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EDITORIAL

Progress in brain barriers and brain fluid 
research in 2017
Richard F. Keep1*†, Hazel C. Jones2† and Lester R. Drewes3†

Abstract 

The past year, 2017, has seen many important papers published in the fields covered by Fluids and Barriers of the CNS. 
This article from the Editors highlights some.
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Editorial
The purpose of this editorial is to highlight advances in 
brain barriers and brain fluids research in 2017 as well 
as areas of debate. As always, it is not possible to cover 
all important progress and, as we have mentioned before 
[1], such choices are idiosyncratic. However, we hope this 
editorial is useful for informing our readership and iden-
tifying promising areas for study as well as areas where 
technological advances are needed.

Blood–brain barrier (BBB)/neurovascular unit 
(NVU)
There continues to be progress in identifying pathways 
important for the development of NVU/BBB prop-
erties. Thus, Cho et  al. found [2] that the endothelial 
G-protein-coupled receptor (GPCR) Gpr124 and a gly-
cosylphosphatidylinositol-anchored membrane protein, 
Reck, are required for forebrain angiogenesis and acqui-
sition of brain barrier properties in mouse development. 
Both molecules appear to function by regulating Wnt 
signaling. Chang et  al. [3] further examined the effect 
of a conditional knockout of Gpr124 in adult mice. No 
BBB effect was observed under normal conditions, but 
increased barrier disruption occurred in ischemic stroke 
and glioblastoma models. The effects of Gpr124 were 
again via the Wnt-βcatenin pathway, with activation of 

Wnt-βcatenin signaling reversing the effect of the Gpr124 
conditional knockout.

Pericytes continued to be a major focus of current 
NVU/BBB research. Nakazato et  al. [4] reported that a 
circadian clock transcriptional activator, brain and mus-
cle aryl hydrocarbon receptor nuclear translocator-like 
protein 1 (Bmal1), is an important regulator of pericyte 
function. Bmal1 deletion caused pericyte dysfunction, 
age-dependent loss of pericytes, and endothelium hyper-
permeability. The possible role of pericytes in circadian 
changes in barrier function merits further investigation. 
Some of the evidence for the importance of pericytes in 
NVU/BBB regulation has come from mice with a muta-
tion in the retention motif for platelet derived growth fac-
tor (pdgf )-β (pdgf-bret/ret) which have pericyte depletion. 
A recent study found that the effects of such depletion 
on NVU/BBB permeability were brain region-dependent 
(e.g. greater in cortex, striatum and hippocampus) [5]. 
There has been interest in whether NVU/BBB function 
differs between brain regions and these results suggest 
that there are differences in regulation. Although most 
studies on pericytes described beneficial effects of peri-
cytes on BBB function, they may have potentially detri-
mental effects. Underly et  al. [6] found that pericytes 
caused early BBB damage after cerebral ischemia via a 
matrix metalloproteinase9-dependent mechanism.

A potential theme is developing on the importance of 
lipid regulation in NVU/BBB function. More et al. found 
that peroxisome proliferator-activated receptor (PPAR) α 
is not only a lipid sensor, but it also regulates the expres-
sion and activity of brain endothelial efflux transporters 
[7]. In addition, Andreone et  al. found that lipid trans-
port by Mfsd2a inhibits caveolae vesicle formation in 
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brain endothelial cells suppressing transcytosis [8]. These 
results suggested that the Mfsd2a gene product may have 
a dual role in lipid metabolism/transport and transcyto-
sis. Similarly, recent evidence suggested the importance 
of alterations in sphingosine-1-phosphate signaling in 
BBB dysfunction after endotoxemia [9].

As with other tissues, there was great interest in the 
role of microRNAs and exosomes in brain and cells of the 
NVU. Thus, for example, Xi et al. [10] found that micro-
RNA-126-3p promotes barrier integrity in the setting of 
intracerebral hemorrhage. The therapeutic use of using 
microRNAs to treat neurological conditions is poten-
tially a beneficial area of research, but delivery into the 
endothelial cells and brain parenchyma remains a major 
issue [11]. The use of exosomes as a delivery system is 
one approach being vigorously pursued [12, 13]. For 
both exosomes and/or microRNA, the cerebral endothe-
lium may be an easier therapeutic target than the brain 
parenchyma.

