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Chemokine and cytokine levels in the 
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Abstract 

Background: Neuroinflammation has been implicated in the pathophysiology of post-hemorrhagic hydrocepha-
lus (PHH) of prematurity, but no comprehensive analysis of signaling molecules has been performed using human 
cerebrospinal fluid (CSF).

Methods: Lumbar CSF levels of key cytokines (IL-1α, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12, TNF-α, TGF-β1, IFN-γ) and 
chemokines (XCL-1, CCL-2, CCL-3, CCL-19, CXCL-10, CXCL-11, CXCL-12) were measured using conventional and multi-
plexed Enzyme-linked Immunosorbent Assays and compared between preterm infants with PHH and those with no 
known neurological injury. The relationships between individual biomarker levels and specific CSF cell counts were 
examined.

Results: Total protein (TP) CSF levels were elevated in the PHH subjects compared to controls. CSF levels of IL-1α, 
IL-4, IL-6, IL-12, TNF-α, CCL-3, CCL-19, and CXCL-10 were significantly increased in PHH whereas XCL-1 was signifi-
cantly decreased in PHH. When normalizing by TP, IL-1α, IL-1β, IL-10, IL-12, CCL-3, and CCL-19 levels were significantly 
elevated compared to controls, while XCL-1 levels remained significantly decreased. Among those with significantly 
different levels in both absolute and normalized levels, only absolute CCL-19 levels showed a significant correlation 
with CSF nucleated cells, neutrophils, and lymphocytes. IL-1β and CXCL-10 also were correlated with total cell count, 
nucleated cells, red blood cells, and neutrophils.

Conclusions: Neuroinflammation is likely to be an important process in the pathophysiology of PHH. To our knowl-
edge, this is the first study to investigate CSF levels of chemokines in PHH as well as the only one to show XCL-1 
selectively decreased in a diseased state. Additionally, CCL-19 was the only analyte studied that showed significant 
differences between groups and had significant correlation with cell count analysis. The selectivity of CCL-19 and XCL-1 
should be further investigated. Future studies will further delineate the role of these cytokines and chemokines in PHH.
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Background
Post-hemorrhagic hydrocephalus (PHH) develops 
in up to 25% of preterm infants with intraventricu-
lar hemorrhage (IVH) and is a leading cause of infant 

hydrocephalus in North America [1, 2]. While the asso-
ciation between IVH and PHH is well established [3], the 
pathophysiological mechanisms linking these two condi-
tions remain unclear. Data from experimental studies and 
limited clinical series have implicated neuroinflammation 
in the pathogenesis of PHH [4–7]. IVH-related blood or 
blood breakdown products may trigger inflammatory 
fibrosis or arachnoiditis with gliosis that may contribute 
to an imbalance in cerebrospinal fluid (CSF) production, 
absorption, or transit [4, 8].
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A number of reports have detailed changes in the CSF 
levels of IL-1β, IL-6, IL-8, TNF-α, IFN-γ, TGF-β1, and 
TGF-β2 in the setting of experimental or human PHH [1, 
9–13]. Indeed, there is experimental evidence that inhi-
bition of TGF-β or lysophosphatidic acid may prevent 
the development of PHH [9, 14]. To date, human stud-
ies into the neuroinflammatory basis of PHH have largely 
targeted select proteins and, to our knowledge, have not 
considered the role of chemokines. Informed by our pre-
vious work in CSF proteomics [15], we decided to take a 
broad approach to survey neuro-inflammatory processes 
at play in the CSF of human infants with PHH. Commer-
cially available multiplex assays offer the advantage of 
simultaneously measuring proteins from multiple path-
ways involved in inflammatory modulation while using 
very little CSF volume. In the current study, we used mul-
tiplex analyses investigate the CSF levels of key inflam-
matory cytokines (IL-1α, IL-1β, IL-4, IL-6, IL-8, IL-10, 
IL-12, TNF-α, TGF-β1, IFN-γ) and chemokines (XCL-1, 
CCL-2, CCL-3, CCL-19, CXCL-10, CXCL-11, CXCL-12) 
in the setting of human infant PHH.

These and related proteins have been evaluated in vari-
ous clinical contexts previously and have been reviewed in 
detail by Turner et  al. 2014 [16]. IL-1α, IL-1β, IL-6, IL-8, 
TNF-α, and IFN-γ, among other functions, provide pro-
inflammatory signaling for bone marrow cell proliferation, 
IgG production, chemotaxis, phagocyte cell activation, and 
anti-viral, macrophage activation. IL-10 and IL-12 are anti-
inflammatory signaling molecules and inhibit cytokine pro-
duction and activate natural killer cells. TGF-β1 has been 
shown to inhibit T and B cell proliferation. Chemokines 
also function in inflammatory and immunological 
responses. XCL-1 provides chemotactic activity specific for 
lymphocytes while contributing to regulatory T cell devel-
opment. CCL-2, CCL-3, and CCL-19 among other func-
tions serve to recruit monocytes to inflammation sites and 
regulate proliferation of progenitor cells. CXCL-10, -11, 
and -12 are chemotactic for monocytes and T-lymphocytes 
and with the exception of CXCL-11, have been upregulated 
in post-traumatic brain injury studies [16–23].

