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Brain vascular heterogeneity: 
implications for disease pathogenesis 
and design of in vitro blood–brain barrier 
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Abstract 

The vertebrate blood–brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts 
as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the 
brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, 
including cells in its immediate environment and within functional neurovascular units. The cellular composition of 
the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in 
grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focus-
ing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature 
of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may 
have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving 
vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-
disease models representative of specific brain areas.
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Background: the blood–brain barrier as part of the 
neurovascular unit
The BBB separates the peripheral blood circulation from 
the brain parenchyma to allow for optimal functioning 
of the central nervous system (CNS). The actual barrier 
site is formed by CECs that line the cerebral vasculature 
and tight junctional (TJ) proteins that securely connect 
two adjacent CECs, thus limiting paracellular transport. 
Transport of substances across the BBB is generally 
dependent on the characteristics of the compound that 
crosses, such as lipid- versus water-solubility.

Lipid-soluble compounds can cross relatively eas-
ily into the brain: for example, certain drugs, e.g., 

anesthetics, drugs of abuse, and barbiturates, dissolve 
into the cell membranes of CECs and diffuse across the 
BBB into the CNS. Other compounds can cross the BBB 
via more specific transcellular pathways which include: 
(i) carrier-mediated transport of molecules, such as glu-
cose and amino acids, (ii) receptor-mediated endocytosis 
and transcytosis of large macromolecules like transfer-
rin, and (iii) adsorptive-mediated endocytosis and tran-
scytosis of charged plasma proteins (see also reviews by 
Abbott et  al.) [1, 2]. Additionally, paracellular transport 
occurs between two adjacent CECs, allowing for diffu-
sion of compounds such as small, water-soluble com-
pounds, e.g., ions and small hydrophilic solutes. The BBB 
also allows for trafficking of immune cells into the brain 
as a part of regular immune surveillance. Certain path-
ogens, such as human immunodeficiency virus (HIV), 
hijack these natural mechanisms and use immune cells 
to gain entry into the CNS; the so called “Trojan Horse” 
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mechanism [3]. In general, immune cells cross the BBB 
via the paracellular pathway, but it is also possible for 
them to utilize transcellular pathways [1, 2, 4]. Together, 
all these transport and immune surveillance pathways 
play a major role in maintaining CNS homeostasis.

The BBB-endothelium is a key component of the NVU. 
The concept of the NVU states that in order to maintain 
CNS homeostasis, there is cross talk between the differ-
ent cellular components of the NVU including neurons, 
astrocytes, glia, pericytes, and CECs [5]. Aberrant sign-
aling due to infections or disease-mediated activation of 
any of its constituent components can lead to the distur-
bance of brain homeostasis and functioning [1, 6, 7]. Key 
functions of the NVU include maintaining the CEC phe-
notype, coupling blood flow to brain activity, linking neu-
rogenesis to new blood vessel formation, and regulating 
cellular interactions between the vasculature, neurons, 
and glial cells (see also reviews by [5, 8–10]).

Astrocytes are specialized glial cells which function in 
maintaining a healthy CNS [11–20]. Within the NVU, 
astrocytes regulate CEC phenotype by increasing CEC 
barrier integrity [21–23] and enhancing TJ structures 
[24–27]. Additionally, astrocytes were shown to increase 
the expression of specific transporters on CECs such as 
Na–K–Cl and L-system amino acid transporters [28–30]. 
Factors involved in regulating CEC phenotypes include; 
glial cell-derived neurotrophic factor (GDNF) [31]; trans-
forming growth factor (TGF)-β1 [32]; retinoic acid (RA) 
[33]; and vascular endothelial growth factor-A (VEGF-A) 
[34–36].

