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Abstract 

Lead (Pb) is a known environmental risk factor in the etiology of Alzheimer’s disease (AD). The existing reports suggest 
that Pb exposure increases beta-amyloid (Aβ) levels in brain tissues and cerebrospinal fluid (CSF) and facilitates the 
formation of amyloid plaques, which is a pathological hallmark for AD. Pb exposure has long been associated with 
cerebral vasculature injury. Yet it remained unclear if Pb exposure caused excessive Ab buildup in cerebral vasculature, 
which may damage the blood–brain barrier and cause abnormal Ab accumulation. This study was designed to inves-
tigate the impact of chronic Pb exposure on Aβ accumulation in cerebral capillary and the expression of low-density 
lipoprotein receptor protein-1 (LRP1), a critical Aβ transporter, in brain capillary and parenchyma. Sprague–Dawley 
rats received daily oral gavage at doses of 0, 14 (low-dose), and 27 (high-dose) mg Pb/kg as Pb acetate, 5 d/wk, for 4 
or 8 wks. At the end of Pb exposure, a solution containing Aβ40 was infused into the brain via the cannulated internal 
carotid artery. Data by ELISA showed a strikingly high affinity of Ab to cerebral vasculature, which was approximately 
7–14 times higher than that to the parenchymal fractions collected from control brains. Pb exposure further aggra-
vated the Aβ accumulation in cerebral vasculature in a dose-dependent manner. Western blot analyses revealed that 
Pb exposure decreased LRP1 expression in cortical capillaries and hippocampal parenchyma. Immunohistochemistry 
(IHC) studies further revealed a disrupted distribution of LRP1 alongside hippocampal vasculature accompanied with 
a decreased expression in hippocampal neurons by Pb exposure. Taken together, the current study demonstrated that 
the cerebral vasculature naturally possessed a high affinity to Aβ present in circulating blood. Pb exposure signifi-
cantly increased Aβ accumulation in cerebral vasculature; such an increased Aβ accumulation was due partly to the 
diminished expression of LRP1 in response to Pb in tested brain regions. Perceivably, Pb-facilitated Ab aggravation in 
cerebral vasculature may contribute to Pb-associated amyloid alterations.

Highlights 

1. Affinity of Aβ40 to cerebral vasculature was exceptionally high.
2. Pb exposure exacerbated Aβ40 accumulation in cerebral vasculature.
3. LRP1 expression was disrupted by Pb in brain parenchyma and vasculature.
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Introduction
Aggregation of beta-amyloid (Ab) peptides in the brain 
extracellular space to form the insoluble plaques is the 
hallmark of Alzheimer’s disease (AD). Excess accumula-
tion of Ab in the cortex and hippocampus initiates the 
detrimental cellular cascades leading to the progressive 
degeneration of neurons and the ensuing cognitive defi-
cits [33]. In AD brains, Ab is found in the cerebrospinal 
fluid (CSF) circulating in brain ventricles, in the inter-
stitial fluid (ISF) bathing neurons and glial cells and in 
cerebral vasculature [42, 49, 51, 61]. Elevated Ab levels 
in brain extracellular space may result from an increased 
production of Ab peptides due primarily to genetic pre-
disposition and/or a decreased clearance of Ab from the 
brain.

Sporadic cases account for over 90% of AD, suggest-
ing a substantial contribution of environmental factors 
such as exposure to neurotoxic metal lead (Pb). Indeed, 
human studies have shown strong associations between 
lifetime Pb exposure and progressive cognitive declines 
and brain structural damages [19, 32, 48]. The presence 
of a high level of Pb in diffuse neurofibrillary tangles, a 
form of presenile dementia, has been shown in 10 AD 
cases compared with 9 controls [24]. The formation of 
senile plaques is evident in a patient exposed to Pb at age 
of 2.3 years old with a confirmed Pb encephalopathy and 
died at 42 [36]. Mechanistic studies using animal models 
also suggest causal associations of early-life Pb exposure 
with epigenetic alterations, amyloid plaque formation, 
and late-onset AD [67]. Research by this group has dem-
onstrated that chronic Pb exposure accelerates the Aβ 
plaque formation and increases cognitive deficits in an 
AD transgenic mouse model (Tg-SWDI) [20, 22]. Inter-
estingly, the Tg-SWDI mice possess a relatively high ratio 
of Aβ40 to Aβ42 and exhibit substantial cerebral amyloid 
angiopathy (CAA); such pathologies were further aggra-
vated by chronic Pb exposure, leading to an even higher 
level of brain Aβ40 that is typically seen in CAA [20, 22].

Literature reports also provide evidence to support 
a linkage between Pb exposure and cerebral vascula-
ture injury. For example, cerebral vasculature shows a 
higher propensity to accumulate Pb than do other brain 
cell types [56, 58, 74]. Pb exposure causes the damage 
to the cerebral vasculature that constitutes the blood–
brain barrier (BBB) [25, 63, 74]. In addition, Pb exposure 
targes both heart and vascular smooth muscle and causes 
hypertension [41, 43, 59, 60]. Noticeably, “seeding” of 
exogenous Aβ from the peripheral circulation likely 

triggers an extensive Ab aggregation in the brain [2, 28]. 
Indeed, amyloid species exist in the blood circulation, 
with the concentrations increased in AD patients [26]. 
Considering the combined effects of Pb exposure, brain 
microvascular injury, and the ensuing amyloid accumula-
tion, it is reasonable to postulate that Pb exposure may 
cause abnormal Aβ accumulation in cerebral vascula-
ture, which may contribute to Pb-induced AD pathogen-
esis. However, the question as to whether Pb exposure 
increased Aβ40 buildup in cerebral vasculature has never 
been investigated.