As these studies suggest, neuroinflammation is likely to 
be an important process in the pathophysiology of PHH 
and its associated neurological injury. In the current study, 
we used multiplex analyses to broadly investigate proteins 
involved in inflammatory modulation and their relation-
ship to CSF cell counts. Based on the results presented 
herein, future studies will delineate the role of specific 
cytokines and chemokines in the pathophysiology of PHH.

Methods
Research subjects
Washington University Human Research Protection 
Office (WU-HRPO) approval was obtained prior to 

beginning this study (WU-HRPO #201101887). Research 
subjects comprised two study groups: control and PHH. 
Control CSF samples were acquired from 31 infants 
born  ≤  35  weeks post-menstrual age (PMA) without 
known neurological injury via lumbar puncture (LP) 
performed as part of routine sepsis/meningitis evalua-
tion. Final microbiological cultures were verified as ster-
ile in all controls. PHH CSF samples were acquired from 
infants born ≤  30  weeks PMA with PHH as described 
previously via clinically-indicated LP [24]. Prior to LP, 
all PHH subjects demonstrated progressive increase in 
occipital-frontal circumference, full fontanel, splaying of 
the sagittal suture ≥  2  mm [25] and a frontal-occipital 
horn ratio (FOR) ≥  0.55 [26]. Thirteen of the 14 PHH 
infants included in this report required ventriculo-
peritoneal (VP) shunts between 34 and 59  weeks PMA 
(Table 1).

Cerebrospinal fluid processing
CSF samples were acquired via LP under sterile condi-
tions for clinical purposes and transferred to the St. Louis 
Children’s Hospital clinical laboratory. The clinical labo-
ratory performed cell counts of the PHH CSF including 
total cell count, nucleated cells, and red blood cells (all 
measured as cells/µL). They also performed a differen-
tial analysis including neutrophils, lymphocytes, and 
monocytes (measured as percentages). The laboratory 
then stored the samples at – 80 °C. At the time of experi-
mental analysis, samples were thawed and centrifuged at 
2500 rpm for 6 min. The supernatant was aliquoted and 
used for biomarker assays.

Total protein measurements
The Pierce Bicinchoninic Acid protein assay kit (Thermo 
Scientific; Waltham, Massachusetts) was used to estimate 
total protein (TP) concentration in each CSF sample. 
Serum albumin standards as well as CSF samples were 
placed in microplate wells in duplicate. After addition 
of the working reagent, the plate was incubated at 37 °C 
for 30 min. The plate was then cooled to room tempera-
ture and absorbance at 562 nm was measured on a plate 
reader. Total protein concentrations were determined 
with a 4-parameter logistic standard curve.

Chemokine and cytokine analysis
Enzyme-linked Immunosorbent Assays (ELISAs) were 
used to measure concentrations of TGF-β1 and the 
chemokine CXCL-12 in both control and PHH CSF 
samples (R&D systems, catalog # DY240 and DY350 
respectively, Minneapolis, MN). Sigma-Aldrich ELISA 
kits (Sigma, catalog #RAB0073 and RAB0515) were used 
for the measurement of CCL-3 and XCL-1 concentra-
tions. All ELISA samples were run in duplicate and the 
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absorbance at 450 nm was measured on a Versamax plate 
reader (Molecular Devices, Sunnyvale, CA). Chemokine 
and cytokine concentrations were determined using a 
4 parameter logistic standard curve. Aushon (Billerica, 
MA) human cytokine array #2 and human chemokine 
array #2 multiplexes were used to measure concentra-
tions of IL-1α, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12, TNF-
α, IFN-γ, CCL-2, CCL-19, CXCL-10, and CXCL-11. 
Prefabricated assays for these analytes were run accord-
ing to the manufacturer’s instructions. Multiplex samples 
were also run in duplicate and analyzed on the Aushon 
 Ciraplex® Assays system.

Due to differences in TP between samples, we normal-
ized analyte measurements by dividing absolute levels 
by their corresponding TP. Where specified, statistical 
comparisons were conducted using these normalized 
measurements.

Statistical analysis
CSF analyte levels were reported as mean  ±  standard 
deviation (SD), and mean difference between groups with 
a 95% confidence interval. Comparisons between con-
trol and PHH groups were conducted using two-tailed 
independent samples t tests assuming unequal variances 
in Prism 5.0 (GraphPad Software, La Jolla, CA). Linear 
regressions between CSF cell count parameters and abso-
lute levels of PHH CSF cytokines and chemokines were 
performed using Spearman correlation coefficients in 

SAS 9.3 (SAS Institute, Cary NC). A predetermined sig-
nificance level of 0.05 was used for all statistical tests.

