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Abstract 

Background Flow of cerebrospinal fluid (CSF) through brain perivascular spaces (PVSs) is essential for the clearance 
of interstitial metabolic waste products whose accumulation and aggregation is a key mechanism of pathogenesis 
in many diseases. The PVS geometry has important implications for CSF flow as it affects CSF and solute transport 
rates. Thus, the size and shape of the perivascular spaces are essential parameters for models of CSF transport 
in the brain and require accurate quantification.

Methods We segmented two‑photon images of pial (surface) PVSs and the adjacent arteries and characterized 
their sizes and shapes of cross sections from 14 PVS segments in 9 mice. Based on the analysis, we propose an ide‑
alized model that approximates the cross‑sectional size and shape of pial PVSs, closely matching their area ratios 
and hydraulic resistances.

Results The ratio of PVS‑to‑vessel area varies widely across the cross sections analyzed. The hydraulic resistance 
per unit length of the PVS scales with the PVS cross‑sectional area, and we found a power‑law fit that predicts 
resistance as a function of the area. Three idealized geometric models were compared to PVSs imaged in vivo, 
and their accuracy in reproducing hydraulic resistances and PVS‑to‑vessel area ratios were evaluated. The area ratio 
was obtained across different cross sections, and we found that the distribution peaks for the original PVS and its 
closest idealized fit (polynomial fit) were 1.12 and 1.21, respectively. The peak of the hydraulic resistance distribution 
is 1.73× 10

15 Pa  s/m5 and 1.44× 10
15 Pa s/m5 for the segmentation and its closest idealized fit, respectively.

Conclusions PVS hydraulic resistance can be reasonably predicted as a function of the PVS area. The proposed 
polynomial‑based fit most closely captures the shape of the PVS with respect to area ratio and hydraulic resistance. 
Idealized PVS shapes are convenient for modeling, which can be used to better understand how anatomical varia‑
tions affect clearance and drug transport.
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Background
Flow of cerebrospinal fluid (CSF) through perivascular 
spaces (PVSs) surrounding pial (surface) vessels (Fig.  1) 
in the brain is hypothesized to be part of the brain’s 
transport system responsible for clearing metabolic 
waste including intraparenchymal extracellular macro-
molecules [1–3]. The perivascular spaces are pia-lined, 
fluid-filled structures surrounding the walls of arter-
ies, arterioles, veins, and venules, as depicted in Fig.  1 
[4]. These spaces are bounded by the arachnoid mater 
and pia mater [5]. The brain’s CSF transport system is 
responsible for waste clearance [3, 6–12] and distribu-
tion of compounds including glucose, lipids, amino acids, 
growth factors, and neuromodulators from brain paren-
chyma [13]. The failure or abnormal functioning of the 
brain’s transport system has been linked to hypertension, 
atherosclerosis, stroke, aging, and neurodegenerative dis-
eases like Alzheimer’s [1, 6, 14–16].

The size and shape of pial PVSs directly affect the flow 
of CSF into the extracellular spaces and transport of 
solutes (e.g. waste and nutrients) in the brain, making 
accurate knowledge of the morphology of these spaces 
important for modeling [17]. Effective modeling requires 
PVS shapes to be known precisely because parameters 
like hydraulic resistance are very sensitive to channel size. 
Several previous studies modeled the PVS as concen-
tric circular annuli [18–20], but Tithof et al. [17] showed 
that the shape of the PVS is often eccentric, having lower 
hydraulic resistance (i.e., resulting in a faster flow of CSF 
for a given driving pressure). They proposed modeling 
the pial PVS as an elliptical annulus to account for the 
observed eccentricity. PVS size and shape are also impor-
tant because their abnormalities are associated with 
stroke, hypertension, and white matter hyperintensities, 
which result from ischemia and cause cognitive decline 
[21]. Enlarged perivascular spaces may serve as an imag-
ing marker for disease initiation and progression [22–25].

Previous works have quantified various aspects of PVS 
size. Bedussi et al. [26] showed that the size of the PVS 
scales approximately linearly with the size of its ves-
sel and that the morphology of human and rodent PVSs 
is qualitatively similar. However, they did not report an 
average PVS-to-vessel area ratio or describe the shape. 
Schain et  al. [2] characterized the PVSs around arter-
ies and veins in mice and reported that the average 
cross-sectional area of the PVS was 305 ± 140 µm2 near 
arteries and 90.9 ± 28 µm2 near veins. The average PVS-
to-vessel area was 1.26 for arteries compared to 0.13 for 
veins. They also found that PVSs varied in size depending 
on location, with larger PVSs in locations with multiple 
blood vessels or blood vessel bifurcations. However, they 
did not characterize this variation and only reported a 
single average area measurement for arterial PVSs. Mes-
tre et al. [27] reported the cross-sectional PVS-to-vessel 
area ratio for pial vessels to be 1.4 for N = 13 mice, but 
they found considerable variation between samples. They 
also showed that PVS area changes drastically with death 
and fixation, explaining why measurements of in  vivo 
PVS areas were much larger than previously supposed. 
These studies contributed to our understanding of PVS 
size, but none included more than tens of cross sections 
in their analysis, and beyond characterizing the standard 
deviation, they did not report on variation in PVS size, 
though it is clearly large, based on the report of Schain 
et al. [2].

Tithof et al. [17] characterized PVS shapes in five loca-
tions: three pial and two penetrating PVSs. They idealized 
the shapes of the vessels and PVSs as circles and ellipses, 
respectively, and reported how the hydraulic resistance of 
the idealized geometries varied with shape, demonstrat-
ing that the in vivo PVS shapes were similar to the shape 
with minimum resistance for a given area ratio. They also 
showed that approximating a PVS as a concentric annu-
lus overestimates the hydraulic resistance. They showed 
that for an elliptical annulus, the minimum hydraulic 
resistance for a given periarterial cross-sectional area 
often occurs when the elliptical outer boundary inter-
sects the circular inner boundary, creating two lobes on 
either side of the artery, and that, for the cross sections 
they examined, in vivo shapes were close to those which 
minimized the hydraulic resistance for a given area ratio. 
They also showed that, if both inner and outer bounda-
ries are nearly circular, as often occurs around penetrat-
ing arterioles, the hydraulic resistance is minimum when 
eccentricity is large.

Vinje et al. [5] obtained a single cross-sectional image 
of a pial arterial PVS and a pial venous PVS from opti-
cal coherence tomography. They idealized the shape of 
the PVS as a long narrow section with the bulk of the 
area concentrated around the vessel. With simulations, 

Fig. 1 We characterize the size and shape of perivascular spaces 
(PVSs) adjacent to murine pial arteries, which serve as channels 
for flowing cerebrospinal fluid
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they showed that the size and shape of the PVS can sig-
nificantly change the mass and momentum transport: 
velocity and tracer distributions differed from arterial to 
venous PVSs and from idealized to realistic geometries.

Both Tithof et al. and Vinje et al. [5, 17] clearly showed 
that the shape of the PVS plays an important role in 
transport. However, both works were based on only a few 
cross sections, and neither provided strong justification 
for its choice of idealized PVS shape, or made an attempt 
to rigorously quantify PVS shape.

