective functional  (3), and to some 
extent the box constraints associated with r and α . These 
are well-established and well-posed approaches to regain 
uniqueness and stability for the inverse models [49, 74]. 
However, some caveats remain. First, the velocity field 
estimation is limited by the computational mesh size: our 
flow field estimation cannot resolve non-linear velocity 
variations over distances shorter than a few mm. Sec-
ond, the velocity field estimation is limited by the reso-
lution in the MRI data (1 mm); this resolution does thus 
not allow for identifying the alignment of flow patterns 
with vascular directions such as e.g. the direction of pen-
etrating arterioles or venules in PVS nor discrimination 
between flows in the PVS and ISF compartments. Third, 
velocities may be underestimated in regions where there 
is little or no tracer present at any time point; this may 
lead to inconsistencies in the estimated fluid velocities 
and production in different phases. Fourth, the velocity 
field estimation may be prone to over-fitting considering 
its high-dimensionality (cf.  Additional file  1: Table  S1). 

As a consequence, we are confident in the flow quanti-
ties of interest reported here, i.e.  regional and global 
flow speeds, but do not interpret flow directions in 
detail. Finally, while one may always seek more advanced 
modeling, computing the results reported in this study 
required around 64,000 CPU hours and can as such be 
thought of as a reasonable and feasible compromise in 
terms of complexity. Furthermore and importantly, the 
fact that our computational technology yields numeri-
cally reliable solutions (that are robust with respect to 
numerical parameter choices such as time steps and reg-
ularization parameters) for the vast majority of simula-
tion cases is promising.

In our modeling here we deliberately used advanced 
optimization strategies combined with rather simple one 
compartment models representing the average proper-
ties of several underlying fluid compartments. The mod-
eling shows that extra-cellular diffusion is not sufficient 
to explain the MRI-tracer distribution after 48  h, but it 
is challenging to draw strong conclusions concerning 
advection, enhanced diffusion and clearance. The model 
including enhanced diffusion combined with clearance 
provides a good overall fit, but is for instance underesti-
mating tracers deep within the brain. Since we only have 
two degrees of freedom in this setting, it might be a con-
sequence of underfitting. On the other hand, by including 
advection as degrees of freedom, the consequence may 
be overfitting. As such, a reasonable compromise may be 
multi-compartment models such as e.g. [75, 76] where 
the separate dynamics of PVS and ISF are included. 
Multi-compartment models, with PVSs representing 
fluid highways, would also allow tracers deep within the 
brain after only a few hours. However, such modeling 
remains to be investigated.

In addition to the inverse modelling aspects discussed 
above, we note that boundary conditions were prescribed 
by a linear interpolation between data points in time, 
and projected directly onto the finite element mesh. This 
projection may involve partial volume effects if voxels 
used in the interpolation process contains both SAS and 
tissue. Such effect may cause an overestimation of con-
centration of the boundary, and may partly explain why 
measured concentrations are higher than simulated con-
centrations for early time points. However, this effect can 
not be attributed to early detection of tracer deep inside 
the white matter. Linear interpolation in time was chosen 
as this method is is free of fitting parameters and hence 
represents a compromise between accuracy and com-
plexity. In data from Watts et al. [30], the peak concen-
tration occurs at around 10 h in the CSF and at closer to 
15 h in the cerebral cortex. Even though the report from 
Watts [30] only considered a single subject, there is a 
risk that we miss the point of peak concentration in our 
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data set. However, an extra measurement with peak in 
CSF concentration at ∼10  h would not alter our obser-
vation that extracellular diffusion is too slow to explain 
the measurements at ∼6 h, and would only increase the 
amount of tracer at ∼48 h predicted by a pure extracel-
lular diffusion model. The present study population con-
sists of individuals under investigations of CSF disorders. 
Parameters related to BBB leakage (e.g. local clearance 
r) reported here and by Hovd et al. [47] may thus differ 
compared to the general population [77, 78].

