Oral presentation

High pressure hydrocephalus in neonates is associated with increased CSF concentrations of interleukin-18 and interferon gamma

Axel Heep¹, Ursula Felderhoff-Mueser², Thomas Schmitz², Arie Bos³, Eelco Hoving⁴, Carlo Schaller⁶ and Deborah Sival^{*3,5}

Address: ¹Dept of Neonatology, University of Bonn, Sigmund Freud Strasse 25, D-53105 Bonn, Germany, ²Dept of Neonatology, Charité, Campus Virchow, Klinikum Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany, ³Dept of Pediatrics, University Medical Center, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands, ⁴Dept of Neurosurgery, University Medical Center, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands, ⁵Dept of Pediatric Neurology, University Medical Center, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands and ⁶Dept of Neurosurgery, University of Bonn, Sigmund Freud Strasse 25, D-53105 Bonn, Germany

Email: Deborah Sival* - d.a.sival@bkk.umcg.nl

* Corresponding author

from 51st Annual Meeting of the Society for Research into Hydrocephalus and Spina Bifida Heidelberg, Germany. 27–30 June 2007

Published: 20 December 2007

Cerebrospinal Fluid Research 2007, 4(Suppl 1):S48 doi:10.1186/1743-8454-4-S1-S48

This abstract is available from: http://www.cerebrospinalfluidresearch.com/content/4/S1/S48

© 2007 Heep et al; licensee BioMed Central Ltd.

Background

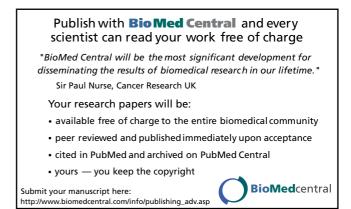
High pressure hydrocephalus (HC) is associated with micro-glial activation and subsequent white matter damage. In addition to high pressure and ischemia, chronic inflammation may be pathophysiologically involved. In a rat model for HC (HTx rat, based on aqueduct stenosis), anti-inflammatory treatment reduces micro-glial scarring (Miller, 2006 CSFR). In human HC, immuno-regulatory processes involved in white matter damage are still largely undefined. Under various pathological conditions, increased CSF interleukin-18 (IL-18; expressed in micro-glial cells) and interferon gamma (IFNg; expressed in natural killer cells affecting oligodendrocytes) concentrations relate with white matter damage. We hypothesize that CSF IL-18 and IFNg concentrations are increased in neonatal high pressure HC, irrespective of underlying etiology.

Materials and methods

In 45 neonates with congenital high pressure HC (n = 30) CSF IL-18 and IFNg concentrations were determined (ELISA). HC neonates were grouped according to aetiology. Group 1: HC in spina bifida aperta (n = 20), group 2: triventricular non-hemorrhagic HC (n = 4), group 3: post

hemorrhagic HC after fetal intracerebral hemorrhage (n = 6). Low risk neonates who underwent lumbar puncture for exclusion of meningitis (and appeared negative) served as controls (n = 15).

Results


In the three groups of HC neonates, IL-18 concentrations were significantly higher than in controls [medians and range; controls: 12.5 (12.5–158) pg/ml; group 1: 80 (23–232) pg/ml; group 2: 66 (55–226) pg/ml; group 3: 223 (103–406) pg/ml (each group vs. controls, p < 0.01; group 3 vs. group 1, p < 0.01)]. Similarly, IFNg concentrations were significantly higher in CSF of the 3 HC groups [controls: 8 (8–22) pg/mL; group 1: 35 (12–139) pg/ml; group 2: 22 (15–28) pg/mL; group 3: 22 (17–56) pg/mL (each group vs. controls, p < 0.01; between the groups, NS.

Conclusion

Irrespective of underlying aetiology, neonatal high pressure HC is associated with increased CSF IL-18 and IFNg concentrations. The increased CSF concentrations reflect their pathophysiological involvement in inflammatory

Open Access

white matter damage. We hypothesize that early antiinflammatory treatment could ameliorate cerebral white matter damage in human neonatal HC.