An idealized model of PVS sizes and shapes, built by 
characterizing a statistically significant number of in vivo 
images, could improve the accuracy of future attempts to 
predict flows and solute transport in PVSs. Such a model 
should be complex enough to capture salient features of 
PVS geometry but simple enough to be easily compre-
hensible and computationally inexpensive. Its simplifica-
tions should be explained, and their impact on key PVS 
parameters like hydraulic resistance should be quanti-
fied. To be broadly applicable, an idealized model should 
be based on a known and statistically meaningful set of 
measurements, though only a few in vivo PVS measure-
ments have been published so far.

In this paper, we characterize the size and shape of pial 
perivascular space cross sections based on 3D two-pho-
ton images from 14 locations (different PVS segments) in 
9 different wild-type mice. After segmenting the images 
to determine in  vivo PVS shapes, we approximate the 
shapes with three different idealized geometrical mod-
els, two of which are based on idealized models proposed 
previously [5, 17], and one of which is novel and based 
on a polynomial fit. We compare the PVS-to-artery area 
ratio and hydraulic resistance of each modeled shape 
to those of the segmentation and find that agreement is 
closest for the polynomial fit. We report detailed statisti-
cal distributions of various measures of PVS size, shape, 
and hydraulic resistance, based on the parameters in the 
idealized models, which will be useful in modeling and 
can serve as a baseline comparison for diseases in which 
PVS size and shape are biomarkers.

Methods
Animals
All procedures involving animals were in compliance 
with the experimental protocol approved by the Univer-
sity Committee on Animal Resources of the University of 
Rochester (Protocol No. 2011-023), certified by the Asso-
ciation for Assessment and Accreditation of Laboratory 
Animal Care. Efforts were taken to keep animal usage 
to a minimum. Male and female BPN/3J mice (Jackson 
Labs, JAX stock #006567) or β-Act-GFP mice (Jackson 
Labs, JAX stock #006567) on a C57BL/6 background 
8–12 weeks of age were used for all the experiments. β

-Actin-GFP mice show a widespread expression of 
enhanced green fluorescent protein (EGFP), with the 
exception of erythrocytes and hair [28]. All experiments 
performed in this study were done on mice anesthetized 
with ketamine and xylazine (100 and 10 mg/kg, intraperi-
toneally). The depth of anesthesia was determined by the 
pedal reflex text. Once reflexes had cased, anesthetized 
mice were fixed in a stereotaxic frame for the surgical 
procedure, and body temperature was maintained at 37.5 
°C with a rectal probe-controlled heated platform (Har-
vard Apparatus).

Intracisternal injections and CSF tracers
Anesthetized mice were fixed in a stereotaxic frame. A 
30-gauge needle was connected to a PE-10 tubing filled 
with artificial CSF (aCSF) and inserted into the cisterna 
magna as described previously [29]. Alexa Fluor647- or 
Alexa Fluor594-conjugated bovine serum albumin (BSA-
647 or BSA-594, 66 kDa, Invitrogen) were diluted in arti-
ficial CSF at a concentration of 0.5% (w/v) and used as a 
fluorescent CSF tracer. For intracisternal injections, 10 µl 
of CSF tracer was injected at a rate of 2 µl/min over 5 min 
with a syringe pump (Harvard Apparatus).

In vivo two‑photon laser scanning microscopy
A cranial window was prepared over the right anterolat-
eral parietal bone above the MCA vascular territory. The 
dura mater was left intact and, to prevent intracranial 
depressurization, the window was sealed with agarose 
(1% at 37 °C) and a glass coverslip (5 mm diameter). Two-
photon imaging was performed using a resonant scan-
ner Bergamo scope (Thorlabs) and a Chameleon Ultra II 
laser (Coherent) with a water-immersion 20× objective 
(1.0 NA, Olympus). Intravascular FITC-dextran (2000 
kDa, 1%, Sigma-Aldrich), and intracisternal CSF tracers 
BSA-647 or BSA-594 were excited at 890 nm wavelength. 
Emission was filtered at 525, 607, and 647 nm. After the 
tracer reached the PVS of the cortical arteries, volumet-
ric 3D images were acquired. The length of time between 
cessation of the tracer injection and imaging was longer 
than 5 min, so it is expected that the intracranial pressure 
was at normal physiological (pre-injection) levels and the 
presence of the injected tracer did not affect PVS size and 
shape [30]. The green channel captures the FITC-dextran 
in the vasculature, while the red channel and far-red 
channels capture the CSF tracer flowing in the perivascu-
lar space. Note that in the figures presented in this study, 
we have changed the colors of the channels to improve 
clarity (red for FITC Dextran tracer in the vasculature, 
blue for Alexa Fluor tracer in PVS, and green for the 
green fluorescent protein). Images obtained were 16 bits 
with spatial dimensions of 512 by 512 pixels. The image 
resolution in the transverse plane was 0.648 µm/pixel, 
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while the resolution for cortical depth was 1 µm/pixel. 
We acquired images of 14 PVS segments located adjacent 
to the MCA in nine mice. Table 1 lists the PVS segment 
(A-N), mouse, and location of each PVS segment.

Image segmentation
To define the boundaries of the vessel and perivascular 
space, we segmented the images based on tracer inten-
sity. Because the fluorescent signal intensity is attenu-
ated as it passes through red blood cells and tissue, we 
used a depth-varying intensity threshold, classifying a 
region as part of the vessel (or PVS) when its intensity 
exceeded the threshold. For each vessel and PVS, we 
tried four different semi-automatic approaches to deter-
mine the depth-varying threshold: Mean + Standard 
Deviation, Noise Finder, Otsu’s method, and Edge Finder 
(described further in Additional file 1). The Edge Finder 
approach most correctly identified the vessel and PVS in 
the majority of the cases, and when it performed poorly, 
Mean + Standard Deviation was used as a substitute. 
Otsu’s method and Noise Finder were not used because 
they over-segmented and under-segmented the image 
respectively, as further described in Additional file  1. 
After segmenting images according to the threshold, we 
fine-tuned and compared the resulting segmentation to 
the original image. For each vessel and PVS, the segmen-
tation was quantitatively validated by comparing a single 
plane of the 3D image segmentation with the segmenta-
tion of a single plane time-averaged time-series image 

(which has a considerably higher signal-to-noise ratio), as 
described in the validation section.

The Edge Finder approach determined the threshold at 
each depth based on the maximal gradient magnitude. 
Prior to segmentation, the image was smoothed with a 
3D Gaussian filter (using the built-in MATLAB function 
“imgaussfilt3”) with a standard deviation of 2 voxels. At 
each depth, we identified edges (regions of the maximal 
gradient magnitude) using MATLAB’s “edge” command 
and set the threshold equal to the median intensity value 
on the edges. The resulting threshold did not always 
monotonically decrease with depth as we would expect, 
as shown in S1, Additional file 1 (dashed black line), so we 
refined the threshold by manually defining, based on the 
raw signal, a depth-varying threshold that is constant at 
shallow and deep depths and decreased linearly between 
the constant regions. Then we compared the resulting 
segmentation with the original intensity image and itera-
tively modified the refined threshold until the segmenta-
tion qualitatively agreed with the vessel/PVS location in 
the raw intensity images. The resulting threshold “Edge 
Finder” is shown in S1, Additional file 1 (green line). For 
the majority of the cases, the Edge Finder approach seg-
mented the PVS and vessel well, but in a few select cases 
(Additional file 2 G, I, and J (PVS only)), it did not work 
well and the Mean + Standard Deviation approach was 
used instead.