The homeostasis of Aβ in brain extracellular fluids is 
maintained by a number of Aβ binding and transporting 
proteins. In general, the receptor for advanced glycation 
endproducts (RAGE) is believed to be a primary trans-
porter at the BBB that transports Aβ from the blood to 
brain parenchyma (i.e., influx) [11] and the low-density 
lipoprotein receptor-related protein 1 (LRP1) serves 
as the main transporter of Aβ from brain to the blood 
(i.e., efflux) [13, 39]. Previous studies from this lab have 
established that Pb exposure increases Aβ levels in the 
choroid plexus, a barrier between the blood and CSF; 
this increase is concurrent with a decreased expression 
of LRP1 [22] and the abnormal intracellular traffick-
ing of LRP1 in choroidal epithelia [3, 52]. Nonetheless, 
it remained unknown if Pb overload in brain capillar-
ies would alter LRP1 expression and therefore affect Aβ 
efflux in the BBB.

The main purposes of the present study were to inves-
tigate whether and how in  vitro and in  vivo Pb expo-
sure affected the accumulation of Aβ in the cerebral 
vasculature. We used in  situ brain infusion technique 
to deliver Aβ40 molecules directly into the brain via the 
internal carotid artery, followed by a capillary deple-
tion procedure to separate the cerebral vasculature from 
parenchyma, allowing to quantify Aβ concentrations in 
cerebral vasculature and brain parenchymal fractions 
from various brain regions. We further analyzed the 
expression of LRP1 in regional vascular and parenchymal 
fractions with a particular focus on hippocampus. The 
results may shed light on the mechanism by which Pb 
exposure causes AD pathology.

Material and methods
Materials
Chemical reagents and assay kits were purchased 
from the following sources: lead acetate trihydrate 
 (PbAc2·3H2O), sodium pyruvate, calcium chloride 
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 (CaCl2), Dextran-70, HEPES, 2-mercaptoethanol, phe-
nylmethylsulfonyl fluoride (PMSF), poly-acrylamide 
and tetramethyl-ethylenediamine (TEMED) from 
Sigma Chemicals (St Louis, MO); ultrapure nitric 
acid from VWR international (Chicago, IL); protease 
inhibitor cocktail from Calbiochem (San Diego, CA); 
Tris-base, glycine, sodium dodecyl sulfate (SDS), 2X 
Laemmli sample buffer, Triton X-100, and Clarity 
Western ECL substrate from Bio-Rad (Hercules, CA); 
human Aβ40 recombinant peptides, human Aβ40 ELISA 
kit from Invitrogen, goat anti-rabbit secondary anti-
body conjugated with Alexa Fluor 488, goat anti-rat 
secondary antibody conjugated with Cyanine5, goat 
anti-rabbit secondary antibody conjugated with horse-
radish peroxidase (HRP), and goat anti-mouse second-
ary antibody conjugated with HRP from Invitrogen 
(Waltham, MA); and Dextran (75,000) from Spectrum 
Chemicals (Gardena, CA). Sources of primary antibod-
ies and dilution factors are listed in Table  1. All rea-
gents were of analytical grade, HPLC grade, or the best 
available pharmaceutical grade.

Animals
Mice were initially used for concept-proving prelimi-
nary in vitro studies as described in “Preparation of cer-
ebral capillary fraction and in vitro Aβ40 affinity study” 
section. Most of the experiments in this report were 
performed using rats for technical feasibility of in  situ 
brain perfusion and large yields of capillary fraction. 
C57BL/6 mice (3 months old) and Sprague Dawley rats 
(10  weeks old) were purchased from Harlan Sprague 
Dawley Inc. (Indianapolis, IN). Literature data suggest 
that the animal strains used in this study with a wild 
type background develop no Aβ pathologies at the time 
of our experiments [4, 38], indicating a minimal level of 
endogenous Aβ. Upon arrival, animals were housed in 
a temperature-controlled room under a 12-h light/12-h 
dark cycle and allowed to acclimate for one week prior 
to experimentation. Animals had free access to deion-
ized water and pellet rat chow (Teklad Dlobal 18% Pro-
tein Rodent Diet, 2018s; Envigo) ad libitum. This study 

was conducted in compliance with standard animal use 
and practice and was approved by Purdue Animal Care 
and Use Committee (PUCAC No. 1112000526).

Preparation of cerebral capillary fraction and in vitro Aβ40 
affinity study
Under deep anesthesia, animals were transcardially 
perfused with ice-cold PBS and the brains were care-
fully extracted. Cerebral vasculature was separated 
using a well-established “capillary depletion” method in 
this lab [7, 12, 14] (as illustrated in Fig. 1A). Briefly, ice-
chilled brain samples were weighted and transferred 
to a 1-ml glass tissue grinder (Wheaton, Millville, NJ, 
followed by addition of 3 volumes of ice-cold homog-
enization buffer [HB solution (g/mL); brain weight/
HB volume, which consisted of the following chemi-
cals with their final concentrations: HEPES 10 mmol/L, 
NaCl 141 mmol/L, KCl 4 mmol/L,  MgSO4 1.0 mmol/L, 
 NaH2PO4 1.0 mmol/L,  CaCl2 2.5 mmol/L, and glucose 
10  mmol/L (pH 7.4)]. The entire brain from mice or 
separate brain regional tissues from rats were homog-
enized by eight strokes, followed by addition of another 
4 volumes of 30% Dextran-70 solution in a final ratio 
of 1:3:4 (brain: HB: dextran-70). The mixture was then 
homogenized for three additional strokes. After centrif-
ugation at 5400×g for 15  min at 4  °C, the supernatant 
(capillary-depleted parenchyma) and the pellet (cap-
illary-enriched fraction) were separated carefully. The 
presence of networks of brain vessels in the pellet and 
a vasculature-depleted supernatant were confirmed by 
light microscopy. Notably, although this method repre-
sents an effective approach for vasculature-parenchyma 
separation, isolated vasculature can still somewhat con-
tain, besides endothelial cells, other cell types such as 
vascular smooth muscle cells and pericytes [40].

