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The human central nervous system 
discharges carbon dioxide and lactic acid 
into the cerebrospinal fluid
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Abstract 

Background: The central nervous system was previously thought to draw oxygen and nutrition from the arteries 
and discharge carbon dioxide and other metabolic wastes into the venous system. At present, the functional role of 
cerebrospinal fluid in brain metabolism is not fully known.

Methods: In this prospective observational study, we performed gas analysis on venous blood and cerebrospinal 
fluid simultaneously acquired from 16 consecutive preoperative patients without any known neurological disorders.

Results: The carbon dioxide partial pressure  (pCO2) (p < 0.0001) and lactic acid level (p < 0.001) in the cerebrospinal 
fluid were significantly higher than those in the peripheral venous blood, suggesting that a considerable proportion 
of metabolic carbon dioxide and lactic acid is discharged from the central nervous system into the cerebrospinal fluid. 
The oxygen partial pressure  (pO2) was much higher in the cerebrospinal fluid than in the venous blood, corroborat‑
ing the conventional theory of cerebrospinal fluid circulatory dynamics. The  pCO2 of the cerebrospinal fluid showed a 
strong negative correlation with age (R = − 0.65, p = 0.0065), but the other studied variables did not show significant 
correlation with age.

Conclusion: Carbon dioxide and lactic acid are discharged into the circulating cerebrospinal fluid, as well as into the 
venules. The level of carbon dioxide in the cerebrospinal fluid significantly decreased with age.
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Background
The central nervous system (CNS) is commonly believed 
to draw oxygen and nutrition from the arterial sys-
tem and discharge carbon dioxide  (CO2) and metabolic 
wastes, such as lactic acid, into the venous system. How-
ever, in addition to this conventional metabolic pathway 
directly from artery to vein, cerebrospinal fluid (CSF) 
is derived from the arterial system and drained into the 
venous system, with a turnover rate of three to five times 
per day [1, 2]. The CSF is known to function as a shock 
absorber for the CNS, protecting it from external impact 

[3–5], but its physiological functions and its role in CNS 
metabolism are not fully known.

Recently, researchers discovered a CNS drainage sys-
tem passing through the CSF-filled para-vascular space 
and eventually leading to the dural lymphatic vascular 
system and cervical lymph nodes [6, 7]. This para-vas-
cular CSF flux is thought to allow the exchange of water 
and solutes between the interstitial fluid (ISF) of the 
parenchyma and the CSF [8–10]. One subsequent experi-
ment showed that this para-vascular CSF–ISF exchange 
is facilitated by arterial pulsation [11], while another 
revealed that it allows metabolic wastes in the brain and 
spine to be drained into the circulating CSF along with 
the pulsatile bulk flow [12]. As a result, the circulating 
CSF probably contains unknown levels of metabolites 
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discharged from the ISF of the brain parenchyma via the 
para-vascular space.

However, to our knowledge, no human studies have 
compared dissolved substances, including metabolites 
such as  CO2 and lactic acid, between simultaneously-
obtained samples of CSF and venous blood. In the pre-
sent study, we compared dissolved solutes, namely 
oxygen,  CO2, electrolytes, and lactic acid, between simul-
taneously-acquired CSF and venous blood samples from 
preoperative subjects with no known neurological dis-
eases. In so doing, we aimed to ascertain the solute gradi-
ent between the CSF and venous blood, and to achieve 
new insights into the role of CSF in the CNS drainage 
system.

Materials and methods
Ethics statement
This study was performed in compliance with the Code 
of Ethics of the World Medical Association (Declaration 
of Helsinki; 1989). Blood and CSF samples were collected 
at the Tohoku University Hospital (Sendai, Japan). The 
study was approved by the Institutional Review Board of 
Tohoku University Hospital (IRB approval number: 2018-
1-475). Written informed consent was obtained from all 
enrolled subjects.

Subject enrollment criteria
All enrolled subjects were preoperative patients await-
ing lumbar anesthesia, and all were aged ≥ 18 years. The 
following exclusion criteria were applied: (1) pregnancy, 
(2) severe spinal canal stenosis, (3) diagnosed neurologi-
cal disorders, including dementia, (4) brain or spinal cord 
lesions.

Based on these criteria, we selected 16 consecutive 
patients in December 2018. They were awaiting the fol-
lowing types of procedure: knee joint surgery, skin 
biopsy, hemorrhoid surgery, etc. All procedures were 
unrelated to the brain and spinal cord.