Pericytes are perivascular cells that wrap around capil-
laries in the brain and are part of the NVU [37]. They are 
characterized by the presence of smooth muscle actin 
fibers and therefore may play a role in local regulation of 
vasodilatation and constriction [38]. Pericytes have also 
been shown to increase the BBB integrity [39, 40] and 
the proportion of TJ proteins (occludin and claudin-5) 
[41]. A deficiency of pericytes, as seen in Pdgfrb+/− mice, 
resulted in decreased capillary length [42] and a concomi-
tant increase in BBB permeability due to an increase in 
transcytosis across CECs [43], decreased expression of TJ 
and scaffolding  proteins (ZO-1, occludin, and claudin), 
and the adherens junction protein VE-Cadherin [42]. This 
change in brain vascular permeability was heterogeneous 
across the CNS: the highest increase occurred in the cor-
tex, striatum, and hippocampus while there was a signifi-
cantly lower change in permeability in the interbrain (or 
diencephalon), midbrain, and cerebellum [44, 45].

Besides astrocytes and pericytes that interact closely 
with the CECs, microglia also affect the BBB-endothelial 
phenotype and function. Microglia are derived from the 
mesodermal lineage and migrate into the CNS early in 
embryonic development to become the resident immune 

cells of the brain [46–48]. Upon activation by, for example, 
microbial infections or traumatic brain injury, microglia 
can differentiate into the pro-inflammatory M1 or anti-
inflammatory M2 phenotypes with a concurrent mor-
phological shift from small cell bodies with long processes 
to enlarged amoeboid-like cells [49]. The M1 microglia 
promote BBB opening by secreting pro-inflammatory 
cytokines, such as interleukin-1 β (IL-1β), tumor necro-
sis factor-α (TNF-α), and nitric oxide (NO). In contrast, 
M2 microglia promote immunosuppression via release of 
TGF-β and angiogenesis through VEGF release in tumors 
[49]. VEGF from microglia were also shown to enhance 
BBB permeability via downregulation of ZO-1 [6, 50–52].

It should be noted that CECs can also reciprocally 
influence the functioning of its neighboring cells within 
the NVU [5, 10, 53]. Guo et  al. [54] demonstrated that 
secretion of brain-derived neurotrophic factor (BDNF) 
by CECs was vital for neuroprotection. In addition, sol-
uble factors secreted by CECs were found to enhance 
the proliferation of oligodendrocyte progenitor cells 
(OPC); which are precursors of oligodendrocytes as well 
decrease apoptotic OPC death in vitro [55, 56]. Further-
more, extracellular vesicles derived from rat brain CECs 
were shown to have a role in promoting OPC survival, 
proliferation and motility in a dose-dependent manner 
[57]. However, the mechanisms underlying these effects 
are not well understood.

Another important part of the NVU is the extracel-
lular matrix (ECM), which also contributes to specific 
CEC phenotypes and functions [58, 59]. ECM refers to 
the non-cellular component of the NVU deposited in the 
space between CECs, pericytes, and astrocytic end-feet. 
The ECM is composed of a mixture of proteins, includ-
ing different collagens, laminins, fibrillins, fibronectin, 
and vitronectin. CECs, astrocytes, and pericytes deposit 
various isoforms of laminin (α2 and α4) in ECM; these 
play a pivotal role in regulating BBB integrity [60–63]. 
Laminin-10 was shown to promote repair in an in vitro 
model of BBB hypoxic injury [64]. Furthermore, extra-
cellular matrix proteins such as heparan sulfate pro-
teoglycans (HSPG), perlecan, collagen IV [65, 66], and 
integrin-matrix interactions [67, 68] have been impli-
cated in regulating BBB integrity. Collagen type IV alpha 
1 (COL4A1) and collagen type IV alpha 2 (COL4A2) are 
the most abundant form of collagen IV in ECM proteins 
[69]. COL4A1 and COL4A2 are highly conserved in 
humans and mutations in one or both of them have been 
linked to various organ diseases, including cerebral dis-
eases, such as porencephaly and cerebrovascular/inter-
cerebral hemorrhages [70–87].

