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Fluids and Barriers of the CNS

Pulsatile cerebral paraarterial flow 
by peristalsis, pressure and directional 
resistance
M. Keith Sharp1* 

Abstract 

Background A glymphatic system has been proposed that comprises flow that enters along cerebral paraarterial 
channels between the artery wall and the surrounding glial layer, continues through the parenchyma, and then exits 
along similar paravenous channels. The mechanism driving flow through this system is unclear. The pulsatile (oscilla-
tory plus mean) flow measured in the space surrounding the middle cerebral artery (MCA) suggests that peristalsis 
created by intravascular blood pressure pulses is a candidate for the paraarterial flow in the subarachnoid spaces. 
However, peristalsis is ineffective in driving significant mean flow when the amplitude of channel wall motion is small, 
as has been observed in the MCA artery wall. In this paper, peristalsis in combination with two additional mecha-
nisms, a longitudinal pressure gradient and directional flow resistance, is evaluated to match the measured MCA 
paraarterial oscillatory and mean flows.

Methods Two analytical models are used that simplify the paraarterial branched network to a long continuous chan-
nel with a traveling wave in order to maximize the potential effect of peristalsis on the mean flow. The two models 
have parallel-plate and annulus geometries, respectively, with and without an added longitudinal pressure gradient. 
The effect of directional flow resistors was also evaluated for the parallel-plate geometry.

Results For these models, the measured amplitude of arterial wall motion is too large to cause the small measured 
amplitude of oscillatory velocity, indicating that the outer wall must also move. At a combined motion matching 
the measured oscillatory velocity, peristalsis is incapable of driving enough mean flow. Directional flow resistance 
elements augment the mean flow, but not enough to provide a match. With a steady longitudinal pressure gradient, 
both oscillatory and mean flows can be matched to the measurements.

Conclusions These results suggest that peristalsis drives the oscillatory flow in the subarachnoid paraarterial space, 
but is incapable of driving the mean flow. The effect of directional flow resistors is insufficient to produce a match, 
but a small longitudinal pressure gradient is capable of creating the mean flow. Additional experiments are needed to 
confirm whether the outer wall also moves, as well as to validate the pressure gradient.

Keywords Brain, Glymphatic flow, Peristaltic flow, Perivascular, Paravascular

Background
A glymphatic circulation in the brain has been pro-
posed that involves transport through cerebral par-
aarterial channels, the parenchyma and paravenous 
channels ([1], for reviews, see [2, 3]). To confirm this 
hypothesis, it is essential that mechanisms driv-
ing transport through each section be identified and 
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validated [4, 5]. Transport of solutes need not involve 
net bulk flow of fluid. Alternatively, shear-augmented 
dispersion in the absence of net flow might contribute 
to or entirely explain the transport [6]. For the paraar-
terial channels, an obvious candidate driver of flow in 
the subarachnoid paraarterial space is peristalsis asso-
ciated with displacement of the arterial wall during the 
blood pressure pulse. Recent in  vivo measurements of 
arterial displacement and flow in paravascular chan-
nels surrounding the middle cerebral artery (MCA) [7] 
provide validation data for modelling efforts to test the 
plausibility of peristaltic flow. Mestre, et al. [7] found a 
mean flow velocity of 18.7 μm/s in a channel with gap 
of a = 44  μm surrounding an artery of radius 22  μm. 
Mestre, et  al. did not report oscillatory velocity, but 
Ladrón-de-Guevara, et al. [8] give the ratio of temporal 
peak, spatial root-mean-square oscillatory velocity to 
mean velocity as 0.53. For a parabolic profile, the ratio 
of mean to root-mean-square is 5/4, thus the amplitude 
of the spatial mean of oscillatory velocity is estimated 
as 18.7 * 5/4 = 12.3 μm/s. From Mestre, et al. [7] Fig. 3e, 
artery diameter amplitude normalized by the baseline 
diameter is estimated as 0.008, which gives a radial 
amplitude of b = 0.176 μm and amplitude ratio φ ≡ b

a = 
0.004 (see Fig. 1).