To prove the concept of Pb altering Aβ40 affinity to 
cerebral capillaries, an in  vitro study to incubate cer-
ebral capillary with Aβ40 was conducted. Freshly sepa-
rated cerebral capillaries were incubated in the control 
HBSS buffer (supplemented with 0.5% BSA) without Pb 
or in the HBSS containing Pb concentration at 10  µM 
for 24  h, after which Aβ40 was added to the culture 
medium at a final concentration of 1 μM. The incuba-
tion continued for 30  min at room temperature with 
gentle rotation. Upon completion of incubation with 
Aβ40, the capillary samples were washed with HBSS 
three times to remove the unbound Aβ40. Capillaries 
were then lysed in 5 M guanidine-HCl for 1 h at room 
temperature and quantified for Aβ40 concentrations 
using enzyme-linked immunosorbent assay (ELISA) 
(detailed in “Quantification of Aβ40 in both paren-
chyma and capillary by ELISA” section).

Table 1 Primary antibodies and dilutions used for Western Blot 
and IHC studies

Target Dilution 
(application)

Host species Source and identifier

LRP1 1:1000 (WB); 1:200 
(IHC)

Rabbit Abcam ab92544

Beta-actin 1:2000 (WB) Mouse Sigma-Aldrich A5316

CD31 1:500 (IHC) Rat Invitrogen MA1-40074
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In vivo Pb exposure and in situ brain perfusion
PbAc2·3H2O was dissolved in sterile saline for oral gav-
age. Rats were exposed to Pb by oral gavage at doses 
of 14 and 27  mg Pb/kg, as low- (LD-Pb) and high-dose 
(HD-Pb) group, respectively (the control received the 
same volume of saline), once daily, 5 days/week, for 4 or 
8 consecutive weeks. This Pb exposure dosing regimen 
was used based on our prior studies, in which the blood 
Pb levels in Pb-exposed animals were similar to those 
observed in occupational workers [21, 52].

Following Pb exposure for 4 or 8  weeks, in  situ brain 
perfusion was conducted to investigate how Pb expo-
sure affected the Aβ40 affinity to cerebral capillaries and 
brain parenchyma. This technique has been routinely 
used by this laboratory for studies such as trace element 
metal copper (Cu) and Aβ peptide uptake by BBB and 
blood-CSF barrier (BCB) [14, 31, 52]. Briefly, 24 h after 
last gavage, rats were anesthetized by ketamine/xylazine 
(75:10 mg/kg, ip) and placed on a heating pad in a supine 
position. The right common carotid artery was isolated, 
and a small cut was made. A polyethylene catheter (PE-
10) tubing (prefilled with Ringer’s solution and connected 
with a peristaltic pump through a 3-way stopcock) was 
then carefully inserted into the artery toward the brain. 
The inserted tubing was then fixed by a surgical suture, 
followed by a ligation of the external carotid artery to 
ensure the flow of the perfusate entering exclusively to 
the internal carotid artery, which supplies blood for the 
brain.

The brain was perfused with Ringer’s solution 
(warmed to 37  °C and continuously gassed with 95% 
 O2/5%  CO2) by a Mini-Pump (VWR, Radnor, PA) at 
9  mL/min. The second syringe pump (pre-connected 
with the 3-way stopcock) was subsequently turned on 
to infuse Ringer’s solution containing Aβ40 at 25  µg/
mL with a flowrate of 1 mL/min. The total flow rate of 
perfusion by two pumps was 10 mL/min with the infu-
sate (Aβ40) concentration at 2.5 µg/mL. Considering the 
high flowrate (10 mL/min) and Pb’s cytosol accumula-
tion (sequestration by intracellular glutathione or met-
allothionein), it is anticipated that Aβ40 in the perfusate 
has little direct contact with Pb; hence, any alteration 
in Aβ40 affinity to capillaries is considered due pri-
marily to the interaction between Aβ40 molecules and 
endothelial cells through surface binding and intra-
cellular uptake. The in-situ brain perfusion with Aβ40 
lasted 2  min. To prevent blood recirculation, the left 
ventricle of the heart was cut upon the start of the per-
fusion. After 2-min Aβ40 perfusion, the pump with Aβ40 
solution was shut off and the pump with only Ringer’s 
solution was left on for 1 min to remove Aβ40 adsorbed 
to the luminal surface.

At the end of brain perfusion, the brains were 
extracted from the skull; hippocampus, frontal cor-
tex and the rest of brain tissues were dissected for 
capillary-parenchyma separation as described in 
“Preparation of cerebral capillary fraction and in  vitro 
Aβ40 affinity study” section. Concentrations of Aβ40 

Fig. 1 Increased Aβ binding to cerebral capillaries following in vitro Pb exposure. A Graphical illustration of the experimental workflow to assess 
Aβ40 affinity as affected by Pb exposure using freshly separated cerebral capillaries in vitro. B ELISA quantification of Aβ40 concentration in control or 
Pb-pretreated cerebral capillaries. Data represent mean ± SD, n = 6; *p < 0.05. Par. parenchyma fraction, Cap. capillary fraction
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in the collected vascular and parenchyma fractions 
were measured by ELISA following manufacturer’s 
instructions.