Blood and CSF sampling
Venous blood and CSF samples were extracted from each 
patient in the operating room of Tohoku University Hos-
pital during the lumbar anesthesia procedure. Venous 
blood was extracted from each arm, while CSF was 
extracted at the lumbar level. Patients were conscious 
and received no supplemental oxygen during sample col-
lection. None of the patients had any history of respira-
tory disease with ventilatory impairment. Both venous 
blood and CSF were extracted using a 5-cm3 blood col-
lection syringe designed for use in blood gas analysis. 
From each patient, 1 cm3 of venous blood and CSF were 
extracted. Because the samples were aspirated directly 
from the needle, neither was exposed to room air. Thus, 

it is unlikely that the room air or the time period between 
collection and sample measurement affected the data. 
The extracted venous blood and CSF were subjected to 
gas analysis within 10 min of sample collection.

Gas analysis device and measured variables
All analysis was performed using the same device 
(ABL800 FLEX blood gas analyzer; Radiometer, Brøn-
shøj, Denmark) in the operating room of Tohoku Uni-
versity Hospital. The following variables were measured: 
pH, oxygen partial pressure  (pO2),  CO2 partial pres-
sure  (pCO2), standard base excess (SBE), bicarbonate 
 (HCO3

−), sodium ion  (Na+), potassium ion  (K+), chlo-
ride ion  (Cl−), anion gap (AG), glucose level, lactic acid 
level, and total bilirubin level.

Statistical analysis
Gas analysis data were compared between the venous 
blood and CSF of each subject using either the paired 
t test or the Wilcoxon signed-rank test, depending 
on whether the data were normally distributed. The 
lactic acid level of the venous blood was abnormal 
(4.3 mmol/L) in one subject; a test of outliers confirmed 
that this result was an outlier (p < 0.0001). Thus, the lactic 
acid data from this subject were not included in the pre-
sent study because the measured level suggested that the 
patient had lactic acidosis that could have biased the data 
interpretation.

Because multiple variables were compared simulta-
neously, p-value < 0.01 was regarded as statistically sig-
nificant. Statistical analyses were conducted using either 
SPSS Statistics Base 22 software (IBM, Armonk, NY, 
USA) or MATLAB R2015a (MathWorks, Natick, MA, 
USA).

Results
Demographics and clinical information
The 16 enrolled subjects (10 men, six women) had a 
mean age of 59.5 years (range 25–87) and a mean body 
mass index (BMI) of 23.9 (range 16.5–38.9). Eight under-
went lumbar anesthesia for hemorrhoid surgery, six for 
skin biopsy, and two for joint surgery.

Comparisons of gas analysis between venous blood 
and CSF
The gas analysis results of the venous blood and CSF 
samples are listed and compared in Table  1. The mean 
 pO2 (p < 0.0001, paired t-test),  pCO2 (p < 0.0001, paired 
t-test), and lactic acid level (p < 0.001, Wilcoxon signed-
rank test) were significantly higher in the CSF samples 
than in the venous blood samples.

To visually confirm that the dissolved levels of these 
solutes were actually higher in CSF than in venous blood 
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in most enrolled subjects, the paired distributions of the 
 pO2,  pCO2, and lactic acid level were depicted (Fig.  1). 
The distributions of all three solutes were higher in the 
CSF than in the venous blood of most enrolled patients.

The mean pH,  K+ level, and AG were significantly 
lower in CSF than in venous blood (p < 0.0001 in all 
cases, paired t-test). Meanwhile, the mean  Na+ level 
and  HCO3− level did not differ between CSF and venous 
blood (p ≥ 0.10 in both cases, paired t-test). The mean 
 Cl− level was significantly higher in CSF than in venous 
blood (p < 0.0001, paired t-test).

Age‑dependency of solute levels in CSF
The  pCO2,  pO2, and  HCO3

− levels in CSF were evaluated 
for correlation with age. Figure 2 shows that  pCO2 in CSF 
showed a significant negative correlation with age (Pear-
son’s correlation coefficient [R] = − 0.650, p = 0.0065), 
while  pO2 and  HCO3

− in CSF showed no significant cor-
relation with age (R < 0.20, p ≥ 0.10 in both cases). None 
of the following factors showed any significant correla-
tion with age:  pCO2 in venous blood, lactic acid in venous 
blood, and lactic acid in CSF (p ≥ 0.10 in all cases).

Discussion
In the present report, the levels of  pCO2 and lactic acid 
were higher in CSF than in venous blood, suggesting 
that the CNS discharges  CO2 and lactic acid into the 
CSF. Furthermore, the levels of  pCO2 in the CSF signifi-
cantly decreased by age, even though those in the venous 

blood did not change, suggesting that the efficiency of 
 CO2 discharge from the brain parenchyma into the CSF 
decreases with age. However, this was an observational 
study, so the exact mechanism of  CO2 and lactate dis-
charge into CSF remains unclear. Nonetheless, our find-
ings may offer new insight into the role of CSF in the 
drainage system of the CNS.