In the midst of a wave of neuroimaging advances across 
scales [21, 79], here high-fidelity inverse computational 
models create a bridge between multi-modal MR imag-
ing data and biophysical clearance hypotheses; thus ena-
bling a new technological avenue for identification and 
quantification of human brain solute transport mecha-
nisms. Our findings highlight the combined roles and 
importance of extracellular diffusion, local clearance at 
rates comparable to tracer transport across the blood–
brain barrier or advective velocities on the order of µm/
min sustained by local fluid influx or efflux, and reveal 
reduced advective flow after sleep-deprivation. Distin-
guishing between these clearance mechanisms calls for 
new clinical or experimental protocols combining in-
vivo brain imaging with blood, lymph and crucially CSF 
measurements.

Methods
Data collection and approvals
In reference (sleep) ( n = 17 ) and sleep-deprivation 
( n = 7 ) subject groups, T1-weighted MRI, T1-maps and 
DTI were collected prior to intrathecal injection of CSF 
tracer (gadobutrol), while contrast-enhanced MR images 
were collected at multiple time points between 0 and 
48  h post injection, as previously reported [17]. During 
the night between day 1 and 2 (12–24 h post injection), 
individuals in the sleep-deprived group were deprived 
of sleep, while the reference group slept as normal. 
All patients were under investigation of CSF disorders 
(pineal cyst, arachnoid cyst, hydrocephalus, idiopathic 
intracranial hypertension) as detailed in [17]. The groups 
are matched for gender and age (reference group: female/
male 15/2 and age 39.2 ± 14.1 sleep-deprived: female/
male 7/1 and age 44.7 ± 15.7). The study was approved 
by the Regional Committee for Medical and Health 
Research Ethics (REK) of Health Region South-East, Nor-
way (2015/96), the Institutional Review Board of Oslo 
University Hospital (2015/1868), the National Medicines 
Agency (15/04932-7), and was registered in Oslo Univer-
sity Hospital Research Registry (ePhorte 2015/1868). The 
conduct of the study was governed by ethical standards 
according to the Declaration of Helsinki of 1975 (and as 

revised in 1983). Study participants were included after 
written and oral informed consent.

Computational geometries
For each subject, we generate subject-specific 3D meshes 
at different resolution levels (low-res, standard, high-res) 
using FreeSurfer [80] and SVMTK [81]. A typical stand-
ard (high-res) mesh � consists of 1.1 (4.2) million tetra-
hedral mesh cells of diameter 0.4 − 5.5 ( 0.1− 2.8 ) mm 
(Additional file 1: Table S1). In comparison, the MRI data 
used to construct the meshes had a resolution of 1 mm 
[17]. We define and label the cerebral cortex, subcortical 
white matter and brain stem as disjoint regions within 
the mesh via the pial surface, white-gray matter interface, 
and subdomain tags generated by FreeSurfer (Fig.  3A). 
The meshes were visually checked against the MRI to 
ensure that the mesh surfaces align well with the anatomy 
in every subject. We made some example meshes publicly 
available at [82].

Mapping signal intensities to concentrations
Contrast-enhanced signal intensities may be mapped 
to tracer concentrations via a map of the (spatially-var-
ying) relaxation times T1 , as previously described [34]. 
For 15 of the 24 subjects, subject-specific T1 maps were 
measured during data collection, while for the remain-
ing subjects, such were not available. To compensate 
while avoiding introducing bias between groups, we used 
group-averaged and regionally constant T1 values for all 
subjects. This method was compared against using raw T1 
maps or filtered T1 maps for the 15 subjects with T1 maps 
available, with the different approaches yielding tracer 
concentration values that differed by at most 11% (Addi-
tional file 1: Section S1.1).