Regulatory enzymes, such as matrix metalloprotein-
ases (MMPs) are also associated with the ECM [88–92]. 
Both MMPs and tissue inhibitors of metalloproteinases 
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(TIMPs), are secreted by CECs, astrocytes, and pericytes 
and are involved in modifying the ECM and in the regu-
lation of BBB integrity [93, 94]. For example, pericytes 
can regulate CE-derived MMP-9 production and in the 
absence of pericytes, there is a decrease in MMP-9 levels 
resulting in increased trans-endothelial electrical resist-
ance (TEER) of CEC monolayers [94].

Heterogeneity in cellular composition of the brain 
and its influence on the BBB
The human brain is divided into three main regions, each 
with distinct functions. These include the brainstem, 
which regulates automatic functions such as breathing 
and digestion, the cerebellum, which coordinates mus-
cle movement and balance, and the cerebrum which is 
involved in higher functions such as learning and inter-
preting speech and touch. The brain is also segregated 
into cortical grey matter (GM) and white matter (WM); 
where the cellular composition differs considerably 
between GM and WM [95–97].

Although GM and WM have approximately equal vol-
umes [98], the ratio of non-neuronal to neuronal cells is 
1.5:1 in the cortical GM compared to 15:1 in the cortical 
WM [95]. The GM has a higher neuronal content includ-
ing neuronal cell bodies, dendrites, non-myelinated 
axons, to a lesser extent of myelinated neurons, and glial 
cells, including resident astrocytes [11, 96]. The WM is 
predominantly composed of both myelinated and non-
myelinated axons, astrocytes, and myelin-producing glia 
[96, 97]. Additionally, there are differences in morphol-
ogy between astrocytes residing in GM and WM. GM 
astrocytes, traditionally called protoplasmic astrocytes, 
display stem branches with many branching processes, 
while in WM, astrocytes exhibit more fiber-like processes 
[11] (Fig.  1). Advancement of imaging techniques and 
investigations into their physiology have led to the use of 
a variety of names for these different astrocytes to better 
reflect individual characteristics. Despite that, currently 
there is no uniform astrocyte nomenclature [99]. Dif-
ferential characteristics include higher levels of vimen-
tin, nestin and glial fibrillary acidic protein in astrocytes 
derived from WM than from GM [99]. Although there 
is equal distribution of glucose transporter-1 (GLUT-
1) 52  kDa isoform across the GM and WM astrocytes 
[100], the GLUT-1 45  kDa isoform is mainly observed 
on the GM astrocytes [101]. This suggests that besides 
phenotypic differences between astrocytes residing in 
GM versus WM, functional differences are also present. 
Taken together, these functional astrocyte differences 
between WM and GM, in turn, may affect brain vascu-
lature in these different areas. However, the molecular 

mechanisms whereby these various astrocytes affect the 
CEC characteristics in these brain areas are unclear [99].

Differences in both density and orientation also exist 
between the GM and WM vasculature. Most apparent is 
the higher blood vessel density in GM than that in WM 
[102]. Also, the arrangements of blood vessels differs: 
cerebellar GM vessels are arranged perpendicular to the 
pyramidal cell layer whereas the WM vessels are longer 
and oriented parallel to axonal fibers [102].

In addition to variances in general structure and organ-
ization of the brain vasculature, there are differences in 
endothelial barrier function between anatomical regions. 
Apart from a high permeability in the vasculature of the 
Area Postrema and choroid plexus, there are differences 
in the molecular composition of the vascular junctional 
proteins that may reflect differences in functionality of 
the BBB. For example, expression of occludin, claudin-5, 
and adherens junction α-catenin is higher in WM com-
pared to GM [96]. Accordingly, there is a higher barrier 
function seen in primary CEC cultures derived from WM 
compared to those from GM [96]. Moreover, cytoskeletal 
structural differences in the vasculature between WM 
and GM were demonstrated [103]. Interestingly, astro-
cytic end feet expressed lower levels of GFAP in GM 
compared with WM and this correlated with a higher 
tendency of hemorrhage in the GM vasculature [103].