Quantification of Aβ40 in both parenchyma and capillary 
by ELISA
Total proteins of brain capillary and parenchyma were 
extracted with a buffer containing 50 mmol/L Tris–HCl, 
150 mmol/L NaCl, 1% Nonidet P-40, 0.5% sodium deoxy-
cholate, 1 mmol/L EDTA, and a protease inhibitor cock-
tail. The protein concentrations were determined using 
the Bradford assay. Levels of Aβ40 were assayed by sand-
wich ELISA as previously described per manufacturer’s 
instructions [22, 52]. Briefly, the protein extracts of cap-
illary and parenchymal fractions of hippocampus, cortex 
and the rest of brain were incubated in 96-well ELISA 
plates that had been coated with Aβ40-capturing antibod-
ies. Subsequently, Aβ40-detector antibodies were added 
and incubated for 3  h at room temperature. Following 
sufficient washes to remove the unbound antibodies, IgG 
HRP solution was added to bind the detector antibod-
ies; the wells were covered and incubated for 30 min at 
room temperature. Through thorough washes, chromo-
gen solutions were added to each well and continued to 
incubate at room temperature for 30  min under dark. 
After addition of stop solutions, the plates were read for 
absorbance at 450 nm. The concentration of Aβ40 in the 
tissues was reported as ng/g of total protein.

Western blot (WB)
WB assay was performed as previously described [31]. 
Briefly, the extracted protein samples from brain regional 
capillaries and parenchyma were diluted with sample 
buffer to the final protein concentrations of appropriately 
2 mg/mL. Protein samples were mixed with 2× Laemmli 
sample buffer and boiled for 5 min. Samples (10 µL con-
taining 10  µg protein) were then loaded on the 8 + 15% 
dual-layer tris–glycine SDS–polyacrylamide gels, elec-
trophoresed and transferred to PVDF membranes. The 
membranes were blocked with 5% dry milk (fat free) in 
Tris-buffered saline with 0.1% Tween 20 (TBST) and 
incubated overnight at 4 °C with the primary antibodies. 
Following sufficient washes by TBST, PVDF membranes 
were further incubated with HRP-conjugated second-
ary antibodies at room temperature for 1 h. The colori-
metric signals on the membranes were developed using 
ECL Western Blotting substrate by Molecular Imager and 
captured by ChemiDoc XRS + Software (Bio-Rad, Hercu-
les, CA). Beta-actin was used as an internal control. The 
band intensities were quantified using ImageJ and were 
reported as relative expression levels to beta-actin.

Immunohistochemistry (IHC)
At the end of in vivo Pb exposure, rat brain samples were 
prepared for IHC characterization of LRP1 expression as 
previously described [31]. Briefly, 4% paraformaldehyde 
(PFA)-perfused brain samples were further fixed in this 
fixative solution under 4  °C overnight. Following dehy-
dration in 30% sucrose solution, brains samples were 
treated into 40-µm brain slices by a microtome, and then 
preserved in cryopreservation medium (30% sucrose, 
1% polyvinylpyrrolidone, 30% ethylene glycol in 0.1  M 
phosphate buffer) under − 20  °C. Upon IHC staining, 
brain slices with regions of interest were collected and 
washed with PBS 3 times. The subsequent blocking was 
performed by incubating brain slices in PBST containing 
5% normal goat serum (NGS) and 0.3% TritonX-100 for 
1 h at room temperature. Blocked slices were then incu-
bated with primary antibodies targeting LRP1 and CD31 
overnight at 4 °C. Following 3× PBST washes, brain slices 
were further incubated with fluorophore-conjugated sec-
ondary antibodies (1:500) for 1  h at room temperature 
prevented from light. Following 3× PBST washes, stained 
slices were mounted onto microscope slides with mount-
ing medium containing DAPI. Negative control staining 
was performed using the same procedures except for 
the primary antibody incubation step: following block-
ing with NGS, slices directly incubated with secondary 
antibodies and DAPI (image provided in Additional file 1: 
Fig. S1). The IHC images were captured by Nikon A1Rsi 
Confocal system. To quantitatively assess expression of 
LRP1 in response to Pb exposure, fluorescent intensity 
of LRP1 in anatomically matched regions was quantified 
using ImageJ in known neuron-rich regions for neuronal 
and in CD31(+) cells for endothelial assessment. LRP1 
fluorescent intensity was normalized against the control 
group measurements for statistical analysis.

Determination of Pb concentrations by atomic absorption 
spectrophotometry (AAS)
Pb concentrations in blood or tissues were quantified 
by AAS as described in our previous publications [52, 
75]. Samples (200 mg of wet weight) were digested in a 
MARSX press microwave-accelerated reaction system 
with 0.20 mL ultrapure concentrated nitric acid at 200 °C 
for 4 h. Blood samples (200 mL) were digested with nitric 
acid in the oven at 55 °C overnight. An Agilent Technolo-
gies 200 Series SpectrAA with a GTA 120 graphite tube 
atomizer was used to quantify Pb concentrations. The 
standard curves were prepared daily at concentrations 
of 0, 4, 8, 12, 16, and 20 μg/L with correlation coefficient 
of  r2 = 0.9869. The detection limit was 1.35 ng Pb/mL of 
assay solution. The intra-day and inter-day precisions of 
the method were 1.5% and 2.9%, respectively.
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Statistical analysis
All data are presented as mean ± standard deviation (SD). 
Statistical analyses of the differences between control and 
Pb-exposed group(s) were carried out by Student’s t-test 
or one-way ANOVA with post hoc comparisons by the 
Dunnett’s test. All the statistical analyses were conducted 
using GraphPad Prism (San Diego, CA). The differences 
between two means were considered significant if p val-
ues were equal or less than 0.05.

Results
In vitro Pb exposure increased Aβ40 binding to the cerebral 
capillaries
To test the concept that Pb increased the binding of amy-
loid species to cerebral vasculature, we conducted a pre-
liminary study by preparing cerebral capillaries freshly 
isolated from normal mouse brains and pre-incubating 
the capillary preparation with Pb for 24  h, followed by 
incubation with Aβ40 in the medium (Fig.  1A). Data by 
ELISA quantification revealed that Pb treatment signifi-
cantly increased the Aβ40 concentrations in the cerebral 
capillaries by 7.88%, as compared to controls (p < 0.05) 
(Fig. 1B). This in vitro finding suggested that Pb exposure 
appeared likely to facilitate the Aβ accumulation in cer-
ebral vasculature. This observation led to the following 
in vivo validation and characterization.

