Skip to main content
Fig. 1 | Fluids and Barriers of the CNS

Fig. 1

From: Arterial vasodilation drives convective fluid flow in the brain: a poroelastic model

Fig. 1

Schematic showing the working of a poroelastic model of the PVS, SAS and the brain tissue. a. Flowchart showing the full range of physics at play between the PVS, SAS, brain tissue, and the ECS that can be simulated by a poroelastic model. The field in green represents the physics that traditional fluid dynamic models capture (cf. [4]. The field light purple (which contains the field in green) represents the physics captured by traditional fluid–structure interaction models (cf. [61]). The model presented in this paper extends the physics captured within the light purple field to also include the physics represented by the arrows outside said field. b. The advantages of using a poroelastic model over a traditional fluid–structure interaction model. In our previous fluid–structure interaction model we only simulated the fluid phase in the PVS and the SAS (shown by black dots). By contrast, with a poroelastic model we can also simulate the elasticity of the connective tissue and, more importantly, the fluid flow and transport through the ECS. These differences mean that a poroelastic model can simulate fluid exchange between the brain parenchyma and other fluid spaces along with the force exchange that can be simulated by a fluid–structure interaction model

Back to article page