The MCA channels represent the initial conduits of 
the proposed glymphatic circulation, that includes a 
branched network of paraarterial channels, interstitial 
flow through the parenchyma and outflow through a 
branched network of paravenous channels. Faghih and 
Sharp [9] modelled flow in the paraarterial network and 
Vinje, et al. [10] analysed the more comprehensive sys-
tem, but both assumed steady flow only.

Pulsatile flow models have been simplified in two 
categories, either a single channel (without branching) 
longer than the pulsatile wavelength representing the 
paraarterial network, or a section of a proximal par-
aarterial channel shorter than the wavelength. When 
the channel length is much shorter than the traveling 
wave, the flow approaches that of a squeeze flow caused 
by synchronous wall motion, which produces little to 

no mean flow. Accordingly, a number of investigators 
using this type of simplified model found insignificant 
mean flow (e.g., [11–13]).

A model longer than the wavelength was used by 
Wang and Olbricht [14] to calculate mean flow by peri-
stalsis and a pressure gradient caused by injection, as 
a function of wall displacement and channel perme-
ability. Romano, et al. [15] added permeable, Hookean 
brain tissue to model flow through the glial bound-
ary. Ranges of geometric parameters and elasticity 
and permeability were tested, but only one constant 
longitudinal pressure difference was used. They found 
that a phase shift was necessary between glial and arte-
rial wall displacements for steady streaming to occur. 
Depending on elasticity and permeability, flow can 
either enter or exit the brain. The velocities are small 
(− 2.25–0.4 μm/s for their ranges of parameters) com-
pared to that measured by Mestre, et  al. [7], and may 
characterize the error associated with neglecting phase 
differences in favour of simpler models.

Reducing the branched network of paraarterial chan-
nels to a single channel of the same length and constant 
mean cross-sectional geometry involves assumptions 
that may significantly influence the resulting flow. For 
instance, such a simplification neglects resistance asso-
ciated with flow through branches. It also ignores wave 
reflection at branches, i.e., it assumes that the traveling 
wave is entirely transmitted along the channel without 
reflection. Reductions in wave amplitude with distance 
along the network, associated with decreasing pulse 
pressure, are also ignored. Decreased permeability of 
the channel associated with possible increase in struc-
ture within distal branches is likewise neglected. None-
theless, the simplified model is attractive for its relative 
ease of solution and, in this case, for the upper limit 
of mean flow that it likely represents. This study uses 
this “long” model to evaluate whether peristalsis alone 
is capable of matching the Mestre, et al. [7] oscillatory 
and mean flow, as well as whether two additional mech-
anisms—a steady longitudinal pressure gradient and 
directional flow resistors—could be added to reproduce 
these in vivo flows.

In this paper, several mathematical solutions are 
applied, including peristalsis with and without a lon-
gitudinal pressure gradient in parallel-plate [16] and 
annulus [14] geometries, and peristalsis with direc-
tional flow resistors in the parallel-plate geometry. The 
latter solution is that of Sharp, et al. [17] with the resis-
tors flexing in the direction of blood flow to promote 
forward flow. These solutions are summarized in the 
Methods sections. More details can be found in Sharp, 
et al. [17] or in the original papers.

Fig. 1 Geometric parameters of the peristalitc wall motion
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Methods
Parallel‑plate geometry
Jaffrin & Shapiro [16] developed a solution for nonporous 
flow in a cartesian 2D gap. With a thin gap a compared 
to vessel radius A, a/A <  < 1, the flow is modeled as that 
between symmetrically oscillating parallel plates (Fig. 1). 
The measured gap to artery radius ratio of 2.0 [7] sug-
gests that the cartesian geometry is a compromise. None-
theless, because this geometry overestimates the mean 
flow that can be created by peristalsis, it is conservative 
for the purposes of this study.

The flow can be described by the Navier–Stokes equa-
tion. However, with gap height of a = 44 μm [7] and esti-
mated wavelength of λ = 0.1  m [18], the wavenumber 
α ≡ 2πa

�
= 2.77E-9 is small, thus the convective terms are 

negligible. With estimated wavespeed of c = 1  m/s [14] 

and kinematic viscosity of ν= 6.97E-7  m2/s [7], the char-
acteristic Reynolds number R ≡ acα

ν
= 1.75E-13 is small, 

thus the inertial terms are small. These small values allow 
a simplification to Stokes flow.