The Mean + Standard Deviation approach set the 
threshold equal to the sum of the mean and standard 
deviation of all intensity values at each depth. The depth-
varying threshold array was then modified so that the 
threshold at all depths shallower than the location of the 
maximum threshold was equal to the maximum.

The resulting segmentation often contained small 
exclaves. We removed all regions that were smaller than 
5–10 pixels at each depth. We also removed all but the 
single largest connected region in the vessel segmen-
tation and all but the two largest regions in the PVS 
segmentation. Once these disconnected regions were 
removed, all the holes in the segmentation were filled. 
We manually removed the vessels that branched off of 
the main vessel of interest.

In some cases, the segmentation of PVS and vessel 
overlapped by a few pixels. To correct this, the segmen-
tation for both the PVS and vessel was compared to the 
intensity images in both transverse (x-y) and axial (x-z or 
y-z) planes to qualitatively determine which one matched 
most closely the original data. The most reliable of the 
two segmentations was used to subtract all the pixels 
from the other segmentation to remove the overlapping 
regions.

To validate the 3D segmentation, we compared the 
segmentation at a single depth to the segmentation of 

Table 1 The 14 datasets were distributed across 9 different mice

 All PVSs were located on the main branch of the MCA. The “upstream” location 
is typically 4–5 bifurcations distal to the start of the MCA, and the “downstream” 
location is 1–2 bifurcations distal to the upstream. For the “unspecified” 
locations, the PVS is located between 4 and 7 bifurcations distal to the start of 
the MCA

Dataset Mouse Location

A 1 Downstream

B 1 Upstream

C 2 Downstream

D 2 Upstream

E 3 Downstream

F 3 Upstream

G 4 Downstream

H 4 Upstream

I 5 Downstream

J 5 Upstream

K 6 Unspecified

L 7 Unspecified

M 8 Unspecified

N 9 Unspecified
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a 2D image with a high signal-to-noise ratio, as shown 
in Fig.  2. In the majority of cases, in addition to 3D 
images, we also acquired images at a single depth at 30 
frames per second for several minutes, then averaged 
1000 frames from the time series, which resulted in one 
high signal-to-noise image, which we segmented. To 
determine the depth of the 2D images, the 3D images 
were compared to the 2D time series to find the cor-
tical depth that minimized the difference between 
the two. Once the depth was determined, we identi-
fied any translation and rotation of the field of view 
between the 2D time series and 3D images and aligned 
them. Additional details on the 2D-to-3D registration 
are described by Boster et  al. [31]. Once the 2D and 
3D image series were aligned, the segmentations were 
overlaid on top of each other, and the percentage of 
overlaid area compared to the total area for PVS and 
vessel segmentation was obtained by

where A2D is 2D segmentation and A3D is 3D segmenta-
tion shown in Fig. 2. To consider the segmentation suc-
cessful, at least 70% of the area had to overlap in both 
PVS and vessel. This difference between the 3D segmen-
tation and the high signal-to-noise ratio segmentation is 
a way to approximate the uncertainty in the segmentation 
and shows that, though the uncertainty is significant, the 
3D segmentation generally captures the size and shape of 
the vessel and PVS.

(1)Apercentage =
A2D ∩ A3D

A2D ∪ A3D
,

The vessel pulses with the cardiac cycle, and in similar 
two-photon microscopy acquisitions of wild-type mice 
under the same anesthetic regime used in this paper, the 
peak-to-peak pulsation vessel amplitude associated with 
the cardiac frequency has been reported to be around 2% 
of the vessel diameter or around 1 micron [27, 31]. The 
acquisitions of the 3D images were not cardiac-gated 
and spanned approximately 1  min for each location, so 
each frame (corresponding to different cortical depths) 
is acquired at a different phase of the cardiac cycle, lead-
ing to some uncertainty in the exact location of the vessel 
boundary, as well as some uncertainty in the location of 
the PVS boundary that is adjacent to the vessel.

There is also some uncertainty in PVS and vessel loca-
tion introduced by our semi-automatic segmentation 
protocol. Selection of the depth-varying threshold is 
done based on the thresholds recommended by the auto-
matic “Edge Finder” and “Mean + Standard Deviation” 
approaches, but the selection of which algorithm to use, 
and the exact depth-varying threshold, as well as manual 
removal of branching vessels, all introduce some degree 
of subjectivity into the segmentation process. The intra- 
and inter-operator variability in the resulting segmenta-
tion is calculated using the 3D dice-coefficient, DC [32]:

where A and B are two different segmentation vol-
umes. The average intra-operator variability was 0.89, 
and the average inter-operator variability was 0.86. The 

(2)DC =

2|A ∩ B|

|A| + |B|
,

Fig. 2 Comparing the 3D segmentation to a high‑quality 2D segmentation. Images show vessels (top row) and PVSs (bottom row) at cortical depth 
51 µm. In the two leftmost columns, yellow and cyan indicate segmentation boundaries. In the rightmost column, regions present only in the 3D 
segmentation are dark gray with yellow boundaries, regions present only in the 2D segmentation are light gray with cyan boundaries, and regions 
present in both are white. The area overlap A is used to determine the segmentation quality. The 3D segmentation and 2D segmentation match 
over 70% which gives confidence that 3D segmentation is accurate
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largest uncertainty in segmentation boundaries typically 
occurred at the deeper cortical depths where the signal-
to-noise ratios was reduced. This corresponds to a typical 
difference in boundary location, even at greater depths, 
less than five µm.

Creating normal cross sections
In order to quantify PVS sizes and shapes, we sampled 
the original 3D image at cross sections normal to the 
vessel centerline. The segmented volumes were first re-
sampled to make their resolution isotropic. We estimated 
the vessel centerline using MATLAB’s “bwskel” func-
tion, then manually removed erroneous points. We fit a 
second-order polynomial to the points in the transverse 
(XY) and axial (XZ or YZ, depending on the vessel ori-
entation) planes, and obtained a vector normal to the 
vessel centerline at each vessel center point by crossing 
vectors that are perpendicular to the polynomial fits. The 
MATLAB function “obliqueslice” was then used to cre-
ate cross-sectional slices using these normal vectors and 
their center points as shown in Fig.  3. The slices were 
then shifted so the center point of the vessel was located 
in the center of the image. Cross sections located near the 
edge of the acquisition volume often did not capture the 
full width of the PVS. We excluded cross sections where 
the distance from the center of the vessel to the edge of 
the imaging plane was less than the median width of the 
PVS divided by 2.5. This resulted in between 54 and 451 
different cross sections for each of the 14 PVS segments 

that were included in the subsequent analysis. The aver-
age distance between normal planes was approximately 
0.8 µm. Each cross section was analyzed separately, but in 
order to create a representative image of the cross section 
from each location, we averaged all of the images along 
the vessel centerline, as shown in Additional file 2.

Idealized geometries
We characterized PVS shapes by fitting the segmented 
PVSs in each of the normal cross sections to three dif-
ferent idealized shapes, depicted in Fig.  4: spline, poly-
nomial, and ellipse fits. We approximated the vessel as a 
circle and used the same vessel fit for all three fits (Fig. 4).