In vivo chronic Pb exposure induced excessive Aβ40 affinity 
by cerebral capillaries
In situ brain perfusion is a unique technique to study 
substance’s uptake en route from the cerebral vasculature 
to parenchyma, for its direct delivery of testing mole-
cules into the cerebral artery with a subsequent quanti-
tation of the partition of the testing molecule between 
blood vessels and parenchyma. In the current study, rats 
were chosen for surgical convenience and the large yield 
of capillary fraction. Figure  2A depicts the workflow of 
in vivo Pb exposure dose regimen, in situ brain perfusion, 
capillary/parenchyma separation, and assays used. Data 
by AAS demonstrated that the blood lead levels (BLLs) 
were 15–25  mg/dL and 10-23  mg/dL, in rats following 
4 and 8  weeks of Pb oral gavage exposure, respectively 
(Fig. 2B, D). Correspondingly, Pb concentrations in hip-
pocampus, frontal cortex and other regions were signifi-
cantly increased in Pb-exposed animals (Fig. 2C, E).

On these Pb-exposed and control animals, we per-
formed a 2-min in situ perfusion of Aβ40; ELISA was then 
used to quantify Aβ40 concentration in cerebral capillary 
and parenchyma fractions. Our data showed that under 
normal physiological condition, the average Aβ40 in nor-
mal hippocampal capillary from control rats without Pb 
exposure was 9.9 times higher than that in normal hip-
pocampal parenchyma (p < 0.01). Similarly, the average 

Aβ40 in normal cortex capillary is 11.7 times higher than 
that in cortex parenchyma (p < 0.05) (Fig.  3A). Thus, 
it became apparent that the degree to which Aβ40 mol-
ecules bound to the cerebral capillaries, regardless of 
brain regions, far exceeded their binding to parenchyma 
(Fig. 3A, B), suggesting a naturally high binding affinity of 
Aβ40 to cerebral vasculature.

Chronic Pb exposure clearly increased Aβ40 accumu-
lation in capillary and parenchymal fractions. Follow-
ing 4-week Pb exposure, the Aβ40 levels in hippocampal 
capillaries were significantly increased by 65.3% (p < 0.05) 
and 122.9% (p < 0.01) in the low and high Pb exposure 
group, respectively, as compared to controls (Fig.  3A). 
The 8-week Pb exposure induced similar dose-dependent 
Aβ40 accumulation in hippocampal capillaries (Fig.  3B). 
In addition, Pb exacerbated Aβ40 accumulation in cer-
ebral capillaries isolated from the frontal cortex, but to 
a degree less than that in hippocampus. For example, 
concentrations of Aβ40 in the frontal capillary, follow-
ing 4  weeks of high-dose Pb exposure, was elevated by 
17.0% (p < 0.05), but not in the low exposure group, as 
compared with controls. After 8 weeks of exposure, the 
Aβ40 levels in frontal cortex capillaries were increased by 
38.8% and 48.2% in the low and high Pb exposed animals 
(p < 0.05), respectively, versus controls.

In contrast, the concentrations of Aβ40 detected 
in brain parenchyma were much lower than those in 
cerebral capillaries (Fig.  3A, B). Among tested brain 
regions, hippocampal parenchyma was most suscepti-
ble to Pb-elevated Aβ40 deposition. A 4-week Pb expo-
sure increased Aβ40 detected in this fraction by 18–20% 
in both Pb-treated groups in comparison to controls 
(p < 0.05). Pb exposure for 8  weeks at the high level 
increased even more Aβ40 deposition in hippocampal 
parenchyma by 36.5% (p < 0.05), while the low-level expo-
sure for 8 weeks did not alter Aβ40 levels. The parenchy-
mal fractions collected from the frontal cortex and the 
rest brain regions showed the similar trend in accumulat-
ing Aβ40, following in vivo Pb exposure at low- and high-
doses for 4 or 8 weeks (Fig. 3A, B).

Overall, the observations from our in  situ perfusion 
study suggested that cerebral vasculature possessed an 
intrinsic high affinity to Aβ40 present in blood circula-
tion; chronic Pb exposure seems likely to render the cer-
ebral vasculature more venerable to Aβ40 accumulation.

Pb exposure decreased LRP1 expression in specific 
fractions of hippocampus, frontal cortex, and other regions
To understand the mechanism by which Pb increased 
Aβ40 deposition in cerebral vasculature and brain paren-
chyma, we performed Western blot to determine LRP1 
expression in collected brain factions with or without 
Pb exposure, since LRP1 is known to transport Aβ40 