Modifying the BBB for drug delivery
Currently, different approaches are being tested to mod-
ify brain endothelial tight junctions and thereby enhance 
drug delivery to the brain. Hashimoto et al. have shown 
that a monoclonal antibody targeting claudin-5 can 
increase barrier permeability in an in  vitro endothelial 
barrier model [14]. Similarly, Dithmer et al. showed that 
peptidomimetics that have nanomolar affinity for clau-
din-5 increase barrier permeability in  vitro and in  vivo 
[15], a feature that was reversible in 12–48  h. This is 
important considering the potential side-effects of modi-
fying claudin-5 [16] (see below).

Clinically, osmotic-induced blood–brain disruption 
is currently used to enhance delivery of anti-neoplastic 
agents to brain tumors [17]. An important consideration 
is the potential effect of the anti-neoplastic agent on nor-
mal tissue. Dosa et al. [18] reported the results of an early 
stage clinical trial of N-acetyl cysteine to reduce the oto-
toxic side-effects induced by cisplatin.

A number of different approaches were investigated 
to improve drug transfer to the brain: peptide vectors 
including antibodies may be used to target the LDL 
receptor and transfer ligands by receptor-mediated tran-
scytosis [19, 20]. Shimizu et  al. [21] observed that an 
antibody against an endothelial membrane protein (glu-
cose-regulated protein 78) led to tight junction disrup-
tion and enhanced permeability to high molecular weight 
proteins. Thus, development of a strategy for controlled 
delivery of biologics, such as proteins or genes, to the 
brain may be possible. Also, specific gene therapy with 
adeno-associated viral vectors was tested in mice to con-
trol seizures [22]. Another approach to focally enhance 
brain vascular permeability was the use of ultrasound 

and microbubbles [23], currently in clinical investiga-
tion for Alzheimer’s disease therapy: Blood Brain Bar-
rier Opening in Alzheimer’ Disease trial (BOREAL1; 
NCT03119961).

Barriers in disease
Many neurological conditions (e.g. ischemic and hemor-
rhagic stroke, multiple sclerosis and neurodegenerative 
diseases) impact the NVU/BBB [24, 25] and blood-CSF 
barriers [26, 27]. Recently, Menard et  al. [16] extended 
such findings by examining the effects of social stress 
in mice (a model of depression). They found that stress 
induced by chronic social defeat reduced brain microves-
sel claudin-5 expression in the nucleus accumbens, and 
that reducing claudin-5 with a short hairpin RNA caused 
depression-like symptoms and increased entry of inter-
leukin-6 into brain. Interestingly, the effects on claudin-5 
were reversed by antidepressant treatment. Other studies 
have indicated that there are subtle NVU/BBB changes in 
a variety of conditions including aging [24] and cerebral 
small vessel disease [28]. The impact of these changes 
(e.g. low level neuroinflammation) is an important area 
for investigation.

Over the decades there has been a longstanding debate 
over the relative importance of alterations in the para-
cellular and transcellular pathways in disease-induced 
modification of blood–brain transport. Currently, there 
is a debate about the relative importance of tight junc-
tion modification vs. transcytosis. It should be noted that 
there may be important interactions between tight junc-
tions and the vesicular system (e.g. in internalization of 
tight junction proteins from the plasma membrane [29]) 
complicating data interpretation and that there may 
be differing results dependent upon which markers are 
being used to assess barrier function. In ischemic stroke, 
the importance of changes in transcytosis [30] and tight 
junctions [31] was recently highlighted. An issue with 
regards to changes in NVU/BBB function in neurological 
conditions is whether it is a consequence of the condition 
or whether it contributes to the injury. It is important, 
therefore, that Shi et al. [32] found that ameliorating BBB 
disruption in ischemia/reperfusion injury in mice by 
overexpressing heat shock protein-27 specifically in the 
endothelium, reduced overall stroke-induced brain injury 
(infarct size and neurological deficits). Such results indi-
cate that the BBB is a therapeutic target for stroke.