Boundary conditions are uy = 0 at the centerline y = 0 
(by flow symmetry), and u = 0 at the wall y = h (no slip). 
The solution involves transformation to the wave frame 
in which, by continuity, flow rate must be constant. 
Finally, the flow rate in the laboratory frame becomes

Equation  1 establishes the pressure drop versus flow 
relationship for the peristaltic pump. The first term is a 
function only of the amplitude ratio φ and represents the 
forward pumping due to peristalsis. The second term, 
which goes to zero as the amplitude ratio approaches one 
(complete occlusion of the channel at the valleys in the 
peristaltic wave), represents the back leakage due to an 
unfavorable (positive) pressure gradient or augmented 
flow due to a favorable (negative) pressure gradient.

The mean velocity across the cross section is

(1)Q =
3φ2
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�P�
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Annular geometry
Wang & Olbricht [14] used a Darcy model for flow in 
porous media in an annular space with an oscillating 
inner wall at radius h(t) . The instantaneous flow rate is

where Φ is the porosity, R1 and R2 are the mean inner and 
outer radii, b is the amplitude of inner wall displacement, 
and κ is the permeability. This flow rate is largest when 
h = R1 − b with h ≥ 0 (the wall cannot displace farther 
than the center of the artery)

For this model, the nondimensional mean velocity 
becomes

To represent a nonporous channel, Φ  = 1 and the Darcy 
permeability is set to that for Poiseuille flow

Parallel‑plate geometry with directional flow resistors
For the Sharp, et al. [17] solution, a periodic Darcy term is 
used to represent the drag imposed by cylinders that flex 
in response to flow direction (Fig. 2). To promote forward 
flow, the cylinders are tangential to forward flow, and nor-
mal to reverse flow. For simplicity, the cylinder in the fig-
ure is shown attached to the wall of the channel, but in the 
solution, cylinders are assumed to be distributed through-
out the channel. (The model does not consider motion of 
the cylinders in the cross stream y direction.)
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Fig. 2 Orientation of cylinders to promote flow in the left to right 
direction. Left—cylinder orientation for zero flow. Middle—left to 
right flow flexes the cylinder so that it is oriented tangential to the 
flow. Right—right to left flow flexes the cylinder towards normal 
orientation. For simplicity, only one cylinder is shown, and it is 
attached to the wall, but in the solution in this section, cylinders are 
distributed throughout the channel. (From [17])
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For this model, the mean flow rate is

where �P�(τ ) ≡ 2πa2

�µc �p� is the normalized pres-
sure difference over one wavelength λ, �p� is the pres-
sure difference over one wavelength, a is the mean 
paraarterial gap height, μ is the dynamic viscosity, c is 
the wavespeed, γ ≡ h

√
K

2l
 is the Darcy number, h is the 

periodic gap height, 2 l is the spacing between cylinders, 
H ≡ h

a = 1+ φcos(ξ − τ) is the normalized periodic 
height of the paraarterial gap, φ ≡ b/a is the amplitude 
ratio of peristaltic wall motion, b is the dimensional 
amplitude of wall motion, ξ ≡ 2πx/� is the normalized 
axial coordinate and τ ≡ 2πct/� is normalized time. The 
drag coefficient K for cylinders is defined by a curve fit 
described by Sharp, et al. [17] and varies by a factor of 2 
for normal versus tangential flow. The phase of the peri-
odic drag function is shifted by π/2 compared to Sharp, 
et  al. to promote antegrade rather than retrograde flow. 
While Sharp, et al. analyzed both sinusoidal and discon-
tinuous switching of cylinder orientation, here switching 

(6)

Q = 1+
−�P�(τ )−

∫ 2π
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]
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is used since it promotes the greatest mean flow. The 
mean velocity across the cross section is given by Eq. 2.