Apart from these differences in the vasculature of the 
WM and GM, CEC gene expression also differs along 
the length of the cerebral vasculature tree (arterioles, 
capillaries, and venules) [104, 105]. For example, CEC 
gene expression related to solute transport, e.g., mono-
carboxylate transporter 1 and plasma membrane  Ca2+ 
ATPase Type 2, were significantly increased in capil-
laries compare to venules [105]. Differences also exist 
between cerebral and pial (of pia mater origin) microves-
sels in the brain [106–108]. Even though these micoves-
sels share some common characteristics [106], pial 
microvessels lack envelopment by astrocytic end feet 
resulting in a diverse appearance of tight junctions and 
endothelial barrier antigens [108]. Similarly, differences 
in the expression of astrocyte dependent enzymes such 
as γ-glutamyl transpeptidase (GGTP) and alkaline phos-
phatase (AP) [107] were observed, such as absence of 
expression of GGTP in rat pial microvessels compared to 
a strong expression in cerebral vessels [107]. In summary, 
these studies clearly demonstrate significant heterogene-
ity in the cerebral vasculature, as well as differences in the 
composition of NVU components between the GM and 
WM that may be related to differential CEC gene expres-
sion along the vascular tree.
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Association of brain vasculature with GM and WM 
neuropathologies
Considering the existence of structural and functional 
variations in the cerebral vasculature between various 
regions of the brain, it is imperative to consider these 
vascular differences when evaluating neuropathologies. 
Here, we will briefly discuss select neuropathologies that 
involve an activation and/or dysfunction of the brain 
vasculature and its association with regional pathology, 
namely multiple sclerosis (MS), schizophrenia, HIV-
associated neurocognitive disorders (HAND), and cer-
ebral malaria (CM).

MS is an autoimmune disease of the CNS and its 
widely studied neuropathology exhibits region-specific 
differences in the brain. MS presents with areas of focal 
neuronal demyelination, axonal loss, immune cell infil-
tration, and involvement of the BBB [109–114]. MS 
lesions usually develop alongside brain vasculature and 
involve disruption of the BBB structure and function 
[115]. MS presentations differ from GM, as lesions in the 
WM involve disruption of the BBB leading to immune 
cell infiltration into the CNS, whereas this is not always 
noted in lesions in the GM vasculature [116, 117]. Fur-
thermore, the cuprizone experimental mouse model of 
MS also shows increased BBB activation in WM com-
pared to the GM [118–120]. These differences in the 
representation of MS in the brain GM and WM is most 
likely due to the inherent differences in the brain GM 
versus WM vasculature.

Schizophrenia, a neuropsychiatric disorder, is char-
acterized by significant brain abnormality and regional 
variability, including involvement of WM pathologies, 
especially those involving frontal, fronto-temporal, and 
fronto-limbic connections [121–124]. Also here, regional 
structural differences have been observed, e.g., WM 
myelin disturbance, deterioration of the neuropil, loss 
of synaptic connectivity, and functional impairment of 
oligodendrocytes [125, 126]. Postmortem brain studies 
have reported higher expression of pro-inflammatory 
cytokines like IL-6, TNF-α, and transcription factor 
NF-κB in the WM of the frontal cortex compared to the 
GM [127–129]. In individuals with first-episode schizo-
phrenia, signs of axonal degeneration appeared only 
in the focal areas of frontal lobe WM areas [130]. Simi-
larly, in patients with new-onset schizophrenia, WM 

inflammation was associated with elevated serum S100B 
levels, implicating WM inflammation coupled with BBB 
hyper-permeability [131]. A recent study by Greene et al. 
[132] was the first to use molecular-based evidence to 
show involvement of the vasculature and BBB alterations 
in schizophrenia. Thus, the existence of vascular hetero-
geneity may contribute to the differential presentation of 
schizophrenia pathologies in GM versus WM regions of 
the brain.