The ultimate goal of brain barrier and brain fluid 
research is to improve patient outcome. In this regard, 
the potential use of glibenclamide (glyburide) to reduce 
brain edema for a variety of neurological conditions is 
noteworthy. Glibenclamide is a Sur1-TRPM4 channel 
inhibitor that has been shown to reduce brain edema in a 
variety of preclinical models (e.g. [33, 34]). It is in clinical 
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trial for stroke-induced brain edema (NCT02864953) 
and to reduce edema in metastatic brain tumor patients 
receiving radiosurgery (NCT02460874).

Choroid plexus, CSF secretion and CSF outflow
There has been some debate of the relative role of the 
choroid plexus in CSF secretion [1]. Praetorius and 
Dimiker [35] produced a comprehensive review of vecto-
rial ion transport at the choroid plexus epithelium form-
ing the basis for fluid secretion. Such ion transport is 
not only important for fluid secretion it is also involved 
in CSF ion homeostasis and secondary active trans-
port. One focus of that review was Na, K and Cl trans-
port by the choroid plexus epithelium. Interestingly, 
recent evidence indicated that stimulation of choroid 
plexus Na–K–Cl cotransporter-1 (NKCC-1; Slc12a2) 
contributed to post-hemorrhagic hydrocephalus [26] 
(see below). There was also growing evidence for the 
role of the choroid plexus in neuroinflammation. Thus, 
results indicated that the choroid plexus is a key site for 
the entry of T cells into brain in both animal and human 
stroke [36]. A potentially interesting model for studying 
choroid plexus development and function was described 
by Koshida et  al. [37]. They found that mice with the 
transcription factor MafB gene knocked out had delayed 
differentiation and hypoplasia of the hindbrain choroid 
plexus, along with increased apoptosis and reduced pro-
liferation in the epithelium.

There has long been substantial data that much CSF 
absorption is not via the arachnoid granulations/villi 
into the blood stream but rather into the lymph system 
via multiple routes [38]. The latter includes CSF drain-
age through the cribriform plate to the nasal lymphatics 
and the cervical lymph nodes and drainage via the spinal 
nerve roots to the lumbar lymph nodes [38], as well as via 
lymph vessels within the dura [39, 40]. Recently, Ma et al. 
[41] used noninvasive imaging techniques to quantify the 
transport of different sized tracers from CSF to the lymph 
nodes or blood in mice. For that species, they found that 
the lymph route predominated for both large and small 
tracers and that such drainage decreased with age.

Fluid and solute flow within the brain
The proposed brain glymphatic system for the brain con-
tinued to generate much interest [42], with ~ 80 papers 
in PubMed in 2017. It is proposed that fluid flow within 
the brain occurs via the perivascular space around the 
arterial system, then through astrocytes, with water 
movement via aquaporin-4, leaving the brain via the 
perivascular space around the venous system. Altered 
flow was proposed to occur and contribute to a multi-
tude of neurological conditions (e.g. Alzheimer’s disease, 
idiopathic normal pressure hydrocephalus, migraine, 

diabetes, traumatic brain injury and stroke [43–48]). Bur-
feind et  al. examined whether five aquaporin-4 single-
nucleotide polymorphisms (SNPs) were associated with 
Alzheimer’s pathology or rate of cognitive decline after 
diagnosis. While none of the SNPs were associated with 
degree of pathology, two were associated with acceler-
ated cognitive decline and two with slower decline [43].

While the glymphatic hypothesis engendered much 
interest, alternative hypotheses for fluid movement 
within the brain were proposed. Smith et  al. [49, 50] 
recently questioned the experimental underpinning of 
the glymphatic hypothesis and provided evidence that 
solute movement through the brain is by diffusion rather 
than convection. In addition, Hannocks et al. and Pizzo 
et al. [51, 52] provided evidence that a perivascular space 
is present in all vessel calibers and that fluid/solute flow 
may occur through that space from arteriole to capillary 
to venule.

Although great progress was made in imaging of the 
perivascular pathways, there is a need for methods to 
quantify the importance of different pathways within the 
brain parenchyma. Currently, importance is attached to 
experiments manipulating aquaporin-4. There are ques-
tions, however, over the impact of such manipulations on 
not only movement of fluid through astrocytes, but also 
on extracellular diffusion (e.g. volume/tortuosity of the 
extracellular space).