Movement of lactic acid in the CNS
The movement of lactic acid across the cell membrane 
is mainly mediated by proton-linked mono-carboxylate 
transporters (MCTs) [13–15], which are widely distrib-
uted throughout the body of all living organisms, even 
on circulating blood cells and brain astrocytes [16, 17]. In 
total, 14 types of MCTs (MCT 1–14) have been identi-
fied, with each type showing specific tissue distribution 
across the body [18, 19]. Within the CNS, MCT 1, MCT 
2, and MCT 4 are known to be expressed by ependymal 
cells and astrocytes [20, 21], and several types of MCTs 
are also suggested to be expressed by the endothelial cells 
of micro-vessels and choroid plexus  epithelial cells [22, 
23]. The ependymal cell layer does not contain tight junc-
tions and solutes are thought to freely diffuse through 
the intercellular gaps, suggesting that MCTs are not nec-
essarily required for the ISF-CSF exchange. Meanwhile, 
because the microvascular endothelial cells usually form 
tight junctions, exchange of lactate between blood and 
CSF requires MCTs. Because most MCTs function as 
gradient-dependent transporters regulated by the gra-
dient of lactate and protons across the membrane [24, 
25], the observed gradient of lactate level between the 
venous blood and the CSF in this study would be ration-
ally explained by the discharge from ISF into CSF, rather 
than the transport via the choroid plexus. Several studies 
have suggested that MCTs are predominantly expressed 
by ependymal cells on the basolateral side, while others 
have observed MCTs on the apical side, facing the CSF 
[26, 27]. Thus, in addition to the drainage system via 
para-vascular CSF flux, ependymal cells may also play a 
role in the discharge of lactic acid from the brain paren-
chymal ISF into the CSF.

Diffusion of  CO2 in the CNS
The  CO2 in the brain parenchyma probably discharges 
into the circulating CSF via gradient-based diffu-
sion. Previously, it was assumed that dissolved gases 
were allowed to diffuse across cell membranes almost 
without restriction [28]. Later studies showed that the 
movement of  CO2 across the cell membrane is some-
what restricted, because the unstirred layer in the 
membrane vicinity functions as diffusional barrier 
[29, 30]. More recently, the degree of cholesterol con-
tent in the phospholipid membrane was shown to be 

Table 1 Solute and pH levels in the venous blood and CSF 
samples simultaneously extracted from 16 subjects

The mean  pO2 was significantly higher in the CSF than in venous blood samples, 
as were the mean  pCO2 and lactic acid levels, suggesting that these metabolic 
wastes were discharged from the central nervous system into the CSF via some 
drainage system. All p-values are the result of a paired t-test as a parametric test 
or a Wilcoxon signed-rank test as a non-parametric test

AG, anion gap;  Cl−, chloride ion; CSF, cerebrospinal fluid;  HCO3
−, bicarbonate; 

 K+, potassium ion;  Na+, sodium ion;  pCO2, carbon dioxide partial pressure; Lac, 
lactic acid;  pO2, oxygen partial pressure; SBE, standard base excess; t-Bil, total 
bilirubin

Venous blood CSF p‑value

pH 7.40 ± 0.03 7.33 ± 0.04 < 0.0001

pO2 [mmHg] 53.7 ± 12.1 77.0 ± 8.7 < 0.0001

pCO2 [mmHg] 41.3 ± 5.1 48.5 ± 3.9 < 0.0001

SBE [mmol/L] 1.03 ± 2.31 − 0.21 ± 1.81 0.0266

HCO3
− [mmol/L] 25.3 ± 2.4 24.9 ± 1.5 0.429

Na+ [mmol/L] 139.7 ± 2.0 140.1 ± 1.6 0.343

K+ [mmol/L] 3.78 ± 0.38 2.73 ± 0.10 < 0.0001

Cl− [mmol/L] 103.7 ± 3.1 118.1 ± 2.7 < 0.0001

AG  (K+) [mmol/L] 14.0 ± 1.5 − 0.1 ± 2.7 < 0.0001

Lac [mmol/L] 1.01 ± 0.35 1.46 ± 0.20 0.0004

t‑Bil [mg/dL] 0.92 ± 0.62 0.02 ± 0.04 < 0.0001
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the primary regulator of membrane permeability to 
 CO2 [31]. Although the permeability of  CO2 would be 
surely restricted to some extent by the glial cells that 
delineate the ISF from the CSF, ependymal cells and 
perivascular astrocytic endfeet form a looser barrier 
than microvascular endothelial cells that form tight 
junctions. Because there are gaps of varying tight-
ness in the ependymal cell lining and astrocytic end-
feet,  CO2 would be able to easily diffuse from the brain 
parenchymal ISF into the CSF [5, 32]. Consequently, 

the ISF of the brain parenchyma, in which the metab-
olites from neurons are dissolved, can be regarded as 
being directly connected with the CSF as a continuum. 
Considered together with the findings of the present 
study, it follows that  CO2 from the CNS drains into the 
CSF, possibly via para-vascular CSF flux or ependymal 
gap junctions, as well as into the venules via capillar-
ies. Therefore, because the CSF turns over three to five 
times per day [1, 2], it is likely that the circulating CSF 