Red blood cells attenuate the fluorescent signal more 
aggressively than other tissues, reducing the signal-
to-noise ratio in the bottom portion of the vessel and 
resulting in higher uncertainty in the segmentation. To 
compensate, we fit a circle to points located on the edge 
of the segmentation, excluding the edge points that were 
located inside the eroded convex hull of the segmentation 
which effectively eliminated the uncertain edge points on 
the bottom of the vessel, as shown in Fig. 4.

The ellipse fit is based on the work of Tithof et  al. 
[17], who suggested idealizing the PVS and the vessel 
using a fitting ellipse and circle, respectively, with the 
same centroids and the same second central moment as 
their corresponding segmentation. However, we used 
the approach described above for the vessel fit because 
it worked better (based on visual inspection comparing 

Fig. 3 Normal slices obtained from the 3D segmentation. A Single image from an example z‑stack (z = 70 µm) with the vessel centerline (dotted 
white), vessel segmentation boundaries (white), and PVS segmentation boundaries (green). The dashed yellow line indicates a cross section 
orthogonal to the vessel centerline. The vessel lumen appears red while the PVS lumen appears blue. B Rendering of the segmented vessel 
and PVS. The yellow plane corresponds to the dashed yellow line in (A). C The cross section is indicated in (A, B). The gray line marks the depth 
of the image in (A). We obtained cross sections of the 3D image that were normal to the vessel centerline
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the resulting segmentations with the original intensity 
image) than the second-moment approach because of the 
uncertainty associated with segmentation on the bottom 
portion of the vessel.

The spline fit is inspired by an idealized shape proposed 
by Vinje et  al. [5]. They defined the shape with spline 
curves. We defined six control points that are connected 
by a spline, approximately based on their description. 
The locations of the control points are listed in Table  2 

and shown in Fig.  4. We defined the points in terms of 
the vessel radius, so the geometry scales with vessel size 
only, and not PVS size or shape, in contrast to the ellipse 
and polynomial fits. R1/4.5 is the minimum width the 
PVS tapers to at either end of the fit. The splines are then 
mirrored across horizontal and vertical axes to create the 
PVS in Fig.   4. The parameter Of = 0.0667R1 indicates 
how far below the midpoint of the PVS the vessel center 
is located.

Fig. 4 We fit three different idealized geometries to the segmented PVS, and we fit a circle to the vessel. A, C, and D Three idealized PVS 
geometries: spline, polynomial, and ellipse fits. The spline fit is defined by vessel radius R1 , offset Of  , and points P1–P6 , whose locations are specified 
in Table 2. The polynomial fit is defined by vessel radius R1 , width W from the vessel to the end of the PVS, height HC from the top of the vessel 
top of the PVS, height H1 of the PVS next to the vessel, height H2 of the PVS midway between the vessel and the end, and height H3 of the PVS 
at the point furthest from the vessel. The ellipse fit is defined by vessel radius R1 , major axis R2 , minor axis R3 , horizontal offset Oh , and vertical offset 
Ov . We fit each of these idealized shapes to the PVS and vessel segmentation to determine which best characterized the PVS. B A cross section 
of a vessel and an outline of its segmentation. We fit a circle to points located on the edge of the segmentation. Because image quality degraded 
with depth, the segmentation on the bottom of the vessel has greater uncertainty. Edge points that were inside an eroded convex hull 
of the segmentation were excluded from the fit

Table 2 Horizontal location of the control points defined with respect to the vessel horizontal center

The vertical location of the control points with respect to the vertical midpoint of the PVS (shown with a horizontal dashed line in Fig. 4)

Control Points P1 P2 P3 P4 P5 P6

Horizontal location 0R1 R1 2R1 3R1 4R1 5R1
Vertical location top 1.1111R1 0.85R1 0.2667R1 0.1111R1 0.1111R1 0.1111R1
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In the polynomial fit, we idealize the top of the PVS as a 
line and the bottom of the PVS as two second-order poly-
nomials, as depicted in Fig. 4. We find the coefficients for 
the line from a least-squares fit of points located along the 
top edge of the segmented PVS. We find the coefficients 
for the second-order polynomials from a least-squares fit 
of points located on the bottom edge of the segmented 
PVS.  The three fits  are shown for each of the averaged 
images from Additional file 2 in Additional file 3. 

Hydraulic resistance
We calculated the resistance per unit length for flow 
through straight channels with cross sections corre-
sponding to the PVS segmentation and the three fits for 
each normal cross section. Pial PVSs have been shown 
to be open, not porous [33], in contrast to penetrating 
PVSs, which are quite likely not completely open [34]. 
We assume a fully developed Poiseuille flow, which 
results in a unidirectional flow governed by Poisson’s 
equation. Though the presence of off-axial flow compo-
nents induced by vessel wall motion and axial changes 
in PVS shape and area may result in a slightly larger 
resistance, we expect those effects to be secondary since 
they result in flow components that are predominantly 
perpendicular to the direction of net flow. One recent 
study found that these simplifications introduced an 
error of ∼ 10% in the hydraulic resistance for pressure-
driven flow [31], and we speculate that the accuracy is 
similar for flow driven by other mechanisms, e.g., artery 
wall motion. We solved Poisson’s equation numerically 
with MATLAB’s “solvepde”. For each cross section, we 
first eroded the PVS segmentation or idealized fit by 
one pixel then found the location of the segmented PVS 
boundary using MATLAB’s “bwboundaries”. We used 

the “polyshape” and “geometryFromMesh” commands 
to create a model that was discretized using MATLAB’s 
“generateMesh” command, creating a triangular mesh. 
We refined the mesh until the element size was small 
enough that the error in resistance for a circle of the 
same area was less than 1%. We used the viscosity of 
water at 36  °C, 7.058× 10−4 Pa s. The hydraulic resist-
ance is independent of the pressure gradient, but for 
the sake of determining a corresponding velocity pro-
file, we used a pressure gradient of 500 Pa/m [31].

Results
Defining the distribution peak and excluding outliers
We report the peak of the distribution to describe the 
most common value, as opposed to the mode or mean, 
because the distributions shown are of continuous values 
that are not normally distributed. To determine the peak, 
we use 20 evenly spaced bins, and the peak value is the 
bin center with the largest probability density. We also 
report the 25th, 50th, and 75th percentiles and inter-
quartile range (IQR) in Table  3 to indicate the range of 
typical values, rather than the standard deviation, since 
the values are typically not normally distributed.

The distributions of hydraulic resistance and area ratio 
often contained large outliers that skewed the distribu-
tions. The outliers occurred when the automated seg-
mentation and fits did not work well. In order to more 
clearly show the trends in the distributions, in Figs. 5, 8, 
9, Additional files 4, 5 and 6 we do not show the outliers, 
but instead plot an asterisk at the point where the outliers 
begin. We define as outliers any points that are more than 
1.5 times the interquartile range above the 75th percen-
tile or below the 25th percentile.