Results
Subject characteristics
Fourteen preterm infants with PHH (Table  1) were 
included in this study. Ventricular reservoirs (RES) were 
placed in all infants except one, where the family opted 
for withdrawal of care. Of the 13 remaining subjects, all 
except one required a VP shunt. The subject not requir-
ing a VP shunt developed a S. capitis infection 12 weeks 
after RES implantation (after weeks of sterile cultures) 
and underwent device removal and replacement with 
an external ventricular drain, which was later weaned 
and removed. Subject 10 had endoscopic third ventricu-
lostomy with choroid plexus cauterization prior to VP 
shunt placement. Subject 1 underwent VP shunt revision 
within 6  months of VP shunt implantation. The control 
group presented with a broad array of clinical reasons for 
LP, but the primary reason was for sepsis diagnosis. For 
both groups, the CSF sampled cultures were monitored 
for 3.68 ± 0.13 days and remained negative.

Seven out of the 31 control subjects were female, while 
5 out of the 15 PHH subjects were female. The mean 
birth PMA for the PHH group was 25.75 ±  2.19  weeks 
and for the control group was 30.12  ±  3.23  weeks 
(p < 0.0001). The CSF sample PMA was also significantly 
different between the groups (31.86 ±  2.83 for control, 

Table 1 Characteristics of study subjects with post-hemorrhagic hydrocephalus

PMA post-menstrual age, TP total protein, CSF cerebrospinal fluid, VP ventriculo-peritoneal, RES ventricular reservoir, NA not available
a Subject 9 expired after withdrawal of care by family
b Subject 11 developed a S. capitis RES infection 12 weeks after RES implantation and device tapping for cerebrospinal fluid removal (CSF). CSF samples prior to the 
12-week sample were sterile on culture. After infection, the RES was removed and replaced with an external ventricular drain, which was later successfully weaned, 
and no shunt was implanted. Subject 10 underwent endoscopic third ventriculostomy with choroid plexus cauterization prior to VP shunt placement. Subject 1 had a 
shunt malfunction within 6 months of VP shunt implantation

Subject
ID

Sex PMA at birth 
(weeks)

TP (μg/ml) PMA at CSF sample 
(weeks)

Temporizing neuro-
surgical procedure

PMA at temporizing 
procedure (weeks)

VP shunt surgery 
PMA (weeks)

1 M 24.00 2369 26.86 RES 27.00 37.57

2 F 29.57 1745 30.29 RES 31.29 36.57

3 F 24.00 6072 26.86 RES 27.86 34.71

4 M 29.00 4564 31.14 RES 31.57 40.86

5 M 26.00 9596 27.43 RES 28.14 38.14

6 M 28.14 2606 28.71 RES 30.14 37.14

7 F 24.57 1270 28.00 RES 30.57 39.29

8 M 24.71 1869 30.57 RES 34.14 59.29

9 M 25.43 1420 27.57 NAa NA NA

10 M 25.43 2620 28.71 RES 31.00 53.57

11 M 25.86 1902 27.71 RES 28.14 NAb

12 M 25.29 3735 27.71 RES 28.00 40.00

13 F 29.57 2331 30.00 RES 31.29 36.57

14 F 24.00 4300 26.43 RES 27.00 37.57
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28.88 ± 2.97 for PHH; p = 0.003). Ventricular size meas-
urements were only available for 7 out of the 31 con-
trol subjects due to a lack of cranial images. Of the 7, 3 
of them had ventricular sizes too small to be accurately 
measured and the other 4 had an FOR of 0.40 ±  0.05. 
PHH subjects demonstrated much higher FOR measure-
ments (0.62 ± 0.07) for imaging performed within 24 h of 
CSF sample collection (p < 0.0001).

Cerebrospinal fluid total protein, cytokines 
and chemokines
CSF TP, cytokine, and chemokine concentrations were 
measured and compared between control and PHH 
subjects (Fig.  1a; Tables  2, 3). TP was significantly ele-
vated in PHH versus control (3285  ±  2266  µg/ml vs 
1540 ± 985.6 µg/ml, respectively, p = 0.0008). CSF lev-
els of IL-1α, IL-4, IL-6, IL-12, TNF-α, CCL-3, CCL-19, 
and CXCL-10 were significantly elevated in PHH versus 
control while IL-1β, IL-8, IL-10, TGFβ1, IFN-γ, CCL-2, 
CXCL-11, and CXCL-12 were not (Tables 2 and 3). After 
normalizing by total protein, IL-1α, IL-1β, IL-10, IL-12, 
CCL-3, and CCL-19 were significantly elevated com-
pared with control, while IL-4, IL-6, IL-8, TNF-α, TGFβ1, 
IFN-γ, CCL-2, CXCL-10, CXCL-11, and CXCL-12 

were not significantly different (Tables  2 and 3). XCL-1 
was the only analyte that was significantly decreased in 
PHH, even when normalized by TP (Table 3). The most 
robust candidate neuroinflammatory CSF biomark-
ers—those that retained statistical significance irre-
spective of normalization by TP levels—included IL-1α 
(increased), IL-12 (increased), CCL-3 (increased), CCL-
19 (increased), and XCL-1 (decreased) (Fig. 1b–d).