Fig. 1 Comparisons of solute levels and pH between venous blood and CSF. The distribution of  pO2 was higher in CSF than in venous blood, 
as were those of  pCO2 and lactic acid, indicating that the brain and spine discharge  CO2 and lactic acid into the CSF. The CSF was significantly 
more acidic than the venous blood. Levels of  HCO3− and  Na+ ions did not differ significantly between the venous blood and CSF. The grey‑filled 
areas show the generally accepted normal ranges in arterial blood. All p‑values are the result of a paired t‑test. CSF, cerebrospinal fluid;  HCO3

−, 
bicarbonate ion;  pCO2, carbon dioxide partial pressure;  pO2, oxygen partial pressure
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makes a significant contribution to the removal of  CO2 
and lactic acid from the CNS.

Age‑dependent decreases in CSF  pCO2
Another notable finding of this study was that the  pCO2 
in the CSF significantly decreased with age, whereas that 
in the venous blood did not, suggesting that  CO2 dis-
charge from the CNS into the CSF gradually decreases 
with age, or that the turnover rate of circulating CSF 
increases with age. However, the CSF turnover rate is 
known to significantly decrease with age [33], so the age-
dependent decrease in CSF  pCO2 cannot be explained in 
these terms. Therefore, it is likely that either  CO2 pro-
duction within the brain parenchyma or the efficiency of 
 CO2 discharge into the CSF decreases with age. Future 
research is warranted to evaluate the efficiency of  CO2 
discharge into the CSF in patients with neurological dis-
eases of unknown cause.

Possible methodological errors
Finally, we shall consider whether the absence of blood 
cells in the CSF may have affected the measured data 
and derived conclusions. The gas analyzer used (ABL800 
FLEX) measures pH and  pCO2 using potentiometry, 
which is based on the Nernst equation;  pO2 and lactic 
acid were measured using amperometry. One previous 
study validated and recommended the use of gas analy-
sis to measure pH in pleural effusion samples [34], so gas 
analyzers can reliably measure pH and dissolved partial 
pressures, regardless of whether the sample contains 
blood cells. In further support of this conclusion,  Na+ 
concentrations measured using potentiometry did not 
differ significantly between venous blood and CSF, nor 

did  HCO3
− levels calculated on the basis of  pCO2 and pH 

using the Henderson–Hasselbalch equation (p ≥ 0.10 in 
both cases, paired t-test).

Limitations
The principle limitation of the present study was the 
small sample size. In addition, the study only reported 
an observation of physiological phenomena, the exact 
molecular mechanism of which was not elucidated. The 
clinical significance of the age-dependent decrease in 
CSF  pCO2 also remains unclear. To further character-
ize the association between  CO2 discharge into the CSF 
and various neurological disorders, future researchers 
should compare controls with patients who have such 
disorders. Another limitation is that gas analysis of arte-
rial blood was not performed in the present study, so it 
is not clear whether the enrolled subjects had normal 
blood gas levels in their arterial blood. Finally, peripheral 
venous blood was extracted from the arms in the pre-
sent study, rather than from the venous sinuses around 
the arachnoid granulations. We did not confirm experi-
mentally that the levels of solutes and dissolved gases in 
venous blood from the arms were comparable to those in 
the venous sinuses. To determine the concentration gra-
dient between CSF and venous blood, samples must be 
acquired from adjacent sites.

Conclusion
The present results demonstrated that  CO2 and lactic 
acid are discharged from the human CNS into the circu-
lating CSF. The  pCO2 of the CNS may decrease with age, 
even though that in venous blood does not. The clinical 

Fig. 2 Scatter plots of the CSF solute levels by age. The  pCO2 in the CSF showed a significant negative correlation with age (R = − 0.65, p = 0.0065), 
while no other measured variables showed any significant correlations with age. CSF, cerebrospinal fluid;  HCO3

−, bicarbonate;  pCO2, carbon dioxide 
partial pressure;  pO2, oxygen partial pressure
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significance of such a  CO2-drainage system in the CNS has 
not yet been elucidated and should be addressed in future 
research.
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