Open Access

Oral presentation

Brain amyloid accumulation in senescent rats with kaolin-induced hydrocephalus PM Klinge*, T Brinker, A Samii and GD Silverberg

Address: International Neuroscience Institute Hannover, Alexis-Carrel-Str. 4, 30625 Hannover, Germany

Email: PM Klinge* - klinge@ini-hannover.de

* Corresponding author

from 49th Annual Meeting of the Society for Research into Hydrocephalus and Spina Bifida Barcelona, Spain, 29 June – 2 July 2005

Published: 30 December 2005

Cerebrospinal Fluid Research 2005, 2(Suppl 1):S32 doi:10.1186/1743-8454-2-S1-S32

Background

NPH patients have a high rate of Alzheimer's disease (AD) on cortical biopsy. 30-50% of shunted NPH patients show amyloid (A β)plaques and neurofibrillary tangles. It is postulated that A β accumulates in AD and NPH due to decreased A β clearance via CSF and blood-brain barrier (BBB). The present study investigates A β accumulation and A β transport in aged hydrocephalic rat brains.

Materials and methods

Kaolin-hydrocephalus was induced in senescent (12 months) SD-rats. Untreated age- matched rats served as controls. A β accumulation was investigated by specific A β (1–40) and A β (1–42) antibody immunohistochemistry performed 2 weeks (short-term), 6 and 10 weeks (long-term) after hydrocephalus induction. Each group consisted of five animals. Also, specific BBB A β receptors were labelled: LRP-1, which transports A β from the interstitial fluid (ISF) into the plasma, and RAGE, which transports A β from the plasma into the ISF. Both receptors are located on the capillary endothelium.

Results

After 2 weeks of hydrocephalus, both A β 42 and A β 40 showed increased staining of the arachnoid and ependyma compared to controls. Cortical and hippocampal CA3 pyramidal neurons displayed A β 42 cytoplasmic staining in some animals. At 6 weeks, cortical and hippocampal endothelial and perivascular A β 42 and 40 accumulations were observed, most prominently with A β 42. Importantly, interstitial A β 42 and A β 40 accumulations were observed, and periventricular plaque-like formations were found in all animals. At 10 weeks, the observed plaque-like formations were increased, whereas cortical perivascular accumulations varied and were either increased or identical to the 6 weeks animals. LRP-receptor staining was decreased in cortical and subcortical vessels at two weeks. However, the decrease was most prominent after 6 weeks. After 10 weeks, LRP-1 receptor staining was restricted to large dilated capillary vessels. RAGE receptor staining showed diametrically opposite changes to those seen for the LRP-1 receptor.

Conclusion

In a rat model of chronic hydrocephalus, perivascular, interstitial and periventricular accumulations of A β 42 and 40, both of which play a major role in AD-plaque formation, are observed, with A β staining increasing the longer hydrocephalus exists. BBB receptor staining indicates impaired A β clearance from the ISF into the plasma. These preliminary studies indicate that A β accumulation in hydrocephalus is, in part, due to a failure of brain amyloid clearance as it is in AD. Reduced CSF turnover seen in AD, NPH and rat kaolin-hydrocephalus, and reduced A β net transport at the BBB appear to be involved. Perivascular A β accumulation, known to be a potent vasoconstrictor, may also play a role in the white-matter ischaemia seen in both human NPH and in rat chronic hydrocephalus.