Cerebrospinal fluid cytokines and chemokines correlation 
with cell counts
Total cell count measurements for PHH CSF were 
72964.86  ±  114192 cells/µL, nucleated cells were 
4057.2  ±  13319 cells/µL, and red blood cells were 
68907.64 ±  103612 cells/µL. Neutrophils, lymphocytes, 
and monocytes within the 14 PHH CSF samples were 
48.15 ± 33.60, 19.54 ± 21.96, and 21.79 ± 17.32%, respec-
tively. The individual data points for these cell counts 
were analyzed for a correlation with absolute cytokine 
and chemokine levels within PHH CSF (Tables  4 and 
5). IL-1α correlated with neutrophils with a Spearman 
r value of 0.73 and a p value of 0.0246. IL-1β correlated 
with total cell count (r: 0.64; p = 0.0479), red blood cells 
(r: 0.64; p =  0.0479), neutrophils (r: 0.88; p =  0.0016), 

Fig. 1 Lumbar cerebrospinal fluid levels of total protein (a), XCL-1 (b), CCL-3 (c), and CCL-19 (d) in human preterm infants without (control) or with 
post-hemorrhagic hydrocephalus. Boxes represent the median with 25th and 75th percentiles and the whiskers show interquartile range multiplied 
by 1. Levels of Total protein, CCL-3 and CCL-19 were significantly increased in PHH. The levels of XCL-1 were decreased in PHH subjects. *Denotes 
significance at p ≤ 0.05. CTRL control, PHH post-hemorrhagic hydrocephalus
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and lymphocytes (r: − 0.75; p = 0.0199). IL-6 and IL-10 
were significantly correlated with neutrophils (r: 0.67; 
p = 0.0499 and r: 0.78; p = 0.0075 respectively). TGF-β1 

was significantly correlated with nucleated cells (r: 0.83; 
p  =  0.0102). CCL-19 showed significant and strong 
correlation with nucleated cells (r: 0.71; p  =  0.0465), 

Table 2 Comparison of cerebrospinal fluid absolute and normalized concentrations of common cytokines in control 
and post-hemorrhagic hydrocephalus subjects

SD standard deviation, PHH: post-hemorrhagic hydrocephalus

Control mean (SD) PHH mean (SD) Mean difference 95% confidence interval p value

Total protein (μg/ml) 1540 (985.6) 3285 (2265.9) 1745.0 2714–775.3 0.0008

IL-1α (pg/ml) 2.385 (3.758) 13.51 (11.03) 11.13 17.67–4.577 0.0019

Normalized IL-1α 1.58E−7 (2.72E−7) 4.89E−7 (4.56E−7) 3.31E−7 6.40E−7 to 2.31E−8 0.0363

IL-1β (pg/ml) 4.600 (15.05) 79.89 (146.3) 75.29 156.2 to − 5.664 n.s.

Normalized IL-1β 1.27E−7 (2.93E−7) 1.90E−6 (2.2E−6) 1.78E−6 3.02E−6 to 5.31E−7 0.0072

IL-4 (pg/ml) 0.266 (0.4465) 1.010 (0.5653) 0.7444 − 1.173 to − 0.3164 0.0016

Normalized IL-4 1.64E−9 (2.53E−9) 4.20E-9 (3.55E−9) 2.56E−9 5.13E−9 to − 1.11E−11 n.s.

IL-6 (pg/ml) 268.2 (667.8) 981.3 (932.6) 713.1 1389–37.32 0.0395

Normalized IL-6 1.8E−5 (5.6E−5) 4.27E−5 (5.82E−5) 2.49E−5 7.38E−5 to − 2.40E−5 n.s.

IL-8 (pg/ml) 522.5 (528) 1958 (3158) 1436 3205 to − 333.3 n.s.

Normalized IL-8 4.4E−5 (5.3E−5) 1.04E−4 (1.95E−4) 6.0E−5 1.9E−4 to − 6.7E−5 n.s.

IL-10 (pg/ml) 5.154 (14.59) 128 (274.8) 122.8 274.1 to − 28.38 n.s.

Normalized IL-10 1.81E−7 (3.13E−7) 2.53E−6 (3.75E−6) 2.35E−6 4.42E−6 to 2.84E−7 0.0277

IL-12 (pg/ml) 1.763 (2.446) 11.58 (9.234) 9.819 15.14 to 4.497 0.0009

Normalized IL-12 1.3E−7 (2.2E−7) 3.75E−7 (3.12E−7) 2.45E−7 4.70E−7 to 2.043E−8 0.0339

TNF-α (pg/ml) 2.147 (3.337) 9.71 (7.384) 7.566 12.18–2.951 0.0026

Normalized TNF-α 1.61E−7 (3.0E−7) 3.42E−7 (2.97E−7) 1.81E−7 4.38E−7 to − 7.55E−8 n.s.