Table 3 Area ratio and hydraulic resistance for the fits and segmentation

Area ratio Segmentation Ellipse Polynomial Spline

Peak 1.12 2.08 1.21 1.48

25th percentile 1.21 2.26 1.45 1.45

50th percentile 1.88 2.89 2.15 1.58

75th percentile 3.00 3.96 3.42 1.75

IQR 1.79 1.70 1.97 0.3

 Hydraulic resistance Segmentation Ellipse Polynomial Spline Annulus

(Pa s/m4)

Peak 2.51×10
15 9.36×10

14 1.80×10
15 1.61×10

16 2.01×10
15

25th percentile 2.70×10
15 1.08×10

15 2.53×10
15 1.55×10

16 1.66×10
15

50th percentile 4,96×10
15 2.24×10

15 4.45×10
15 4.39×10

16 4.30×10
15

75th percentile 1.84×10
16 7.11×10

15 1.39×10
16 8.16×10

16 1.45×10
16

IQR 1.04×10
15 4.53×10

15 9.32×10
15 5.86×10

15 8.04×10
15
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Area ratio
The PVS-to-vessel area ratio is often reported as a con-
venient measure of PVS size, but we found that the two 
quantities are not precisely coupled. We show the seg-
mented PVS and vessel area for each cross section in 
Fig. 5A. The area of the PVS generally increases with the 
area of the vessel, but the trend is only approximate, as 
evidenced by the low R 2 value of the fit line (0.220). The 
slope of the fit line is 1.66, (95% confidence interval 0.973, 
1.12). We show the distribution of segmented PVS-to-
vessel ratios in Fig.  5E. There is considerable variation 
in the area ratio, and the interquartile range of the seg-
mented area ratio is 1.79 (Table 3), a value on the same 
order as the median value of 1.88, meaning that the area 
ratio varies by more than 100%. The peak value of 1.12 
agrees well with the slope of 1.66 from the fit line in Fig. 5 
and literature estimates of 1.26 [2] and 1.4 [27]. Clearly, 
the PVS area ratio has considerable variation, and addi-
tional parameters are needed to more accurately quantify 
PVS size than the area ratio alone.

From Fig.  5, it is clear that the variation in PVS area 
is much larger between segments of PVS than along the 
length of a single PVS segment. We quantified this differ-
ence by plotting the median PVS area from each segment 

and the interquartile range of each segment in the upper 
right of Fig.  5. The same is also true for the area ratio 
(Additional file 4). The peak of the area ratio distribution 
ranges from 0.6 to 11.43 across the different locations. 
Although their area ratio varies along the length of each 
vessel, in all but one case, this variation occurs within 
30% of the peak, showing inter-segment variation is the 
main contributor to the variation in area ratio.

We used different fits to quantify the size and shape of 
the PVS. To determine which fit best represents the PVS, 
we compare the area ratio and hydraulic resistance of 
the original segmentation with those of each of the fits. 
The distribution of the PVS-to-vessel area ratio in seg-
mentations is matched most closely by the polynomial fit 
(Fig.  5E). For each cross section, we compared the area 
ratio of the segmentation with that of each of the fits and 
found that the area ratio of the polynomial fit matched 
the segmentation area ratio in 73% of cases (Fig. 5D). The 
peak of the area ratio distribution for the polynomial fit is 
1.21, similar to the peak of the segmentation distribution 
of 1.12. The distribution for the ellipse fit is also similar to 
that of the segmentation. However, the ellipse fit gives the 
closest match in only 8% of cases and has a significantly 
higher peak of 2.08 because it does not narrow at the 
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Fig. 5 Variation in PVS area. A Area of the perivascular space and area of the vessel for each cross section in the 14 (A–N) different segments. 
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mouse are plotted with similar colors (see Table 1). The least‑squares fit of the PVS area as a function of the vessel area is shown in red. The PVS 
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than the other fits. The area ratio of the annulus model is chosen to match each segmentation exactly and thus is not displayed. The polynomial fit 
distribution most closely matches that of the segmentation and is the best match for the majority of cross sections
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ends. The spline fit gives the closest match in 19% of the 
cases and has a peak of 1.48, but the distribution is very 
different from that of the segmentation and the other fits: 
the area ratio has very little variation because, by defini-
tion, the PVS size scales with the vessel size, resulting in a 
nearly constant area ratio.

Hydraulic resistance
The hydraulic resistance (per unit length) is defined as:

where Q is the volume flow rate and ∂P/∂n is the pressure 
gradient in the direction of flow, and it is a key parameter 
for describing how the shape affects the flow. To deter-
mine how the resistance of the idealized shapes compares 
with the segmented PVS, we calculated the hydraulic 
resistance for flow through straight channels with cross 
sections that match the shapes of the PVS segmentation 
and fits at each of the normal cross sections. This results 
in a uni-directional, fully developed flow. In reality, the 
shape varies along the length of the channel, and the ves-
sel wall also moves perpendicular to the flow direction, 
resulting in non-axial flow components, but they are 
small compared to flow in the axial direction [27, 31]. 
Boster et al. showed that assuming a unidirectional, fully 

(3)R ≡

∂P/∂n

Q
,

developed flow in a straight channel resulted in errors on 
the order of 10% for a realistic PVS geometry [31] similar 
to those in the present study. Approximating the flow as 
fully-developed also means we are neglecting nonlinear 
flow effects. However, their magnitude is quantified by 
the Womersley number, l

√

ω/ν , where ω , l, and ν are the 
angular frequency of the oscillating pressure gradient, 
length scale, and kinematic viscosity. Pial perivascular 
spaces have Womersley numbers on the order of 1× 10−2 
[35], so neglecting nonlinear effects introduces errors on 
the order of 1% or less. Therefore, calculating the hydrau-
lic resistance for fully developed straight channel flow is a 
convenient simplification that provides insight into how 
different shapes affect the resistance.

The total resistance to flow along the entire length of 
the segment can be estimated by considering the resist-
ance to flow in each cross-section as resistors in series 
and thus can be calculated by averaging the resistance 
per unit length from each cross section along the length 
of the segment. The variation in resistance along the 
length of the segment and the average resistance for each 
segment for both the segmentation and polynomial fits 
are shown in Additional file 7.

Figure  6A displays the hydraulic resistance of each 
segmented cross section as a function of the segmented 
PVS area. The hydraulic resistance can be reasonably 
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predicted with a power-law fit as a function of the PVS 
area alone (R2 = 0.949). The exponent in the power law fit 
is −1.73 (95% confidence interval −1.742 , −1.717 ), simi-
lar to the value of – 2 that is true for a circle, ellipse, or 
any shape as long as only the size scales without other-
wise altering the shape.

The hydraulic resistance of each cross-section from 
each of the 14 different locations (A–N) is shown in 
Fig. 6B, and it is evident that the variation between loca-
tions is much larger than that along the PVS at each 
location. The peak of hydraulic resistance distributions 
ranges from 3.23× 1014 to 1.98× 1016 across different 
locations, whereas, in 65% of the vessels, all the vari-
ation occurs within 37% of the peak of the distribution 
(Additional file 5), showing that inter-segment variation 
is much larger than intra-segment variation.

Figure  5B shows that the distribution of hydraulic 
resistances for the polynomial fit matches that of the seg-
mentation most closely, followed by the ellipse fit. We 
also plot the resistance of an optimal concentric elliptical 
annulus or the concentric elliptical annulus that results in 
the lowest resistance for a given area ratio K, which can 
be approximated as

where R1 is the radius of the vessel in the optimal ellipti-
cal annulus, and µ is the viscosity, as described by Tithof 
et al. [17]. We used the area ratio K from the segmenta-
tion, rather than the ellipse fit, since the ellipse fit tended 

(4)RH =

(

µ · 6.67 · K−1.96

R1

)4

to overestimate the area ratio. The distribution of resist-
ances for the optimal elliptical annulus is very similar to 
that of the ellipse fit, which supports the finding of Tithof 
et al. that the shape of a PVS, as defined by the ellipse fit, 
is very close to the optimal ellipse. This fact is a conveni-
ent feature of the ellipse fit: the hydraulic resistance can 
be reasonably approximated with knowledge of the area 
ratio alone. Though both the ellipse fit and annulus tend 
to underestimate the resistance of the PVS, the conveni-
ence of being able to calculate the resistance with such 
a simple analytical equation may make the trade-off in 
accuracy worthwhile in some situations.