CSF analysis
CSF analysis to aid in disease identification, progression 
and prognosis as well as for elucidating therapeutic tar-
gets continued to be a major focus across a wide range of 
neurological conditions (e.g. [53–59]). One area receiv-
ing especial attention was mild cognitive impairment 
and transition to dementia, particularly in relation to 
Aβ42 and tau. Some of the practical and theoretical dif-
ficulties in using such markers were outlined in recent 
reviews [55, 58, 60]. Aβ42, total tau and phosphorylated 
tau were also examined in relation to idiopathic normal 
pressure hydrocephalus [53]. One issue in CSF analysis is 
determining the underlying causes of altered CSF protein 
concentrations: changes may be due to altered barrier 
function or altered drainage, or both. However, a recent 
study found that increased CSF proteins are most prob-
ably derived from barrier dysfunction [61]. In this regard, 
it may be possible to determine the source of proteins 
based on their glycosylation state [62]. This is important 
because concentrations of CSF components in diagnostic 
studies need to be normalized to total protein content.

Studies using CSF for diagnosis are ongoing: for exam-
ple, cytokines were measured in multiple sclerosis and 
polyneuropathy [63]. Analysis of CSF Aβ42, t-tau and 
p-tau may be used to distinguish Alzheimer’s disease 
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from normal pressure hydrocephalus [53] and positive 
MRZ-1 antibody in CSF is a good indicator for multi-
ple sclerosis [64]. Also, CSF chemo- and cytokines were 
measured in infants with post-hemorrhagic hydro-
cephalus [54]. There was also growing interest in dis-
ease-related changes in microRNAs, which may be 
encapsulated within CSF exosomes [65–67]. As well as 
being markers of disease processes, microRNAs may be 
important in cellular communication.

Hydrocephalus
Genetic causes for congenital hydrocephalus involving 
abnormal brain development continue to be reported: 
for example loss or mutations in the MPDZ gene affected 
ependymal cells and led to hydrocephalus [68, 69]. 
Also, mice lacking the Dusp16 gene developed hydro-
cephalus with brain overgrowth [70] and a mutation 
in B3GALNT2 gene led to hydrocephalus in Mexican 
horses [71].

Post-hemorrhagic hydrocephalus is a major problem 
in infants that survive at even earlier stages of prematu-
rity. A post mortem study of human infants found that 
there was extensive disruption of the ventricular zone 
with loss of ependyma and infiltration of astrocytes [72], 
consistent with a common finding in models of congeni-
tal hydrocephalus of abnormal cell junction pathology 
and abnormal neurogenesis (reviewed by Rodriguez and 
Guerra [73]). An interesting insight into post-hemor-
rhagic hydrocephalus was provided by Karimy et al. [26]. 
They found an inflammation-mediated hypersecretion 
of CSF after intraventricular hemorrhage in rats. This 
was mediated by Toll-like receptor-4 activation at the 
choroid plexus and resulted in activation of Ste20-type 
stress kinase that phosphorylated and stimulated Na–K–
Cl cotransporter-1 at the choroid plexus, thus, increas-
ing CSF secretion. Such hypersecretion may help clear 
blood-derived neurotoxic compounds (e.g. hemoglobin 
and iron) from the CSF but also may participate in gener-
ating hydrocephalus, if flow pathways are impeded.

Idiopathic normal pressure hydrocephalus (NPH) con-
tinues to generate much interest mainly because of a 
large increased incidence in the elderly population and 
the variable response to shunt surgery. A meta-analysis 
of published papers on CSF biomarkers concluded that 
CSF Aβ42, t-tau and p-tau were increased compared to 
the normal state [53] and that Aβ42, tau and p-tau, neu-
rofilament light chain and leucine-rich alpha-2-glycopro-
tein have the greatest predictive value for improvement 
with shunt surgery [74]. Evolving magnetic resonance 
techniques showed that in NPH the CSF pulsatility was 
increased in the aqueduct [75], that the brain paren-
chyma became stiffer [76], that cerebral blood flow in 
selected regions including the periventricular white 

matter was reduced and correlated with decline in cog-
nitive function [77]. It was found that white matter per-
fusion increased after shunt surgery [78], an observation 
consistent with improvement in fractional anisotropy of 
white matter tracts after shunt surgery [79].