TGF-β1 (ng/ml) 0.4504 (0.8607) 1.161 (2.270) 0.7103 2.278 to − 0.857 n.s.

Normalized TGF-β1 1.9E−5 (2.0E−5) 2.4E−5 (2.1E−5) 4.55E−6 2.02E−5 to − 1.5E−5 n.s.

IFN-γ (pg/ml) 0.6463 (1.552) 1.191 (1.357) 0.5446 1.812 to − 0.7226 n.s.

Normalized IFN-γ 2.93E−8 (5.65E−8) 3.42E−8 (2.35E−8) 4.91E−9 4.44E−8 to − 3.45E−8 n.s.

Table 3 Comparison of cerebrospinal fluid absolute and normalized concentrations of common chemokines in control 
and post-hemorrhagic hydrocephalus subjects

SD standard deviation, PHH post-hemorrhagic hydrocephalus

Control
mean (SD)

PHH
mean (SD)

Mean difference 95% confidence interval p value

XCL-1 (ng/ml) 0.6680 (0.0833) 0.5528 (0.1121) − 0.1152 − 0.0224 to − 0.2079 0.0176

Normalized XCL-1 5.4E−5 (1.6E−5) 2.19E−5 (1.1E−5) − 3.3E−5 − 1.76E−5 to − 4.8E−5 0.0002

CCL-2 (pg/ml) 9436 (5117) 9535 (5089) 99.45 − 4622 to 4821 n.s.

Normalized CCL-2 7.79E−4 (5.76E−4) 4.16E−4 (4.08E−4) − 3.62E−4 − 8.47E−4 to 1.21E−4 n.s.

CCL-3 (pg/ml) 16.50 (11.02) 360.0 (327.7) 343.5 537.9–149.1 0.0018

Normalized CCL-3 0.015 (0.0092) 1.2E−5 (9.9E−6) − 0.0146 − 0.00658 to − 0.0227 0.0014

CCL-19 (pg/ml) 28.46 (45.15) 410.8 (377.9) 382.4 591.8–173.0 0.0011

Normalized CCL-19 1.73E−6 (2.14E−6) 1.41E−5(2.1E−5) 1.23E−5 2.36E−5 to 9.96E−7 0.0345

CXCL-10 (pg/ml) 809.6 (776.6) 1480 (742.6) 670 1325–15.09 0.0454

Normalized CXCL-10 5.9E−5 (5.8E−5) 5.72E−5 (4.42E−5) − 2.14E−6 4.32E-5 to − 4.75E-5 n.s.

CXCL-11 (pg/ml) 5.162 (10.68) 5.15 (4.58) − 8.7E−3 7.869 to − 7.886 n.s.

Normalized CXCL-11 4.08E−7 (1.01E−6) 1.38E−7 (8.01E−8) − 2.71E−7 4.39E−7 to − 9.80E−7 n.s.

CXCL-12 (ng/ml) 0.5187 (0.5528) 0.9930 (1.0002) 0.4743 1.052 to − 0.1033 n.s.

Normalized CXCL-12 4.5E−5 (5.3E−5) 1.4E−5 (9.6E−6) − 3.01E−5 2.01E-5 to − 7.5E−5 n.s.
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neutrophils (r: 0.78; p  =  0.0208), and lymphocytes (r: 
−  0.74; p  =  0.0366). CXCL-10 was significantly cor-
related with total cell counts (r: 0.63; p =  0.0498), red 
blood cells (r: 0.63; p  =  0.0498), neutrophils (r: 0.88; 
p  =  0.0018), and lymphocytes (r: 0.78; p  =  0.0125). 
CXCL-11 showed correlation with neutrophils (r: 0.67; 
p  =  0.0499), while CXCL-12 showed correlation with 
lymphocytes (r: −  0.73; p =  0.0396) and monocytes (r: 
− 0.80; p = 0.0165). XCL-1 and CCL-3 levels did not cor-
relate significantly with any cell counts.

Discussion
This study aimed to advance the current understanding 
of neuroinflammation in PHH by measuring key inflam-
matory cytokines and chemokines in the CSF. Among 17 
CSF biomarkers, 8 were significantly increased (IL-1α, 
IL-4, IL-6, IL-12, TNF-α, CCL-3, CCL-19, and CXCL-10) 

and one was significantly decreased (XCL-1) in PHH. Of 
note, CSF in the clinical setting of PHH contains high 
levels of protein related to the IVH itself (e.g. albumin); 
in order to account for any potential effect of CSF pro-
tein on CSF biomarker levels, we also report the level 
of each cytokine and chemokine after normalization by 
total CSF protein (TP). When normalized by TP, IL-1α, 
IL-1β, IL-10, IL-12, CCL-3, CCL-19 were elevated, while 
XCL-1 remained decreased. The most robust candidate 
CSF biomarkers were significantly altered in PHH irre-
spective of normalization by TP, which included IL-1α, 
IL-12, CCL-3, and CCL-19 as increased, and XCL1 as 
decreased. Of those 5, only absolute levels of CCL-19 
correlated with CSF nucleated cells, neutrophils, and 
lymphocytes, strongly implicating this chemokine in 
the neuroinflammatory processes of PHH pathophysi-
ology. Neuroinflammatory profile specificity may have 

