Skip to main content
Fig. 3 | Fluids and Barriers of the CNS

Fig. 3

From: Changes in intrathoracic pressure, not arterial pulsations, exert the greatest effect on tracer influx in the spinal cord

Fig. 3

Multi-photon intravital imaging was used to image the movement of intracisternally injected microspheres. Fluorescent dextrans (fluorescein or tetramethylrhodamine) were injected intravascularly to visualise blood vessels. Time-series from positive pressure ventilated controls, spontaneous breathing and hypertensive animals (n = 1–3 animals per group) are shown. B–D Individual microspheres (blue) were manually tracked and observations noted. Tracked microspheres are labelled with green (+), white solid dots show the start of the track. The white broken arrows show the movement between frames 1 and 2, the yellow broken arrows show the movement between frames 2 and 3. Spontaneous respiration appeared to result in greater displacement of microspheres, likely a consequence of movement in the z axis, generating greater movement artefact compared with control animals. With hypertension the particles oscillated about stationary points with minimal net displacement along the length of the blood vessel (Additional file 3: Video S3, Additional file 4: Video S4, Additional file 5: Video S5, Additional file 6: Video S6)

Back to article page