Tracer transport equations
We model the concentration c(x,  t) (in mmol/L) of CSF 
tracer as a function of time t > 0 and space x ∈ � solv-
ing  (1), and thus distributing via three modes of trans-
port: diffusion with a heterogeneous diffusion coefficient 
D∗

= D∗
(x) and enhancement factor α > 1 , advection via 

a velocity vector field φ = φ(x, t) ∈ R
3 and local clear-

ance at a clearance rate r > 0 . On the boundary and for 
each time t > 0 , we prescribe the observed CSF tracer 
concentrations cmri(x, t) , mapped from the MRI signal 
intensities as described above and linearly interpolated in 
time between MRI scans. In detail, the CSF tracer con-
centration cmri(x, t) in a point x on the boundary of the 
computational brain mesh is given as
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Here, tn ≤ t ≤ tn+1 are the imaging times corresponding 
to the pair of images taken before and after t, and (i, j, k) 
are the indices of the image voxel containing the surface 
point x.

As initial condition at t = t0 , corresponding to the 
baseline image, we set CSF tracer concentration in the 
entire domain to be c(·, t0) = 0 . For all time points t, we 
compute the amount of tracer Mi(t) and the average con-
centration c̄i(t) in all FreeSurfer-labeled regions as well as 
the average concentration in the cerebral cortex, subcor-
tical white matter, and brain-wide by integrating over the 
respective regions; that is, for each region �i:

The amount of tracer per unit area on the brain surface 
∂� was computed for all subjects as

In this context, the concentration in a region is defined as 
the amount of molecules divided by the whole region vol-
ume, and does not reflect the local ISF concentration (as 
the ISF only occupies around 20% of the brain [4]).

Diffusion and dispersion
Tracer transport by diffusion only is represented by let-
ting α = 1 , φ = 0 , r = 0 in (1). The anisotropic and spa-
tially-varying diffusion tensor D∗ can be estimated from 
DTI. However for 6 of the 24 subjects, no DTI data were 
available. For the 18 subjects with DTI, we solved (1) 
with (a) subject-specific D∗ estimated voxel-wise from 
DTI as well as (b) group-averaged and regionally varying 
isotropic (scalar) diffusion parameters. The two meth-
ods differed by about 1%. We therefore used the latter 
method for all 24 subjects and all forward and inverse 
simulations (Additional file  1: Section  S1.2). We note 
that changes in DTI measures after sleep deprivation 
are moderate, of the order of a few percent [72], and we 
hence did not consider models with time–varying diffu-
sion coefficients.

(2)

cmri(x, t) =cmri((i, j, k), tn)

+

cmri((i, j, k), tn)− cmri((i, j, k), tn)

tn+1 − tn
(t − tn).

Mi(t) =

∫

�i

c(x, t) dx,

c̄i(t) =
Mi(t)

|�i|
,

|�i| =

∫

�i

1 dx.

c̄∂�(t) =
1

|∂�|

∫

∂�i

c(x, t) ds, |∂�| =

∫

∂�

1 ds.

Enhanced diffusion, for instance via dispersion [28, 34, 
83], is represented via the enhancement factor α > 1 . 
Specifically, we consider enhanced diffusion-scenarios 
for which α = 1, 2, 3, 4, 5 in the cerebral cortex while 
keeping α = 1 fixed in the subcortical white matter.

Numerical methods and software
The CSF tracer concentrations were represented as 
continuous piecewise linear polynomials defined over 
the computational mesh(es) via interpolation. For each 
subject and each set of model parameter variations, 
we solve the diffusion-advection-reaction equation  (1) 
from t0 to T (or for a single time window between con-
secutive MR scans at t1 and t2 ) using a second-order 
finite difference scheme in time and a finite element 
method yielding second-order approximations in space 
of the concentration field via the FEniCS finite element 
software [84]. The standard resolution meshes yield 
results that differ at most 4% to the high resolution 
meshes for the forward simulations (Additional file  1: 
Section S2.2) and were therefore used for the reported 
results. The simulation end time T ( ∼48  h) was set as 
the time of the last MR scan for each subject. All com-
putations were performed on resources provided by 
Sigma2—the National Infrastructure for High Perfor-
mance Computing and Data Storage in Norway. The 
computer code used to perform the simulations is pub-
licly available at [85]. Some meshes are also provided. 
The interested reader can also find a detailed descrip-
tion of some parts of the codes in [81].