Table 4 Post-hemorrhagic hydrocephalus cerebrospinal fluid absolute cytokine Spearman correlations with cell counts

r Spearman correlation coefficient

IL-1α
r
p value

IL-1β
r
p value

IL-4
r
p value

IL-6
r
p value

IL-8
r
p value

IL-10
r
p value

IL-12
r
p value

TNF-α
r
p value

TGF-β1
r
p value

IFN-γ
r
p value

Total cell count 0.52727
n.s.

0.63636
0.0479

0.29697
n.s.

0.26061
n.s.

0.16387
n.s.

0.49091
n.s.

0.26061
n.s.

0.06667
n.s.

0.69048
n.s.

0.23636
n.s.

Nucleated cells 0.49091
n.s.

0.57576
n.s.

0.15152
n.s.

0.20000
n.s.

0.16387
n.s.

0.50303
n.s.

0.24848
n.s.

0.06667
n.s.

0.83333
0.0102

0.21212
n.s.

Red blood cells 0.52727
n.s.

0.63636
0.0479

0.29697
n.s.

0.26061
n.s.

0.16387
n.s.

0.49091
n.s.

0.26061
n.s.

0.06667
n.s.

0.69048
n.s.

0.23636
n.s.

Neutrophils 0.73333
0.0246

0.88333
0.0016

0.61667
n.s.

0.66667
0.0499

0.12780
n.s.

0.78333
0.0125

0.31667
n.s.

0.05000
n.s.

0.45238
n.s.

0.41667
n.s.

Lymphocytes − 0.61667
n.s.

− 0.75000
0.0199

− 0.28333
n.s.

− 0.16667
n.s.

− 0.20083
n.s.

− 0.56667
n.s.

− 0.30000
n.s.

− 0.13333
n.s.

− 0.38095
n.s.

− 0.26667
n.s.

Monocytes − 0.40122
n.s.

− 0.46201
n.s.

− 0.14590
n.s.

− 0.16413
n.s.

0.03424
n.s.

− 0.46201
n.s.

− 0.14590
n.s.

0.09726
n.s.

− 0.35714
n.s.

− 0.19453
n.s.

Table 5 Post-hemorrhagic hydrocephalus cerebrospinal fluid absolute chemokine Spearman correlations with cell 
counts

r Spearman correlation coefficient

XCL-1
r
p value

CCL-2
r
p value

CCL-3
r
p value

CCL-19
r
p value

CXCL-10
r
p value

CXCL-11
r
p value

CXCL-12
r
p value

Total cell count − 0.37143
n.s.

0.09524
n.s.

0.48571
n.s.

0.64286
n.s.

0.63222
0.0498

0.48333
n.s.

0.37126
n.s.

Nucleated cells − 0.20000
n.s.

0.30952
n.s.

0.08571
n.s.

0.71429
0.0465

0.58967
n.s.

0.63333
n.s.

0.46707
n.s.

Red blood cells − 0.37143
n.s.

0.09524
n.s.

0.48571
n.s.

0.64286
n.s.

0.63222
0.0498

0.48333
n.s.

0.37126
n.s.

Neutrophils − 0.25714
n.s.

0.21429
n.s.

0.70000
n.s.

0.78571
0.0208

0.87867
0.0018

0.66667
0.0499

0.70660
n.s.

Lymphocytes 0.31429
n.s.

− 0.09524
n.s.

− 0.54286
n.s.

− 0.73810
0.0366

− 0.78333
0.0125

− 0.58333
n.s.

− 0.73055
0.0396

Monocytes − 0.25714
n.s.

− 0.30952
n.s.

− 0.55078
n.s.

− 0.54762
n.s.

− 0.46951
n.s.

− 0.53333
n.s.

− 0.80241
0.0165
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important implications in the pathophysiology of PHH 
and could shape future pharmacological studies in treat-
ing PHH.

Neuroinflammation accompanying IVH and PHH 
is complex and hypothesized to be initiated by blood 
and its breakdown products in the ventricular system 
prompting ventriculitis, gliosis and arachnoiditis. Past 
studies demonstrate that infants with PHH and perive-
ntricular white matter injury have increased CSF con-
centrations of IL-1β, IL-6, IL-8, and TGF-β1 [10, 12, 13, 
27, 28]. Although increased levels of TGF-β1 have been 
implicated in white matter injury in the setting of IVH 
and PHH, Heep et al. [11] contrarily found no significant 
difference. A recent review by Szpecht et al. [29] on the 
role of cytokines in the pathogenesis of IVH suggested an 
association between IL-1β, IL-6, IL-8, and TNF-α with 
increased risk of PHH [12, 13, 30].