The meninges and other barriers
Historically, most studies on ‘barrier’ tissues focused on 
the cerebral endothelium or the choroid plexus. Rela-
tively few studies examined the meninges, another site of 
the blood-CSF barrier. There were, however, a number of 
interesting studies this year that focused on the menin-
ges and novel functions. Thus, recent evidence indicated 
that the meninges of perinatal mice contain neurogenic 
progenitor cells (radial glia-like) that can migrate into 
the cerebral cortex and form functional neurons [80]. In 
addition, Suter et al. [81] found that meninges from spi-
nal cord produced both attractive and repulsive factors 
that help guide different types of axons and may regulate 
which axons traverse the boundary between the central 
and peripheral nervous systems.

Similar to the meninges, few studies have focused on 
glial barrier functions. Interestingly, Horng et  al. [82] 
recently showed that reactive astrocytes around inflam-
matory lesions express claudin-1 and -4 and junctional 
adhesion molecule-A. Importantly, they found mice with 
astrocyte-specific knockout of claudin-4 had greater 
leukocyte infiltration and worse outcome in models of 
neuroinflammation.

Technological advances
Many advances in brain barriers and brain fluids research 
are driven by technological progress. Thus, for example, 
efforts to improve in  vitro NVU/BBB models continue. 
These included increased use of induced pluripotent 
stem cells (iPSCs) to create models of the human neuro-
vasculature (endothelial cells alone or in co-culture with 
derived pericytes, astrocytes and neurons) [83–85]. In 
addition to expression of many classic brain endothe-
lial markers, such models exhibited very high transen-
dothelial electrical resistances. Recently, in vitro models 
were derived from iPSCs from single patients [83, 86], a 
system with great potential for examining the impact of 
patient genetics on barrier properties. The production of 
such cells has required a lengthy protocol, but efforts to 
reduce that time were reported [87]. A major area that 
still remains to be resolved is how well these models rep-
licate transport at the in vivo brain endothelial cell, e.g. 
efflux transporter activity. Efforts also progressed using 
microfluidics to produce a ‘BBB-on-a-chip’ [12, 88]. Such 
models were extended into disease-relevant models [89].

Much new insight into barrier function and brain 
fluid dynamics in health and disease were derived from 
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advances in imaging. Advances in in  vivo optical imag-
ing was the subject of a Society for Neuroscience mini-
symposium [90]. In  vivo imaging can be facilitated by 
the choice of animal models. This was exemplified by 
an elegant study on angiogenesis and barrier-genesis in 
zebrafish [91]. Advances in the use of clinical and pre-
clinical imaging for examining the NVU was also the 
subject of another conference [92]. As mentioned earlier, 
improved techniques and better resolution in magnetic 
resonance images have great potential for understanding 
the pathology of neurological diseases with, for example, 
observation of disturbances in white matter tracts [79] 
and tracking of transependymal and periarterial flow 
with the aid of a contrast enhancement agent [44].

There have been initial studies involving extensive 
genomics and large-scale proteomics that focused on the 
NVU, the cerebral endothelium and the choroid plexus 
in health and disease [93–97]. Advances in metabo-
lomics have yet to be extensively applied and may pro-
vide important information. In an interesting alternative 
approach to using liquid chromatography coupled to tan-
dem mass spectrometry (LC–MS) based proteomics, Lee 
et  al. [98] used the publically-accessible Human Protein 
Atlas (mostly immunohistochemistry based) to exam-
ine the human cerebrovascular distribution of 20,000+ 
proteins. An affiliated database allowed comparisons 
between cell types within the brain and across organs. It 
also provided information on endothelial heterogeneity 
(e.g. by vessel caliber or adjacent cells), an understudied 
area.

Future directions
Major progress is being made in our basic science of the 
brain barriers and brain fluids, although there are major 
controversies. The ultimate goal of such understanding 
is, however, translating that information to the clinic. 
While there are some clinical trials, history shows us the 
difficulties in such translation.
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