Results
Figure 3 shows the mean velocity U = Q for three differ-
ent cases. The blue curve is for flow in the parallel-plate 
model with no imposed pressure gradient, �P� = 0 . 
For the measured paraarterial gap amplitude ratio of 
φ = 0.004 (gray line on the figure), the mean flow rate is 
0.000024, which is close to that measured (dimensional 
velocity of 24  μm/s versus measured 18.7  μm/s). How-
ever, the oscillatory velocity amplitude is too large at 
4000 μm/s versus measured 12.3 μm/s. The Mestre, et al. 
[7] measurements quantified the displacement only of 
the inner wall of the channel. It stands to reason that the 
outer wall may also move, which would reduce the effec-
tive amplitude ratio. For an amplitude ratio φ = 0.00353, 
at which the measured mean velocity is matched, the 
velocity amplitude is still too large at 3530  μm/s. At 
amplitude ratio φ = 0.0000123, the measured peak veloc-
ity is matched, but the mean velocity is an insignificant 
0.000227 μm/s (black square on the figure).

The effect of pressure difference in the parallel-
plate channel is shown by the green curve in Fig.  3. As 
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predicted by Eq. 1, pressure has little effect on the flow for 
large amplitude ratio, but becomes strong as φ decreases. 
The mean and oscillatory velocities are both matched 
with a nondimensional pressure difference of �P� = 
0.000352 at an amplitude ratio of φ = 0.0000123 (the 
right-hand end of the green curve). This corresponds to 
a dimensional pressure difference of �p = �µc

2πa2
�P�

L
�
= 

1.56 mmHg, where the channel length is taken as L = 2 m.
The effect of flexing flow resistors approaches zero as 

φ approaches its maximum value, however, the effect 
increases more quickly with decreasing φ than that of a 
pressure gradient (Fig.  3). Mean velocity is matched at 
φ = 0.0000881, but the oscillatory velocity is too large 
at 88.1 μm/s. At a smaller φ = 0.0000123 that matches 
the oscillatory velocity, the mean velocity is too low at 
2.61  μm/s. The volume fraction of cylinders for these 
results is a somewhat arbitrary ε0 =

πa2c
4l0

= 0.01 , where ac 
is the cylinder radius and l0 is the mean cylinder spacing. 
The mean velocity is nearly insensitive to ε at the ampli-
tude φ= 0.0000123 that matches the oscillatory velocity, 
thus a simultaneous match of measured mean and oscil-
latory velocities is not possible.

The dotted blue curve in Fig.  3 presents the Wang & 
Olbricht [14] model for a nonporous (Φ = 1) annulus with 
zero pressure difference �P� = 0 . The curve confirms 
that the annular model with oscillating inner wall has less 
potential for creating mean flow than the parallel-plate 
model. The gray line again shows the mean velocity for 
the measured displacement. For this model, the mean 
velocity is 2  μm/s with an oscillatory velocity ampli-
tude of 2000 μm/s. For matched mean velocity at ampli-
tude φ = 0.01223, the oscillatory velocity is too great at 
6110 μm/s. For matched oscillatory velocity amplitude at 
φ= 0.0000246, the mean velocity is only 0.0000756 μm/s 
(black square).

With a pressure difference of 1.54 mmHg added (dot-
ted green curve), both the mean and oscillatory veloci-
ties can be matched to measured values (right end of the 
dotted green curve), at an amplitude ratio of φ = 0000246.

Additional evidence of the inherent inability of peri-
stalsis alone to match the Mestre, et  al. [7] data is pre-
sented in Fig.  4, which shows the ratio of oscillatory to 
mean velocity. For the Mestre, et  al. [7] measurements, 
this ratio is 0.66. Figure 4 shows that at the measured dis-
placement of φ = 0.004, the ratios are too large at 167 and 

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0.000010.00010.0010.010.11

O
sc

ill
at

or
y/

m
ea

n 
ve

lo
ci

ty

Amplitude ratio 

parallel plate
parallel plate with pressure
parallel plate with resistors
annulus
annulus with pressure
measured displacement
measured oscillatory flow
measured mean flow