The current report demonstrates that CSF levels of the 
cytokines TNF-α, IL-1α, IL-4, IL-6, and IL-12 are signifi-
cantly increased in PHH. TNF-α and IL-1α findings are 
consistent with previous studies of their association with 
acute phase reactions and pro-inflammatory responses to 
pathogen or tissue injury [31, 32]. Astrocytes, microglia, 
and neurons typically produce basal levels of TNF-α and 
maintain homeostasis in normal central nervous system 
(CNS) physiology; however, just microglia and astrocytes 
are assumed to be responsible for elevated levels dur-
ing neuroinflammation [33–37]. IL-1α is constitutively 
secreted by many cell types, but its expression surges in 
response to pathogens or brain tissue injury [38]. IL-1α 
behaves as an upstream signal for multiple proinflam-
matory cytokines, chemokines, and prostaglandins [31]. 
Di Paolo et  al. demonstrated that IL-1α was the only 
cytokine to show absolute differences between the two 
groups with a significant Spearman correlation in the 
cell count analysis. IL-1α and TNF-α may be associated 
with acute phase reactions as well as pro-inflammatory 
states that occur in PHH pathophysiology. Increased 
levels of TNF-α and IL-6 are also consistent with Sav-
man et al. [12]. Mainly secreted by T-cells, macrophages, 
and endothelial cells, IL-6 also increases in PHH, which 
is consistent with previous studies which showed its 
involvement in neuronal and glial function as well as 
neuroinflammation pathways in the CNS [39, 40].

IL-4 is a regulatory cytokine that assumes a myriad of 
immune and non-immune functions. In extravascular 
tissues, it is involved in alternative activation of mac-
rophages into M2 cells (repair macrophages) and inhib-
its activation of M1 cells (inflammatory macrophages) 
resulting in decreased pathological inflammation [41]. 
It is plausible that increased CSF levels of IL-4 in PHH 
could be associated with decreased M1 macrophage 
activity to contain secondary injury from inflammatory 

cells. Zundler and Neurath [42] describe the main 
sources of IL-12 as macrophages, monocytes, dendritic 
cells, granulocytes and B cells; it induces production of 
IFN-γ to foster both innate and adaptive cell-mediated 
immune responses. Increased levels of IL-12 in PHH 
could be caused by microglial activation during neuroin-
flammation to enhance the innate immune response for 
phagocytosis of extravascular blood, blood-breakdown 
products, and cell debris resulting from IVH.

Normalization to TP significantly altered the results 
such that we found selective and significant increases 
in CSF IL-1α, IL-1β, IL-10, and IL-12 levels in PHH. 
Furthermore, absolute IL-1β levels significantly corre-
lated with total cell count, red blood cells, neutrophils, 
and lymphocytes. IL-1β is a potent pro-inflammatory 
cytokine that initiates and amplifies innate immunity 
and host responses to microbial and tissue injury [43]. A 
previous study by Savman et  al. [12] showed that IL-1β 
is significantly elevated in the CSF of premature infants 
with PHH. Innate responses from phagocytic immune 
cells, such as macrophages and neutrophils, may be asso-
ciated with increased IL-1β levels in PHH. We also found 
a significant correlation between IL-6 and IL-10 levels 
with neutrophil counts. IL-10 functions in the activation, 
inhibition, growth, and migration of hematopoietic cells. 
In the context of tissue injury, whether by infectious or 
sterile inflammation, IL-10 downregulates and termi-
nates inflammation [44]. Increased IL-10 levels may be 
associated with down-regulation of neuroinflammation 
in the setting of IVH or PHH. Contrary to past studies, 
we did not observe increased TGF-β1 levels in the CSF 
of PHH subjects [10, 11, 28]. This may have been due to 
differences between studies such as location of CSF (LP 
versus ventricular), methods and timing of CSF sample 
acquisition, or methods of detection. However, there was 
a significant correlation between absolute TGF-β1 levels 
and nucleated cells.

To our knowledge, this is the first study investigat-
ing CSF chemokine levels in PHH. CSF levels of seven 
chemokines (XCL-1, CCL-2, CCL-3, CCL-19, CXCL-10, 
CXCL-11, and CXCL-12) were measured and compared 
between PHH and control groups. Absolute levels of 
CCL-3, CCL-19, and CXCL-10 were significantly ele-
vated in the CSF of PHH subjects; CCL-3 and CCL-19 
levels remained elevated after normalization with TP. 
CCL-3, also known as Macrophage Inflammatory Pro-
tein 1-α, is primarily secreted by astrocytes, microglia, 
endothelial cells, and neurons [45–49] and has been 
found to be upregulated in the CSF of patients after 
traumatic brain injury [50–53]. CCL-3 is believed to be 
a potent chemo-attractant of polymorphonuclear leu-
kocytes (PMNLs; neutrophils) in humans and mice [54] 
and induces peroxide production in PMNLs [55, 56]. In 
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IVH and PHH, reactive oxygen species produced by acti-
vated PMNLs may cause local tissue injury, ventriculitis, 
ependymal layer scarring, and denudation. Chui et  al. 
[48] reported that CCL-3 is a critical early inflammatory 
chemokine that is greatly upregulated in active Schwann 
cells and infiltrating macrophages in areas of brain tissue 
injury. In our CSF samples, CCL-3 is several-fold higher 
in PHH than controls, thus suggesting that it may have an 
important role in neuroinflammation.