Page 7 of 15Liu et al. Fluids and Barriers of the CNS           (2023) 20:32  

Fig. 2 Experimental design of chronic in vivo Pb exposure and Pb levels in rat blood and selected brain tissues. A Graphical illustration of the 
experimental design to study the Aβ40 affinity to cerebral capillaries (cap.) and parenchyma (par.) via in situ brain perfusion technique and the 
effects of chronic Pb exposure. Capillary and parenchyma fractions of hippocampus, frontal cortex, and other brain regions were separated using a 
capillary depletion procedure for ELISA quantification of Aβ40 concentration; Western blot (WB) was performed to assess the LRP1 expression. B, C 
Blood Pb concentration and brain regional Pb concentration following 4 weeks of Pb exposure. D, E Blood Pb concentration and brain regional Pb 
concentration following 8 weeks of Pb exposure. Data represent mean ± SD, n = 4–8; *p < 0.05, **p < 0.01, as compared to the controls; #p < 0.05, as 
compared to the low Pb exposure group. ICA internal carotid artery, ECA external carotid artery, CCA  common carotid artery
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for its clearance. Following 4  weeks of exposure, LRP1 
expression in hippocampal parenchyma was significantly 
decreased by 48.7% and 64.1% in the low and high Pb 
exposure groups, respectively, as compared to controls 
(p < 0.05) (Fig. 4B), whereas its expression in hippocam-
pal capillary did not change (Fig.  4A). Interestingly, Pb 
exposure significantly reduced LRP1 expression in the 
capillaries of frontal cortex by 45.5% and 67.0% in the 
low- and high-exposure groups, respectively, in compari-
son to controls (p < 0.01) (Fig.  4C). However, in the rest 
of tested fractions, i.e., hippocampal capillaries, frontal 

cortex parenchyma, and both fractions in other brain 
regions, no significant LRP1 expression alterations were 
found following the 4-week exposure (Fig. 4A, D–F).

Exposure to Pb for 8  weeks did not significantly alter 
LRP1 expression in all tested fractions except for the 
parenchyma collected from the rest of brain samples. 
There was a significantly downregulated LRP1 expression 
in the parenchyma of other brain regions, by 36.5% and 
25.6% in the low- and high-Pb exposure groups, respec-
tively (p < 0.05) (Fig.  4L). These Western blot data sug-
gested that Pb-induced decline in LRP1 expression may 
contribute, at least in part, to the increased accumulation 
of Aβ40 in cerebral vasculature and parenchyma.

Pb exposure disrupted LRP1 expression in hippocampal 
neurons and frontal cortex capillaries
The CA1, CA3, dentate gyrus (DG) of hippocampus and 
frontal cortex are specifically susceptible to vascular 
and parenchymal Aβ deposition [46, 66]. To study the 
expression of LRP1 as affected by Pb exposure in these 
subregions, we used IHC to co-stain LRP1 with CD31, 
a marker for endothelial cells, in rats following 4  weeks 
of low-dose in  vivo Pb exposure. In hippocampal CA1, 
neurons expressed a high level of LRP1 in the perinuclear 
regions in control brains (Fig.  5A, A′), an observation 
consistent with reports elsewhere [1, 69]. Pb exposure 
significantly decreased neuronal LRP1 expression by 
19.8% (p < 0.01) (Fig. 5A‴, B). Labeled by CD31 for cere-
bral vasculature, signals by LRP1 in control brains mostly 
surrounded CD31(+) capillaries, with a spatial proximity 
observed between LRP1 and CD31 signals (Fig. 5A″). Pb 
exposure, however, caused a discontinuous LRP1 expres-
sion around CD31(+) endothelium and the dissociation 
of LRP1 from CD31 (Fig.  5A⁗). Nevertheless, the fluo-
rescent intensity of LRP1 in CA1 capillaries was not sig-
nificantly altered (Fig. 5B).

LRP1 in CA3 was highly enriched in neuronal cells 
in the control group, showing a strong perinuclear 
expression pattern (Fig.  5C′) similar to the CA1 region 
(Fig.  5A′). Pb exposure significantly decreased LRP1 
expression in CA3 neuronal cells by 34.8% (Fig.  5C‴, 
D). Similar to the Pb-exposed CA1 region, LRP1 in CA3 
capillaries of Pb-treated rats was discontinuous from 
CD31(+) endothelium (Fig. 5C⁗). Additionally, a LRP1-
CD31 signal separation, i.e., a gap existing between LRP1 

Fig. 3 Increased Aβ binding to cerebral capillaries following chronic 
in vivo Pb exposure. A, B Quantification of Aβ40 concentration in 
cerebral parenchyma and capillaries following in situ brain perfusion 
of Aβ40. Parenchymal and vascular fractions of specific brain regions 
were sampled from rats exposed to Pb (14 mg or 28 mg Pb/kg) and 
controls for 4 or 8 weeks. Data represent mean ± SD, n = 4–8; *p < 0.05, 
**p < 0.01, as compared to the controls in specific brain fraction; 
#p < 0.05 as compared to the low Pb exposure group in specific brain 
fraction. Par. parenchyma fraction, Cap. capillary fraction

(See figure on next page.)
Fig. 4 Altered LRP1 expression in brain capillary and parenchyma fractions following 4 or 8 weeks of in vivo Pb exposure in rats. A–F Effects of 
4-week Pb exposure on LRP1 expression in hippocampal capillaries (A), hippocampal parenchyma (B), frontal cortex capillaries (C), frontal cortex 
parenchyma (D), capillaries of other brain regions (E), and parenchyma of other brain regions (F) by Western blot (WB). G–L Effects of 8-week Pb 
exposure on LRP1 expression in hippocampal capillaries (G), hippocampal parenchyma (H), frontal cortex capillaries (I), frontal cortex parenchyma 
(J), capillaries of other brain regions (K), and parenchyma of other brain regions (L) by WB. Data represent mean ± SD, n = 3; *p < 0.05 and **p < 0.01, 
as compared to the controls in specific brain fraction
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Fig. 4 (See legend on previous page.)
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and CD31, was observed in Pb-exposed animals but 
rarely in controls. Yet, quantitative analyses of LRP1 fluo-
rescent intensity in CA3 vasculature did not yield a sig-
nificant difference (Fig. 5D).

LRP1 in the control DG was abundantly expressed 
by the local neuronal cells in the perinuclear areas 
(Fig.  5E′). Nevertheless, its expression was significantly 
reduced by 35.9% by Pb exposure (p < 0.01) (Fig.  5E‴, 
F). In DG vasculature, LRP1 expressed along CD31(+) 
capillaries remained to be continuous and strong in 
controls (Fig.  5E″); but Pb exposure seemed to disperse 
LRP1 signals around the CD31-expressing vascular 
cells (Fig.  5E⁗). However, quantitative analysis of LRP1 
expression by the fluorescent intensity did not show 
significant changes in DG capillaries between groups 
(Fig. 5F).