φ
Fig. 4 Ratio of oscillatory to mean velocities versus wall-amplitude-to-gap-height ratio for all models. This ratio is 0.66 for the Mestre, et al. [7] 
measurements



Page 6 of 9Sharp  Fluids and Barriers of the CNS           (2023) 20:41 

100 for the parallel-plate and annulus models, respec-
tively, without a pressure gradient. Where the oscillatory 
velocity is matched to the measurements, the ratios are 
54,200 and 163,000 for the parallel-plate and annulus 
models, respectively. Indeed, a ratio of 0.66 is approached 
for the parallel-plate model only as φ → 1 , and for the 
annulus model the smallest ratio obtainable is 6.27 for 
φ = 0.5 (because the artery radius cannot collapse beyond 
its center). This fundamental characteristic of the perfor-
mance of peristaltic channels reinforces that the mean 
flow must be driven by a different mechanism. With a 
pressure gradient in both the parallel-plate and annu-
lar models, the ratio initially rises for decreasing φ, but 
then decreases to 0.66 at smaller φ that simultaneously 
matches mean and oscillatory velocity. The parallel-plate 
model with directional resistors exhibits an asymptotic 
ratio for decreasing φ that is too high at about 4.7.

Discussion
It bears emphasizing that no points on the curves of 
either model exist that can simultaneously match meas-
ured mean and oscillatory velocity in the subarachnoid 
paraarterial space without imposing a pressure gradi-
ent. Directional flow resistors improve the match, but 
the mean velocity remains about an order of magnitude 
too small when the oscillatory velocity is matched. Both 
models are long compared to the wavelength. Shorter 
channels, which may be more physiologic, would pro-
duce less mean flow. These results provide a clear indi-
cation that peristalsis alone cannot drive the paraarterial 
flow as measured by Mestre, et al. [7].

Limitations of the solution—The simplified geom-
etries of the parallel-plate and annular models comprise 
an obvious and important limitation. The lengths of 
both models contain multiple wall displacement wave-
lengths, which promotes the effectiveness of the peristal-
tic motion in creating mean flow. (Romano, et  al. [11], 
for instance, found that end effects extend a couple of 
wavelengths from both upstream and downstream ends, 
thus four or more wavelengths are necessary to approach 
fully-developed flow.) Even so, the predicted mean veloc-
ities where oscillatory velocity is matched to the meas-
urements are four orders of magnitude too small. The 
more physiologic branching network can be expected to 
attenuate the arterial wall motion and add resistance at 
the branches, which would reduce mean flow even fur-
ther. Downstream resistance of the parenchyma and the 
rest of the glymphatic circulation would also tend to 
decrease mean flow.

Compliance of the outer wall could explain the mis-
match between the very large oscillatory velocity pre-
dicted with the measured arterial wall displacement 

versus the smaller measured oscillatory velocity. The 
scale of oscillatory velocity is dictated by wall displace-
ment, thus it is clear that the effective amplitude ratio at 
the measurement site must be two orders of magnitude 
smaller than that calculated from arterial wall motion 
alone. As evident in Fig. 3, a smaller amplitude ratio by 
two orders of magnitude leads to smaller mean flow by 
four orders of magnitude.

It was argued by Ladrón-de-Guevara, et  al. [8] that 
adding a Windkessel (parallel resistance and compli-
ance) boundary condition promotes a match of mean 
and oscillatory velocity. Two orders of magnitude smaller 
oscillatory velocity is indeed predicted downstream 
of the compliance, with the bulk of the oscillatory flow 
going into and out of the compliance. For the measured 
mean velocity to apply in the MCA, there would need to 
be four or more wavelengths of channel upstream of the 
MCA to achieve fully-developed peristalsis. The inter-
nal carotid artery, which feeds the MCA after branching 
from the common carotid artery in the neck, is 9–11 mm 
long in mice and only part of it is in the skull [19]. The 
full length is only about one tenth of a wavelength. There-
fore, it appears that peristalsis with small φ would not 
be effective. Large φ, closer to the positive displacement 
value φ= 1 might drive mean flow in spite of the short 
channel length. Note that the ratio of oscillatory to mean 
velocity approaches the Mestre, et al. [7] value of 2/3 as 
φ approaches 1 (Fig. 4). However, here the peak velocity 
approaches the wave speed. Peristalsis in the ICA with 
φ = 1 could match both velocities if the wavespeed were 
about four orders of magnitude slower and the wave-
length about an order of magnitude shorter. Verification 
of paraarterial spaces surrounding the ICA, and meas-
urement of fluid velocities and arterial and outer wall dis-
placement are needed.