The resistance for the spline fit is considerably larger 
than that of the segmentation (distribution peak is 5 
times larger), so the distribution is plotted separately, in 
the inset of Fig. 5B. The larger resistance is a result of the 
shape of the fit. Despite having a larger area ratio than 
the segmentation and polynomial fit, the resistance is 
higher because of the way the PVS rapidly narrows as it 
moves away from the vessel, illustrating the importance 
of modeling not just the correct PVS area, but a reason-
able approximation of the PVS shape as well.

To further emphasize this point, in Fig. 7 we show the 
velocity profiles for each fit in a representative cross sec-
tion. The spline fit has the slowest speeds because the 
space adjacent to the vessel is narrower than the other 
fits. This highlights the importance of considering not 
just the size but also the shape of the PVS. The velocity 
profiles for the ellipse and polynomial fit are more simi-
lar to that of the segmentation. These trends are gener-
ally consistent in all cross sections, as reflected in the 

Fig. 7 Simulated velocity profiles in the PVS for one representative cross section. In this example case, the velocity profile for the polynomial fit 
is similar to the velocity profile in the segmentation, whereas the ellipse fit results in much higher velocities, and the spline fit results in much lower 
velocities
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hydraulic resistance distributions. The fastest speeds for 
all of the cross sections in Fig. 7 occur close to the ves-
sel where the space is widest. Because of the way the 
PVS tapers, the speed in the regions far from the ves-
sel is much slower, and those regions could probably be 
excluded without significantly impacting the predicted 
mass and momentum transport rates volume flow rates 
(e.g., volume flow rate, mass flux).

Characteristics of the typical PVS shape
To quantify the PVS shape and size, we report the dis-
tributions of the ellipse and polynomial fit parameters 
(Figs. 8 and 9), and various statistics for the polynomial 
fit (Table  4). To accurately model mass and momentum 
transport, it is essential to know both the area and shape 
of the PVS, as demonstrated by the significant difference 
in hydraulic resistance between the spline fit and seg-
mentation, despite having a similar area. The area ratio 
has previously been reported as greater than 1 [2, 27], but 
the shape of the PVS has not been rigorously quantified 
previously. Here we describe some general characteris-
tics of the PVS shape derived from the distributions of 
parameters in the polynomial and ellipse fits. 

The parameter distributions from both the polynomial 
and ellipse fits show that the shape of the PVS is com-
prised of two mostly or entirely disconnected regions 
on either side of the vessel (Figs. 8A, E, and 9C). For the 

ellipse fit, the distribution of R1 , the vessel radius, is simi-
lar to that of R3 , the minor axis length (distribution peaks 
at 20.7 µm and 22.8 µm, respectively, see Fig. 8A), and the 
ratio between them ( R3/R1 ) is generally close to 1 (distri-
bution peaks at 0.80, Fig. 8E). Similarly, in the polynomial 
fit the parameter HC is the distance between the top of 
the polynomial fit and the top of the vessel (as illustrated 
in Fig. 4D), with values greater than zero indicating left 
and right sides of the PVS are connected, and values less 
than zero indicated that the PVS is disconnected. The 
distribution peaks at zero (Fig.  9C), suggesting that the 
top of the vessel is most often very nearly aligned with 
the top of the PVS and that the PVS is often separated 
into two lobes. Even when the two sides are connected, 
the channel connecting them is quite narrow, usually 
less than 0.5R1 . The connection is narrow (relative to 
the height of the PVS at H1 and H2 ), suggesting that the 
channel, when present, has little effect on the hydraulic 
resistance, making its presence or absence inconsequen-
tial for the hydraulic resistance.

The PVS is typically elongated, with a width approxi-
mately twice the vessel radius. The ratio of the major 
axis to vessel radius of the ellipse fit ( R2/R1 ) distribution 
peaks at 2.89 (Fig. 8D). The major axis of the ellipse fit 
represents the distance from the PVS center and so, it 
includes the vessel radius. Thus, the width of the PVS is 
approximately twice the vessel radius. Similarly, in the 

Fig. 8 Distributions of ellipse fit parameters, as defined in Fig. 4. A Radius and minor axis length. B Major axis length C ratio of minor to major 
axis length. D Ratio of Major axis length to vessel radius. E Ratio of minor axis length to vessel radius. F Vertical and horizonal offsets normalized 
by vessel radius. The PVS shape is typically narrow ( R3/R2 ∼ 0.4 ) and elongated ( R2/R1 ∼ 2.9 ) with the vessel slightly offset down from the PVS 
center
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polynomial fit, the ratio of PVS width to vessel radius 
( WS/R1 ) peaks at 1.85 (Fig. 9E), suggesting that the PVS 
is twice as wide as the vessel radius.

The PVS is typically eccentric, with a height much 
smaller than the width. The ratio of the minor axis to 
the major axis ( R3/R2 ) peaks at 0.398 (Fig.  8C) mean-
ing that typically, the minor axis is more than two times 
smaller than the major axis.

The PVS is often asymmetric in that the vessel is typi-
cally not located in either the vertical or horizontal 
center of the PVS. The asymmetry is apparent from the 
distributions of parameters that describe both the poly-
nomial and ellipse fits. Ov is and vertical offset between 
the center of the ellipse and the center of the vessel, 
and the distribution peaks at 0.137 (Fig.  8F), indicating 

Fig. 9 Distributions of polynomial fit parameters, as defined in Fig. 4. A Height of the fit shape at 3 positions. B fit shape curvature. C Height 
of the PVS directly above the center of the vessel. D vessel radius E Fit shape width. Ws and WL are the widths of the short and long sides 
of the perivascular space, respectively. F Ratio of the lengths of the short to long sides of the fit shape. The height of the perivascular space 
is the greatest next to the vessel

Table 4 Parameters from the polynomial fit for all cross sections

Parameters (µm) H1 H2 H3 HC WS WL R1

Peak value 39.5 18.6 9.37 0.799 22.3 42.1 20.8

25th percentile 24.7 17.4 6.20 ‑3.12 24.6 47.3 19.5

50th percentile 36.3 23.2 10.7 0.516 36.3 85.5 22.5

75th percentile 45.5 32.4 17.2 4.72 81.0 152.0 29.6

 Parameters H1/R1 H2/R1 H3/R1 HC/R1 WS/R1 WL/R1 WS/WL

Peak value 1.34 0.792 0.307 0.000689 1.08 1.85 0.502

25th percentile 1.17 0.743 0.273 – 0.141 1.04 2.16 0.386

50th percentile 1.41 0.987 0.455 0.0220 1.60 3.53 0.589

75th percentile 1.76 1.37 0.707 0.209 2.93 5.23 0.762
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that the vessel is most frequently slightly lower than the 
center of the ellipse. Oh is the horizontal offset between 
the center of the ellipse and the center of the vessel and 
is centered around zero, indicating no preference in off-
set for one side relative to the other. However, the distri-
bution for the horizontal offset is much wider than that 
of the vertical offset (Fig.  8F), indicating that the vessel 
is often shifted dramatically from one side to the left or 
right of the PVS center. This horizontal shift is character-
ized more clearly in the polynomial fit, where the PVS 
width W is the distance from the edge of the vessel to 
PVS edge. For each cross-section, there is a width meas-
urement from the left and right side of the PVS. Since 
there was no statistically significant difference between 
the left and right sides, we report the distribution of the 
short ( WS ) and long ( WL ) sides of each cross section. 
The short side is significantly shorter than the long side 
(distribution peaks of 1.1 and 1.9, respectively, Fig.  9E) 
and for the ratio between them, WS/WL , the distribution 
peaks at approximately 0.5, indicating that the two PVS 
sides are typically asymmetric, a feature that results in 
reduced hydraulic resistance compared to a symmetric 
shape of the same area ([17]).