In HIV-1 infected patients, the virus can enter into the 
CNS in the early stages of infection, eventually leading 
to neurocognitive impairments, including HIV-associ-
ated neurocognitive deficits (HAND). Both in  vitro and 
in vivo studies have demonstrated activation of the brain 
endothelium and functional impairment of the BBB, 
including upregulation of cell adhesion molecules, down-
regulation of TJ complex components, and enhanced 
passage of immune cells across the BBB into the CNS, 
resulting in “cuffing” [133, 134]. Brain autopsy studies 
also showed a correlation of the severity of HAND with 
WM degeneration and gliosis [135, 136]. Interestingly, 
the brain vasculature appears more compromised in 
WM, as immunostaining for BBB junctional molecules, 
such as occludin and ZO-1, was either absent or more 
fragmented in the WM than in the GM [137]. Because of 
the brain vasculature’s involvement in HAND, brain vas-
cular heterogeneity is also very likely to play a role in the 
manifestation of the differential pathologies in various 
brain regions,

Another infectious disease involving brain vascular 
inflammation/activation is CM, a severe neurological 
complication resulting from infection with the Plas-
modium falciparum parasite. The hallmark of CM is 
sequestration of P. falciparum-infected red blood cells 
(Pf-IRBC) inside the vasculature, which leads to the 
activation of the BBB, as shown by increased ICAM-1 
expression and decreased junctional markers [138–143]. 
Postmortem studies of brains from human CM patients 
show marked pathological differences between WM and 
GM. Highly apparent is the abundance of hemorrhagic 
punctae in the WM, associated with increased fibrin 
accumulation [144–147]. These differences in pathologies 
could be related to differences in the vasculature between 
WM and GM.

(See figure on previous page.) 
Fig. 1 General representation of structural and cellular differences between GM and WM: the brain is approximately segmented in equal volumes 
of GM and WM, where the cellular composition differs considerably. GM has a high non-myelinated neuronal content and lesser extent of myeli-
nated axons. WM is composed of both myelinated and non-myelinated axons; with higher myelin content is responsible for its whitish appearance. 
Similarly, GM and WM also exhibit differences in other resident brain cell types, including astrocytes, glial cells in number and morphology. These 
differences in the immediate environment of the vasculature may confer specific differential WM and GM vascular phenotypes that may be reflected 
in amount and organization of tight junctions, expression of various receptors, transporters and responses to stimuli in neurovascular diseases
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As shown previously and outlined above, there are 
clear differences in protein expression along the vascular 
tree [148]. However, limited information exists in terms 
of BBB physiology and EC phenotype in different regions 
of the brain [96, 99, 148] and how this relates to neuro-
disease pathogenesis. Taken together, the above dis-
cussed neurological conditions and infections underline 
existence of regional pathological differences in the WM 
versus the GM as well as the involvement of brain vascu-
lature. Seemingly, more pathologies present in the WM 
than in GM areas. Therefore, we hypothesize that these 
observed brain vascular differences between the GM and 
WM areas significantly contribute to their differential 
pathologies.