Inverse identification of an advective velocity field
To identify an underlying velocity field φ that match the 
tracer observations as well as the biophysics described 
by  (1), we adapt and apply an inverse problem tech-
nique [74]. For any pair of MRI scans (at t1 and t2 with 
τ = t2 − t1 (hours)), we map the CSF tracer observations 
cmri(t1) and cmri(t2) onto the computational mesh. For 
each subject and each such time interval [t1, t2] , we then 
consider the following constrained optimization problem: 
find a spatially-varying velocity field φ ( φ(x) ∈ R

3, x ∈ � ) 
that minimizes the discrepancy between simulated and 
observed concentrations and is sufficiently smooth i.e.:

and is such that c = cφ numerically solves  (1) with this 
φ from t1 to t2 with timestep τ , with the observations 
cmri(t1) prescribed as the initial condition at t1 , and with 
cmri(t2) prescribed as boundary conditions at t2 . Here, 

(3)min
φ

(

�cmri(t2)− cφ(t2)�
2
L2(�)

+ β�φ�
2
H1(�)

)

,
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� · �L2 denote the standard L2(�)-norm, and similarly for 
H1

(�) [86], while β = 10−4 is a regularization param-
eter enforcing the additional smoothness of the solution 
φ . This φ is thus a quantification of an underlying fluid 
flow field that may transport the tracer by advection such 
as e.g.  ISF flow or an averaged representation of a more 
localized (PVS) flow.

We solve this high-dimensional optimization prob-
lem using a reduced approach with a maximum of 80 
iterations of the L-BFGS optimization algorithm [87] 
as implemented in the Dolfin-adjoint software [88] 
using FEniCS [84] and SciPy [89]. Specifically, we com-
pute velocity field predictions for during the first day ( ∼
1–6  h), the first evening/night ( ∼6–24  h) and day 2 ( ∼
24–48 h). The estimated velocity fields were stable with 
respect to variations in mesh resolution and regulariza-
tion parameters (Additional file 1: Section S3.1).

Flow and velocity quantities of interest
To quantify the fluid flow, we compute average flow 
speeds as the velocity magnitude field averaged 
brain-wide:

or instead averaged over larger regions (cerebral cor-
tex, subcortical white matter and brain stem) or smaller 
regions (defined by subject-specific FreeSurfer parcel-
lations). The local fluid influx or efflux described by any 
velocity field φ = (φ1,φ2,φ3) is given by its divergence:

Local clearance rates
Assuming that local clearance of molecules, e.g., via the 
microcirculation or cellular degradation, is proportional 
to their concentration c yields the clearance/reaction 
term rc in (1).

In order to determine subject-specific optimal disper-
sion and reaction constants (α, r) we formulate the fol-
lowing PDE constrained optimization problem and solve 
it numerically using the Dolfin-adjoint software [88] 
using FEniCS [84] and SciPy [89]: Find the scalar param-
eters (α, r) that minimize

where cmri(t) is the tracer concentration estimated from 
MRI at times t ∈ T  and c(t) is the numerical solution 

v = |�|
−1

∫

�

|φ| dx, |�| =

∫

�

1 dx, |φ|
2
= φ

2
1 + φ

2
2 + φ

2
3 ,

∇ · φ(x) = ∂x1φ1(x)+ ∂x2φ(x)+ ∂x3φ(x).

(4)
∑

t∈T

||cmri(t)− c(t)||L2(�)

to  (1) with φ = 0 . The initial and boundary conditions 
are the same as in (1) and we fix α = 1 in the white mat-
ter. We constrain α ∈ [1, 10] and r ∈ [10−7 s−1, 10−3 s−1

] . 
This problem is then solved for time step sizes of 30, 20, 
10 and 5 min (Additional file 1: Table S9), and the com-
bination of parameters (α, r) found by the minimization 
algorithm with the smallest time step tested (either 10 or 
5 min) reported.
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