The PVS narrows dramatically further from the vessel. 
One difference between the polynomial and ellipse fits is 
highlighted in Fig. 9A, where the distributions of heights 
of the PVS, H1 , H2 , and H3 , peak at 1.34, 0.792, and 0.307, 
respectively, indicating that the PVS is larger closer to the 
vessel and smaller at the ends of the PVS. H1 , the height 
of the PVS close to the vessel, is 4 times larger than H3 , 
the height of the PVS far from the vessel, indicating that 
the PVS is typically thicker close to the vessel and thinner 
further away from the vessel and suggesting a dramatic 
change in height along the length of the PVS, a feature 
not captured by the ellipse fit.

The PVS is often concave. The ratio of the change in 
heights, (H2 −H3)/(H1−H2) shown in Fig. 9F describes 
the curvature of the bottom edge of the PVS, with values 
greater than one indicating the PVS is convex, and values 
less than one indicating the PVS is concave. The peak of 
the curvature distribution is 0.108, showing that the PVS 
is most often concave, rather than convex, as is required 
by the ellipse fit. This concavity has implications for the 
resistance to flow, since the resistance would be larger for 
a concave shape of the same area than a convex shape, 
and is a large part of why the ellipse, which is convex, has 
a smaller resistance than the segmentation.

Optimal model of the PVS
Despite having a similar peak in area ratio, the spline fit 
has a much higher hydraulic resistance, which we attrib-
ute to the way the PVS rapidly narrows, creating a smaller 
space adjacent to the vessel. The narrow space results in 

slower speeds (Fig.  7) and considerably higher hydrau-
lic resistances (Fig.  6B). Because of the way spline fit is 
defined only with respect to vessel size, there is very lit-
tle variation in the area ratio (Fig. 5 and Additional file 4). 
While the area ratio can be a useful parameter, it is clear 
from Fig. 5 that the size of the PVS is not a function of 
the adjacent vessel’s size alone.

The ellipse fit has a lower hydraulic resistance than the 
segmentation, as a result of the larger area ratio and con-
vex shape. The hydraulic resistance of the optimal annu-
lus is more similar to that of the segmentation than the 
ellipse fit. This is because it is based on the area ratio of 
the segmentation at each cross section, while the ellipse 
is based on the second central moment of the PVS which 
overestimates the area ratio (Fig.  5E). In other words, 
for the sake of calculating the resistance, if assuming an 
annulus, it is preferable to assume an optimal shape and 
use a measured area ratio than base the shape on the 
second central moment. The ellipse fit also assumes the 
PVS curvature to be convex, which results in a smaller 
hydraulic resistance for the same area. These features 
explain why the ellipse fit results in lower hydraulic 
resistance than the segmentation.

The polynomial fit results in area ratios and hydraulic 
resistances closest to those of the segmentation, sug-
gesting that it captures the shape of the PVS best. The 
polynomial fit allows the PVS to narrow further from the 
vessel and to be concave, both of which contribute to its 
ability to capture the PVS shape. If we consider the com-
plexity of the fits and how flexible they are across differ-
ent cross sections, the polynomial fit is defined in a way 
that can most closely fit the variations as seen in Addi-
tional file 2 across the 14 locations. Though the shape is 
not as simple as the other fits, it can be fully described 
with only a few more parameters.

The variation in PVS shape is evident from the wide 
distributions of parameter values in Fig. 9, but for mod-
eling purposes, it is practical to define a single “idealized” 
or quintessential PVS shape that is representative of the 
most common PVS shape. We based the representative 
PVS geometry on the polynomial fit as it more accu-
rately captures the PVS shape compared to the other fits 
that we explored, and we determine the parameter val-
ues based on the most common or peak values from the 
distributions. The representative fit is shown in Fig.  10, 
and the most common, 25th, 50th, and 75th percentile 
parameter values are listed in Table 4.

Discussion
Filled with flowing CSF, PVSs constitute primary path-
ways for fluid and solute transport, which is strongly 
affected by PVS size and shape. In this study, we have 
characterized the size and shape of different PVS cross 
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sections in an effort to better define the PVS geometry 
and aid model development. Our PVS-to-vessel area 
ratio measurements are consistent with those previ-
ously reported. Schain et  al. [2] and Mestre et  al. [27] 
reported area ratios of 1.26 and 1.4, similar to our peak 
of 1.12 and a median of 1.88. However, the PVS-to-ves-
sel area ratio is not constant, as the poor fit in Fig. 5A 
and the wide distribution in Fig. 5E demonstrate.

We approximated the cross-sectional shape of the 
vessel as a circle and found that the peak of the ves-
sel radius distribution is 20.7 µm (Fig.  8A and 9D). 
Schain et  al. [2] reported and range of 6 to 11 µm for 
the radius of the arteries and arterioles. The meas-
urements we report all came from locations located 
approximately 4 to 7 bifurcations downstream from the 
main middle cerebral artery. Since their measurements 
included arterioles as well as venules, it is possible that 
their measurements were further downstream, which 
could potentially explain the difference. Mestre et  al. 
[27] measured the pial radius to be 23 µm, similar to 
the values we report. Another possible explanation for 
discrepancies is a difference in anesthesia: Schain et al. 
used urethane and atropine, whereas we used ketamine 
and xylazine (see Methods), as did Mestre et al.

Though the shape of pial PVSs has not been quanti-
fied previously, quantitative measurements agree with 
the qualitative descriptions in the literature. Mestre 
et  al. [27] and Tithof et  al. [17] described the PVS as 
non-connecting with two disjoint compartments form-
ing on each side of the pial arteries. An elliptical shape 
with two disjoint PVSs was also assumed by Kedara-
setti et  al. [36]. In agreement with our measurement 
that the PVS width is approximately twice the vessel 
radius, Mestre et  al. [27] reported the PVS width in a 
single plane to be about the same as the vessel width 
(twice the vessel radius). Rudie et al. [4] report that the 
PVS is generally a well-defined oval, rounded or tubular 
structure with smooth margins. Tithof et  al. reported 
that the PVS outer boundaries are often oblate and that 

the PVS around the pial artery is an annular region, 
elongated in the direction along the skull [17]. They 
also noted that PVS eccentricity occurs and noted that 
eccentricity reduces hydraulic resistance because fluid 
is further from the wall, allowing for higher velocity for 
a given driving pressure.