The details of outer wall motion remain to be meas-
ured. Substantial brain tissue deformation has been 
measured during neural vasodilation [18]. Recent meas-
urements of outer and pial artery wall motion during low 
frequency (0.1–1  Hz)_oscillations during sleep in mice 
show that the two move more or less synchronously, 
with the outer wall having smaller amplitude [20]. This 
reduces the effective amplitude ratio, which tends to sup-
port the findings of this study. However, motion during 
higher frequency (~ 10 Hz) cardiac-mediated oscillations 
remains to be quantified.

The models presented here provide predictions of 
the required amplitudes, but phase is also important. A 
phase offset between arterial and outer wall waves was 
key to driving steady streaming in the Romano, et  al. 
[15] model. Coloma, et  al. [21] also found forward or 
reverse net flow, depending on the relative motion of the 
inner and outer walls of an annular space. Such phase 
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differences were neglected in the models applied in this 
study.

The models used in this study assume that both walls 
are impervious. The effect of permeable walls has been 
studied by Kedarasetti, et al. [18] and Romano, et al. [15]. 
Flow through the outer wall downstream of the measure-
ment location around the MCA [7] could enhance mean 
flow at the measurement site, so long as the outflow was 
not entirely returned later in the peristaltic cycle.

A small, steady pressure difference is sufficient in 
both models to match the mean velocity, while peri-
stalsis drives primarily the oscillatory flow due to the 
low amplitude ratio. This result is consistent with pre-
vious studies [11–15, 22–24]. For example, Kedarasetti, 
et al. [13] found a 0.01 mmHg pressure difference over 
a 5 mm long idealized channel resulted in a velocity of 
24.4  μm/s, which for fully developed flow at the Mes-
tre, et  al. [7] velocity in a 2  m long channel becomes 
3.07 mmHg. Daversin-Catty, et al. [23], who simulated 
the paravascular space surrounding a realistic cerebral 
artery bifurcation, found a necessary pressure gradi-
ent of 1.5 mmHg/m, or 3 mmHg extrapolated to a 2 m 
channel. In this study, the required pressure differences 
are approximately half of these previous values, and are 
remarkably similar between the two models.

Even though it is small, the required pressure dif-
ference is much larger than the transmantle pressure 
difference [25, 26], available for inflow from and out-
flow to the subarachnoid space, which was the original 
hypothesis. More recent descriptions of the glymphatic 
system include possible outflow to cerebral lymphatics 
[3], which provides a greater overall pressure differ-
ence, at least for humans in supine posture (intracranial 
pressure 11.0 ± 2.1 mmHg versus lymphatic pressure of 
0—1 mmHg) [27]. In upright seated posture, outflow to 
lymphatics does not help (71 degree tilt, seated posture, 
intracranial pressure − 1.8 ± 3.2 mmHg versus the same 
lymphatic pressure). Regardless, the source and mecha-
nism of the necessary hydraulic pressure difference, as 
well as the anatomy of inflow and outflow, remains to 
be identified.

Injection of tracer fluid causes an increase in intrac-
ranial pressure (ICP) that is larger than that predicted 
by the models in this study to drive pararterial flow [28, 
29]. A model suggests that the increase persists in mice 
for 17 min post-injection [5]. It is curious, then, that an 
improved injection/withdrawal protocol that does not 
increase ICP resulted in the same tracer velocities [29]. 
The Wang & Olbricht [14] model predicts that flows are 
increased in the radial direction from the site of injection, 
but not in the tangential direction. The MCA is more or 
less tangential to the cisterna magna. Injection into the 
cisterna magna in the brain is more complex than into a 

hydraulically isotropic material, but perhaps the direc-
tion of the paraarterial channels influences the lack of 
influence of pressure on the transport. Alternatively, the 
indifference to pressure may indicate that the observed 
mean transport is dispersive, not convective.