Expression of LRP1 in the frontal cortex exhibited a 
gradient pattern with the signal intensity declining grad-
ually from the dorsal area (closer to the pial surface; pial.) 
towards the ventral (the corpus callosum; CC) (Fig. 5G). 
In neuronal cells with the typical perinuclear distribu-
tion, LRP1 level was not significantly changed by Pb 
exposure (Fig.  5G, H). However, Pb exposure not only 
disrupted LRP1 distribution around the cortical vascula-
ture but also decreased LRP1 expression (Fig. 5G, H).

Overall, through characterizing the LRP1 expression in 
specific brain subregions/fractions, our data showed that 
this Aβ40 transporting protein was adversely affected by 
Pb exposure.

Discussion
Our findings revealed a strikingly high affinity of Aβ40 
to cerebral capillaries, which was characterized by (1) a 
short time 2-min perfusion leading to Aβ40 accumula-
tion; (2) the ability of the cerebral capillary in sequester-
ing Aβ40 molecules far more than brain parenchyma in 
all tested brain regions; and (3) a high affinity of Aβ40 to 
the capillaries in hippocampus and frontal cortex. The 
exact mechanism by which Aβ40 accumulates in cerebral 
capillary is unknown. The initial binding of Aβ40 to cer-
ebral capillaries, regardless of the subsequent biologi-
cal events (transcytosis, exocytosis, or degradation), is 

largely dependent upon the cell-surface receptors; the 
subsequent receptor-mediated endocytosis occurs allow-
ing for the Aβ40 uptake [30, 47]. Receptors critical to 
Aβ40 uptake such as RAGE, P-glycoprotein, integrins and 
scavenger receptors, etc., are known to express highly in 
the cerebral vasculature [68, 73]. This may explain partly 
of the high affinity of Aβ to cerebral endothelia follow-
ing in situ perfusion. In addition, one of the pathways to 
eliminate cerebrovascular Aβ is via a perivascular drain-
age system transporting Aβ alongside the vascular wall. 
On the way entering this drainage system, Aβ molecules 
may polymerize into fibrils on vascular basement mem-
brane by interacting with extracellular components, 
enabling excessive Aβ accumulation [70]. However, ques-
tions remain as to where Aβ molecules accumulate the 
surface of blood-facing endothelia, within the endothe-
lial cytosol, and/or between basolateral endothelium and 
vascular smooth muscular layer, and whether cerebral 
endothelial cells possess the unique binding site(s) for Aβ 
molecules as compared to other peripheral endothelial 
cell types. Thus, our observation calls for more research 
in the future to uncover the mechanism underlying the 
high affinity of Aβ40 to the cerebral vasculature.

Pb exposure, either in  vitro or in  vivo, evidently 
increased the deposition of Aβ40 in cerebral capillary; 
both hippocampus and brain cortex appeared to seques-
ter more Aβ40 than other brain regions. The status of Aβ 
in the cerebral vasculature is regulated by several coordi-
nated processes, including the influx on the endothelial 
cell surface as discussed above, intracellular degradation, 
and/or the efflux or removal of Aβ by the BBB. Interest-
ingly, cell-surface integrin, a molecule responsible for Aβ 
adhesion and uptake, can be upregulated in vasculature 
upon inflammation [35], a condition frequently reported 
in Pb-induced neurotoxicity [6]. A recent report also 
shows that a compromised BBB integrity, a typical neu-
rotoxicity associated with Pb exposure [21, 56, 63], can 
aggravate the vascular Aβ40 accumulation [62]. It is, thus, 
highly possible that chronic Pb exposure in the current 
study may cause the damage to the BBB, which in turn 
exacerbates the Aβ-capillary binding. Since the high 
affinity of Aβ40 to cerebral capillaries is due to surface 

Fig. 5 LRP1 expression in neurons and capillaries in hippocampal subfields and frontal cortex following 4 weeks of lose-dose in vivo Pb exposure. A 
IHC staining of hippocampal CA1 region with LRP1 and CD31. LRP1 expression in CA1 neurons (A′ and A‴) and capillaries (A″ and A⁗) were further 
magnified in panels below. B Quantification of LRP1 expression by fluorescent intensity in neurons and capillaries in hippocampal CA1 region. C 
IHC staining of hippocampal CA3 region with LRP1 and CD31. LRP1 expression in CA3 neurons (C′ and C‴) and capillaries (C″ and C⁗) were further 
magnified in panels below. D Quantification of LRP1 fluorescent intensity in neurons and capillaries in hippocampal CA3 region. E IHC staining of 
hippocampal dentate gyrus (DG) with LRP1 and CD31. LRP1 expression in DG neurons (E′ and E‴) and capillaries (E″ and E⁗) were further magnified 
in panels below. F Quantification of LRP1 expression by fluorescent intensity in neurons and capillaries in hippocampal DG. G IHC staining of frontal 
cortex region with LRP1 and CD31. Pial surface (Pial.) and corpus callosum (CC) were labeled to show LRP1 expression pattern. Selected regions 
were further magnified to show LRP1 expression in cortical neurons and capillaries as affected by Pb exposure. H Quantification of LRP1 expression 
by immunofluorescent intensity in neurons and capillaries in frontal cortex. Data represent mean ± SD, n = 4; **p < 0.01, as compared to the controls 
in the specific fraction

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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binding, intracellular uptake, or both, immunogold labe-
ling of Aβ with electron microscopy is needed to explain 
this high affinity by characterizing the subcellular loca-
tion of Aβ [54]. Alternatively, stimulated emission deple-
tion (STED) microscopic technique, which provides 
superior imaging performance, can be utilized for the 
same purpose: colocalization of Aβ with endothelial 
luminal markers such as carbonic anhydrase IV (CA IV) 
[18] would differentiate the “binding” and “uptake”.