The hydraulic resistance dictates the speed of CSF 
flow in the PVS, determining the rate at which bio-
logical waste like proteins and dead white blood cells is 
removed [37]. Resistance is a key parameter for large-
scale models of cerebral CSF flow [18, 20, 38, 39] and has 
previously been estimated by assuming a uniform PVS 
geometry. Here, we report the distribution of hydraulic 
resistances for many pial PVS cross sections, which has 
a peak at 1.73× 1015  Pa  s/m4 . In their hydraulic net-
work model, Tithof et al. [38] used a hydraulic resistance 
of 8.7× 1015 Pa  s/m4 for pial vessels, assuming an opti-
mal concentric elliptical annulus with an area ratio of 
1.4 and vessel radius of 23 µm, based on measurements 
reported by Mestre et al. [27] and Tithof et al. [17]. This 
hydraulic resistance is larger than our segmentation 
resistance, suggesting that the value they used for pial 
PVSs overestimated the hydraulic resistance. However, 
since the vast majority of the resistance in their model 
comes from other regions of the network (e.g. the porous 
penetrating and capillary PVSs and parenchyma), this 
overestimation of pial PVS resistance is not expected 
to alter their conclusions. The concentric circular annu-
lus assumed by Faghih and Sharp results in a resistance 
of 1.4 × 1016  Pa  s/m4 for a vessel radius of 28 µm [18], 
suggesting that their model overestimates the hydraulic 
resistance. In future studies, pial PVS resistance can be 
estimated from pial PVS size using the empirical relation 
we described above. However, this relation should not be 
applied to penetrating PVSs, which have a considerably 
different shape, may be porous, and likely pose a greater 
resistance to flow than pial PVSs [18, 38–40]. In fact, 
Tithof et al. showed that more uniform perfusion occurs 
when there is a large separation between pial and pene-
trating PVS resistance [38].

PVSs are hypothesized to play a crucial role in clear-
ing interstitial solutes such as β-amyloid from the brain 
[1, 4, 6, 27, 41]. PVS shape affects the hydraulic resist-
ance, velocity profile, and transport rate of the CSF. Vinje 
et  al. showed the importance of PVS shape [5]. They 
used numerical simulations to show that PVS velocity 
is linearly proportional to PVS width. In contrast, the 
mean velocity of a pressure-driven flow in a cylindrical 
vessel is linearly proportional to the square of the ves-
sel radius. They also observed that differences in arte-
rial and venous PVS shape would lead to differences in 
velocity and transport rate for a given pressure gradient 
[5]. The simple, parameterized fits of the PVS shape with 

Fig. 10 Quintessential Polynomial fit geometry. The parameter 
values were determined based on the most common parameters 
(defined as the peak of the distribution) across all analyzed 
cross sections
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the parameter distributions we report could be used to 
estimate how various aspects of the shape affect fluid and 
mass transport.

Ballerini et al. [21] show that PVS size and shape cor-
relate strongly with white matter hyperintensities on MRI 
scans of human subjects. Enlarged PVSs are also associ-
ated with small vessel disease and hypertension [42, 43]. 
Thus, it is important to benchmark the size and shape of 
PVSs in non-pathological scenarios, as we did here with 
detailed statistical distributions. Furthermore, in the 
future, parameterized fits could be used to more com-
pletely quantify the PVS shape, which may increase the 
sensitivity and specificity of using PVS metrics to detect 
PVS-related pathologies, as described by Ballerini et  al. 
[21]. The parameters could potentially be used as bio-
markers of disease. Being able to more accurately quan-
tify PVS size and shape could improve our understanding 
of and ability to detect how PVSs are altered in patholog-
ical conditions.

There are limitations to our study. Segmentation is 
inherently challenging due to the lack of ground truth 
data for comparison and the low signal-to-noise ratio 
in the two-photon images. We partially validated our 
segmentations by comparing them with a high signal-
to-noise-ratio composite time-series image in a 2D 
transverse plane, which provided a quantitative method 
to evaluate the segmentation, but only at a single depth. 
This partial validation serves as a way to attempt to quan-
tify the uncertainty in the segmentation process in the 
absence of ground truth data and suggests that though 
there is uncertainty in the 3D segmentations, they still 
capture the general size and shape of the vessel and PVS. 
After the initial binarization of the images, some of the 
post-processing steps, especially manual correction, were 
applied on a case-by-case basis, introducing a degree of 
subjectivity to the segmentation, and resulting in another 
source of uncertainty. In the future, ground truth seg-
mentation results, either from a phantom or simulated 
data, could be helpful in evaluating the accuracy of the 
segmentation process.

In addition, our analysis is limited to perivascular 
spaces adjacent to pial arteries in the territory of the 
MCA and does not describe penetrating PVSs or venous 
PVSs, which are expected to have considerably different 
sizes and shapes. Characterizing the shape of penetrat-
ing PVSs, which we did not attempt in this study, may 
be simpler, because studies to date suggest that they are 
essentially cylindrical, with vessels offset to one side 
[17]. Furthermore, while there is strong evidence that 
pial PVSs are open [33], preliminary evidence suggests 
that penetrating PVSs may contain microstructures [34], 
and, if they can be modeled as a porous medium, would 

completely eliminate the influence of shape on resistance 
and make the permeability of paramount importance in 
characterizing penetrating PVS resistance. The perme-
ability of penetrating PVSs, however, is difficult to quan-
tify but strongly influences model predictions [39]. Our 
analysis does not yet extend to the complicated shapes 
of PVSs around vessel bifurcations. Anecdotally we 
observed that PVSs were larger around bifurcations, con-
sistent with prior anecdotal observations [2]. This phe-
nomenon could partially explain the large variation in the 
area ratio we report. Future work could characterize PVS 
shapes near bifurcations in greater detail.

Conclusion
We report the size and shape of pial PVSs from 3D two-
photon images of 14 locations in 9 different wild-type 
mice. We show that there is considerable variation in the 
PVS-to-vessel cross-sectional area ratio. The hydraulic 
resistance per unit length in the segmented PVS cross 
sections can be reasonably approximated as a function of 
the PVS area. Of three idealized PVS geometries (ellipse, 
spline, and polynomial), a polynomial fit matched the 
area ratios and hydraulic resistances of the segmented 
shapes most closely. The peak in the area ratio distribu-
tion is 1.12 and 1.21 for the segmentation and polynomial 
fit respectively, while the hydraulic resistance distribu-
tion peaks at 1.73× 1015 and 1.44 × 1015 Pa s/m4 , respec-
tively. Idealized PVS shapes are convenient for modeling 
and better understanding how changes in the shape affect 
mass and momentum transport. They allow us to quan-
tify morphological aspects of the shape (e.g., vessel off-
set from the PVS center) and explore how changing the 
shape affects resistance and velocity distribution. We 
construct a representative shape and provide detailed 
distributions of the parameters so that variations can be 
quantified. Since pial arterial PVSs are the entryway for 
CSF flow into the brain, accurately quantifying their size 
and shape is critical to developing effective fluid dynam-
ics models of the cerebral CSF flow and further under-
standing the clearance of biological waste. This work 
could lead to more accurate reduced-order models of 
flow in pial PVSs and provide a framework for character-
izing PVS size and shape in non-pathological scenarios.
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tributions for spline fits are narrower than others and are plotted on the 
right axes. In most cases, the polynomial fit most closely matches the 
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