In vitro modeling of the BBB/NVU with relevance 
to neuropathologies
To study neuropathologies involving the vasculature 
of the brain, various in  vitro BBB models have been 
developed, mostly from CEC isolated from GM areas. 
Initially, in vitro models of the BBB were single-cell cul-
tures composed of a monolayer of primary CECs derived 
from either human, bovine, porcine, or murine sources 
[149–154]. Primary CECs have a limited lifespan and 
exhibit significant donor-to-donor variability, which 
can affect interpretation of experimental outcomes. To 
study human disease, human derived cells are also pref-
erential. As a result of this, immortalized brain EC lines, 
such as human derived hCMEC/D3, were developed as 
alternatives to primary CECs [155–159], but these cells 
still showed relatively low TEER. More recently, human 
pluripotent stem cell (hPSC)-derived CECs have been 
employed as a potential cell source and have shown sig-
nificantly higher barrier integrity compared to the pri-
mary and immortalized cell lines when cultured in the 
presence of retinoic acid (RA) [154, 160–166]. Although 
the high barrier resistance could suggest BBB phenotype 
for the hPSCs, a more epithelial phenotype cannot be 
excluded. Besides TEER, other markers have been evalu-
ated, though in a limited fashion. De Stefano et al. [167] 
demonstrated that there were no significant morphologi-
cal changes in both hPSC-derived CECs and immortal-
ized human CECs in response to fluid shear stress. They 
also showed that shear-induced motility was significantly 
reduced in hPSC-derived CECs [167]. However, these 
findings do not demonstrate whether these cells are rep-
resentative of GM or WM vasculature and additional 
markers would need to be tested to fully validate the 
hPSCs for BBB modeling.

As outlined above, various cellular components of the 
NVU influence CEC phenotype and cerebrovascular 
integrity. In the earlier models, other cellular NVU com-
ponents were not incorporated and there was minimal 

consideration of environmental influences, such as blood 
flow and pressure [149, 168]. To further improve specific 
BBB characteristics, co-culturing with cellular compo-
nents of the NVU, specifically astrocytes or pericytes, 
as well as the addition of astrocyte- or pericyte-condi-
tioned medium, has been utilized [21, 39, 40, 169–180]. 
Selection of appropriate culture media in co-culture 
experiments has been shown to be an important factor 
influencing the BBB integrity [181–183]. Several stud-
ies have demonstrated that the direct CEC environment, 
e.g., cell–cell contact, soluble factors or extracellular vesi-
cles, is critical for the development and maintenance of 
the BBB properties and thus influence the cellular func-
tion within the NVU [6, 23, 41, 184]. Therefore, in order 
to obtain a physiologically relevant in  vitro BBB model, 
the effect of these influences from within the NVU and 
how this may affect the BBB functionality should be con-
sidered, including a WM versus GM environment.

Physical factors and mechanical forces, such as shear 
stress and cyclic strain due to flowing blood, also affect 
endothelial structure and physiology [185, 186]. In vitro 
studies demonstrated that flow improved the barrier 
integrity of CECs [32, 187–190]. In contrast, supra-
physiological shear stress and pulsatile flow can lead to 
the deterioration of BBB integrity [191]. Loss of blood 
flow promoted cytokine release (IL-1β, IL-6, and TNF-
α) which, in turn, mediated a decrease in TEER, result-
ing in BBB leakage [192]. Additionally, both substrate 
elastic modulus [193–195] and ECM composition [196, 
197] affect endothelial responses, including cytoskeletal 
realignment, inflammation, and cell morphology, to shear 
stress. When designing an in  vitro model of the BBB, 
substrate curvature (flat or curved surfaces) and culture 
dimensionality should also be considered. Ye et al. [198] 
demonstrated that changing the substrate curvature from 
flat to curved resulted in a change in cell orientation of 
the CECs [198]. Additionally, three-dimensional in vitro 
BBB models were shown to restrict viral infections com-
pared to the two-dimensional models [199]. Together, 
these studies demonstrate the numerous factors that may 
need to be considered when designing a physiologically 
relevant in vitro BBB model.