A more realistic elliptical model of the cross section of 
the paraarterial space reduces hydraulic resistance com-
pared to an annulus [30], but also likely decreases the 
potential for peristaltic motion of the artery wall to drive 
mean flow. Therefore, a longitudinal pressure gradient 
would still be required, but it may be smaller.

An oscillatory pressure gradient can produce net 
flow in a peristaltic channel that is short compared to 
the wavelength [31], but this potential diminishes with 
increased channel length. The effects of osmotic pres-
sure and facilitated water transport also remain to be 
investigated.

Directional flow resistors increase mean velocity, but 
in this model cannot create a match while also matching 
oscillatory velocity. The collapse of paraarterial spaces 
after death or during fixation [32] suggests that little 
structure exists within these channels. Nonetheless, a 
small volume fraction of such flexing structure might be 
difficult to detect. Given the variety and complexity of 
transmembrane proteins [33], it would not be surpris-
ing to find specialization according to hydraulic function, 
however, directional flow resistance has not yet been 
discovered.

Conclusion
Peristalsis drives oscillatory flow that scales with the 
wall displacement amplitude ratio. Measured oscilla-
tory velocity in the paravascular space surrounding the 
MCA is inconsistent with (too small for) the measured 
displacement of the arterial wall alone. Displacement 
also of the outer wall could provide a smaller effective 
wall displacement amplitude rato that creates oscillatory 
flow that matches that measured. In vivo measurements 
of outer wall motion could add valuable insight into the 
mechanisms of paravascular flow.

At realistic amplitude ratio, i.e., that matching the 
oscillatory velocity, the cartesian Stokes and annular 
Darcy models both predict mean velocity much smaller 
than that measured. No states on the curves of peristal-
tic performance can simultaneously match the measured 
oscillatory and mean flows, regardless of amplitude ratio. 
These results indicate that a mechanism other than peri-
stalsis is required to drive the mean flow. Directional flow 
resistors increase mean velocity where oscillatory veloc-
ity is matched, but is still about an order of magnitude too 
low. A longitudinal pressure gradient, on the other hand, 
is shown to be fully capable of providing the measured 
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mean velocity. However, other possibilities to explain the 
observed tranport exist that remain to be investigated.

Nomenclature

Dimensional variables
a  Mean half height of parallel-plate channel, full height of annular 

channel
A  Vessel radius
ac  Cylinder radius
b  Wave amplitude
c  Wave speed
h  Height of channel
K  Cylinder drag coefficient
L  Length of channel
p  Pressure
q  Flow rate
R1, R2  Mean inner and outer radii of annular channel
t  Time
u  x Direction velocity in the laboratory frame
x  Streamwise direction
y  Radial direction
κ  Permeability
λ  Wave length
μ  Dynamic viscosity
ν  Kinematic viscosity

Subscripts
c  Cylinder
L  Over the length of the channel
λ  Over one wavelength

Dimensionless variables
ξ ≡ 2π x

�
   Normalized flow direction coordinate

τ ≡ 2π ct
�

  Normalized time

H ≡ h(x,t)
a   Normalized half height of channel

P ≡ 2πa2

�µc p  Dimensionless pressure

Q ≡ 1
ac q   Dimensionless flow rate in the laboratory frame

Q   Spatial mean dimensionless flow rate in the labora 
tory frame

U ≡ u
c    Dimensionless x direction velocity

Dimensionless parameters
R ≡ acα

ν
   Reynolds number

α ≡ 2πa
�

   Wave number (related to slope and curvature of 
channel)

γ ≡ h
√
K

2l
  Darcy number

ε0 ≡
πa2c
4l0

   Volume fraction of cylinders

φ ≡ b
a   Amplitude ratio

�   Porosity
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