CCL-19 and CXCL-10 correlated with cell counts, 
either total, nucleated cells, red blood cells, neutrophils, 
and lymphocytes. CCL-19, is also known as Macrophage 
Inflammatory Protein-3β, is involved in immune surveil-
lance of the CNS by lymphocytes. Its ectopic expres-
sion may also trigger activation and/or recruitment of 
infiltrating leukocytes in response to specific offending 
stimuli [57]. Since CCL-19 is primarily expressed in cer-
ebrovascular endothelium and choroid plexus [57–61], 
it is readily available to potentially promote neuroin-
flammation in IVH and PHH. Absolute concentration of 
CXCL-10 was significantly increased in PHH but there 
was no difference after normalization by CSF TP. We also 
found correlations between CXCL10 and total cell count, 
red blood cells, neutrophils, and lymphocytes, suggest-
ing a possible role in PHH neuroinflammation. CXCL-10 
has been reported to be upregulated in post-traumatic 
brain injury in some studies, but others found absent 
mRNA expression of CXCL-10 after head injury [21, 50, 
62, 63]. Interestingly, both absolute and normalized levels 
of XCL-1 were decreased in PHH, but absolute levels did 
not correlate significantly with any cell counts. XCL-1, 
also known as Lymphotactin, is a chemokine of the –C– 
class that is expressed by T Cells (Natural Killer Cells, 
Natural Killer T Cells) in response to pathogenic or inju-
rious stimuli [64]. It is expressed in various infectious and 
autoimmune diseases, suggesting its predominant role in 
protective and pathological immune responses [65].

There are a number of limitations in this study. Small 
sample sizes and inherent clinical heterogeneity were 
present within both our control and PHH groups. 
Indeed, non-neurological challenges or conditions could 
affect CSF levels of neuro-inflammatory markers in both 
groups. Further, there were also differences between 
groups in terms of birth and sample PMA (4 and 3 weeks, 
respectively), raising the possibility of age-dependent var-
iability in CSF flow rate and maturity of arachnoid villi, 
though in theory, the effect of arachnoid villi maturity 
would be expected to be minor, since their development 
is limited until term equivalent age [66–68]. In the PHH 
group, heterogeneity was inevitably compounded by the 
complex and dynamic neuro-inflammatory response to 
IVH and the timing of acquisition of CSF samples, par-
ticularly since small molecules, such as those measured 

in this study, may be metabolized or undergo reuptake 
into cells in the interstitial fluids and along the CSF path-
ways. Any combination of these factors could impact 
cytokine and chemokine levels to such a degree that 
changes in levels can occur simultaneous with, prior to, 
or after CSF sampling. Finally, the data for CSF cell types 
and cell counts reported here were all taken from clini-
cal laboratory reports. Thus, we were reliant on existing 
institutional clinical laboratory methods and were unable 
to measure or subtype many cell types (e.g. Th2 cells, 
CD8 cells) that could provide insight into the immune 
response itself (protein elaboration, cellular recruitment). 
These analyses and additional validation studies must be 
conducted through multi-institutional collaboration and 
experimental models.

Conclusion
In summary, the neuroinflammatory processes associ-
ated with PHH pathophysiology are complex and remain 
incompletely understood. In our current study, we meas-
ured the levels of CSF cytokines and chemokines in PHH 
relative to control. CSF levels of IL-1α, IL-4, IL-6, IL-12, 
TNF-α, CCL-3, CCL-19, CXCL-10, and TP were sig-
nificantly increased in PHH, whereas XCL-1 was signifi-
cantly decreased. However, only the cytokines IL-1α and 
IL-12, and the chemokines CCL-3, CCL-19, and XCL-1 
retained their statistical significance for PHH when nor-
malized to CSF TP levels. Furthermore, CCL-19 was 
the only analyte studied that also had a significant cor-
relation with CSF cell counts. To our knowledge, this is 
the first study to investigate CSF levels of chemokines in 
PHH as well as the only one to show that XCL-1 selec-
tively decreased in a diseased state, whether absolute or 
normalized levels are considered. The selectivity of CCL-
19 and XCL-1 should be further investigated. These find-
ings provide novel insights into the neuro-inflammatory 
processes at play in IVH and PHH, and may help inform 
future studies of pharmacological treatments for PHH.
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