It is very challenging to incorporate all of the afore-
mentioned factors that influence the BBB. Advance-
ments in technology have provided additional options 
for in vitro BBB modeling to better mimic the BBB bio-
physical environment, e.g., addition of flow and dimen-
sionality/curvature such as lab on a chip models [200]. 
They also allow for the controlled application of inflam-
matory stimuli to study the responses of various brain 
cell types during neuroinflammation [201–203]. Utiliz-
ing the BBB-on-chip model, the TEER of CECs cultured 
on microfluidic chips (36.9 Ω cm2) was higher than that 
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of CECs grown on Transwell™ chambers (28.2  Ω  cm2) 
[203]. Similar technology has also been used to create 
a NVU on a chip by co-culturing CECs with pericytes, 
neurons, and astrocytes in a three-dimensional collagen I 
matrix [201]. Recently, cylindrical collagen gels were gen-
erated using the “viscous fingering” method within 3D 
BBB chips composed of CECs, pericytes, and astrocytes. 
Notable findings include that (1) the CECs generated an 
abluminal basement membrane and (2) the astrocytes in 
combination with CECs significantly reduced the perme-
ability (a phenomenon that was not observed with EC-
pericyte co-culture) [202]. Additionally, a recent study 
used a sophisticated triple BBB co-culture of a human 
brain endothelial cell line with primary astrocytes and 
brain pericytes assembled in a poly(dimethylsiloxane)-
based chip that also allowed for simultaneous assessment 
of flow, morphology, TEER, and permeability measure-
ments [204].

Thus, advantages of the BBB-on-chip include: (i) incor-
poration of flow (exposure of CECs to shear stress); (ii) 
culture of CECs in a three-dimensional environment; 
and (iii) measurement of physiological functions (such as 
permeability and TEER) in real-time along with fluores-
cence imaging of cell–cell junctions [203, 205]. Although 
current technical advances allow for the development of 
organ-on-chip systems, this technology is highly special-
ized and requires specialized facilities for fabrication of 
these devices. The major disadvantage of these lab-on-a-
chip systems is their limited commercial availability and 
high price point [200]. To our knowledge, at this point, 
no (affordable) commercial system is available that incor-
porates all the desired parameters.

In summary, these studies outline important design 
considerations for creating in  vitro models of the BBB. 
Additionally, they demonstrate recent advancements in 
technology that may be used to model the regional het-
erogeneity of the brain parenchyma. A key assumption 
of most in vitro model designs is that the BBB/CEC phe-
notype is homogeneous across the brain. However, as 
discussed above, phenotypic differences exist along the 
vascular tree [105, 148] and in varying brain regions [44, 
96]. This, coupled with the knowledge that certain neu-
ropathologies differentially affect WM and GM, should 
prompt development of more representative in  vitro 
models of the BBB that can better mimic the particular 
in vivo environment of the neuropathological condition, 
e.g., culturing CEC with either WM or GM character-
istics. Exposing these CEC’s to their appropriate brain 
environment may confer and/or approximate these char-
acteristics and provide a better option for BBB- neurodis-
ease modeling.

Conclusions and future directions
Regional cellular heterogeneity in the brain parenchyma 
may contribute to the differences in CEC phenotype 
within the cerebral microvasculature. The two major 
regions of the brain, the GM and WM, have distinct vas-
cular patterns, cellular compositions, and molecular phe-
notypes. These relative superficial differences in the brain 
vasculature warrant deeper investigation of the specific 
regional variability of the BBB. A comprehensive analy-
sis of molecular phenotypes and functional differences 
of the vasculature between brain regions would allow for 
better understanding of diverse neuro-pathologies. This 
may have further implications for the design of better 
and more targeted therapeutic interventions in neurovas-
cular diseases. In vitro BBB modeling offers possibilities 
for targeted and controlled assessment of BBB pathogen-
esis but, thus far, primarily relies on the assumption of 
homogeneity of the BBB across the various brain regions. 
In this review, we have highlighted some region-specific 
differences in the BBB and propose design considerations 
for developing more representative models of the BBB 
by incorporating these regional heterogeneities. A more 
comprehensive in  vitro BBB design should also encom-
pass the region-specificity of the NVU- brain milieu for it 
to translate effectively to different neurovascular disease 
conditions of interest.
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