A defection in Aβ clearance represents another theory 
in pathological mechanism for AD [17, 29, 37, 44, 57, 
65]. Routes to clear Aβ in the central nervous system 
involve receptor-mediated clearance through the BBB 
[10], interstitial fluid bulk flow through the perivascular/
glymphatic system [27, 64], and absorption from the CSF 
through the choroid plexus [52]. In the BBB system, Aβ is 
mainly cleared by a LRP1-mediated efflux [29, 45, 55, p. 
1]. Conditional knockdown of LRP1 in cerebral endothe-
lial and vascular smooth muscle cells significantly accel-
erates the cognitive and memory deficits by exacerbating 
the formation of Aβ plaque and CAA in transgenic mice 
[29, 55]. The current study showed a Pb-induced decline 
of LRP1 expression, specifically in cortical capillaries, 
where the CAA often develops. In addition, in the Pb-
exposed hippocampus, LRP1, which normally expressed 
continuously along the endothelia in controls, distributed 
abnormally in a discontinuous patten, suggesting a defec-
tive Aβ clearance [53, 55].

Noticeably also, reports in literature indicate that Aβ 
drainage occurs as interstitial fluid bulk flow via the 
perivascular space along the cerebral vasculature, and 
in the due process, aquaporin 4 (AQP4) transporter 
expressed on astrocytes determines the perivascular/
glymphatic drainage [23]. Interestingly Pb exposure dis-
rupts AQP4 expression and function [23]. The current 
study does not address Pb toxicity towards astrocytes and 
AQP4; yet this line of study deserves attention for fur-
ther investigation. In addition, the choroid plexus (CP), 
despite its bidirectionality for Aβ transport, selectively 
effluxes Aβ from the CSF-facing to the blood-facing 
side [8]; however, Pb exposure impairs LRP1-associated 
Aβ efflux mechanism at the choroid plexus [22, 52, 69], 
which may contribute to the brain Aβ overload. The 
meningeal system also facilitates the Aβ efflux through 
the lymphatics vessels [9], but its susceptibility to Pb tox-
icity remains elusive. Overall, we propose that multiple 
overlapping or interactive Aβ removal mechanisms may 
collectively account for Pb-induced Ab accumulation in 
brain.

LRP1 is not solely expressed in cerebral vasculature 
but also present abundantly in neurons [34]; its pres-
ence promotes neuronal cell survival, axon growth, and 
neurite outgrowth [15, 16, 71]. Our data by IHC and WB 

indicated that in vivo Pb exposure specifically decreased 
LRP1 in hippocampal but not cortical neurons. This 
observation suggested that memory-related symptoms 
present in Pb-exposed populations or experimental ani-
mals could be, at least in part, caused by a decreased 
LRP1 expression in neuronal cells in these areas. Indeed, 
the use of pioglitazone, a peroxisome proliferator acti-
vated receptor-γ (PPAR-γ) agonist known to increase 
LRP1 in the brain, significantly ameliorated the learn-
ing and memory impairment in AD transgenic mice by 
upregulating neuronal LRP1 expression in hippocampal 
neurons [50]. Thus, the degree to which the decreased 
neuronal LRP1 expression may contribute to Pb-induced 
neurotoxicity including learning deficits deserves further 
testing.

The current study has two limitations. First, there was 
an apparent discrepancy between the increased hip-
pocampal and cortical capillary Aβ accumulation and 
the altered LRP1 expression. While Aβ molecules con-
tinued to accumulate in brain capillary fractions after 
8-week chronic Pb exposure, LRP1 expression was not 
significantly altered in these brain fractions except for 
the parenchyma fraction of the rest of brain. It is possible 
that Pb may dysregulate the expression of RAGE at BBB 
as it did in the blood–CSF barrier in the choroid plexus 
[52]. An increased RAGE in the choroid plexus following 
8-week Pb exposure underlies an increased Ab uptake 
by the choroid plexus [52]. Similarly, increased Ab levels 
in the cerebral vasculature could be due to Pb-induced 
expression of RAGE in the BBB. Thus, the effect of 
chronic Pb exposure on many other Ab transporting pro-
teins in the BBB deserves future exploration. In addition, 
Pb exposure is known to damage the cerebral vasculature 
[41, 43, 60]. Noticeably also, brain endothelial cells are 
regionally heterogenous, rendering them more diverse in 
response to Pb exposure [5], this regional heterogeneity 
is even greater in neuronal cells [72]. Hence, it is possible 
that the spatial cellular heterogeneity also contributed to 
LRP1 alterations in the frontal cortex capillaries and hip-
pocampal parenchyma by Pb, but not in others.

This study, due to the limited resource in the original 
experimental design, did not explicitly examine the rela-
tionship between BBB injury and Ab accumulation. Thus, 
it is desirable to conduct histopathological experiments 
to verify how the altered BBB integrity following Pb 
exposure may facilitate binding of Ab molecules to cer-
ebral vasculature in our future experiments.

In summary, the current study demonstrates that the 
cerebral vasculature naturally possesses a strikingly high 
affinity to Aβ present in circulating blood; Pb exposure, 
either in  vitro or in  vivo greatly increases Aβ accumu-
lation in cerebral vasculature. Such an increased Aβ 
buildup is due partly to the diminished expression of an 
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Aβ efflux carrier LRP1 in response to Pb in tested brain 
region and fractions. Mechanisms underlying these 
alterations and the relationship to the development Pb-
induced AD deserve further experimental testing.
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