Skip to main content
Fig. 2 | Fluids and Barriers of the CNS

Fig. 2

From: Modeling ischemic stroke in a triculture neurovascular unit on-a-chip

Fig. 2

NVUs on-chips are leak-tight for small molecule sodium fluorescein and allow study of compound-induced barrier disruption. a The OrganoTEER device is employed to assess transendothelial electrical resistance (TEER) in NVU on-a-chip cultures grown in the OrganoPlate 3-lane. b Timelapse TEER measurements of NVU on-a-chip cultures exposed to staurosporine (0.033 or 0.1 µM) or vehicle control for 24 h (day 14–15 of culture). Graph shows mean ± standard deviation in the form of a shaded error envelope, n = 5–8 chips. c After 24 h exposure to staurosporine or vehicle control, the cultures’ barrier integrity was assessed by addition of sodium fluorescein (0.45 nm) to the lumen of the cultures. Images were acquired every 2 min for a duration of 12 min. Figure shows representative images acquired at the start (t = 0 min) and end (t = 12 min) of the assay. d Quantification of apparent permeability (Papp) of sodium fluorescein in NVU on-a-chip cultures exposed to staurosporine or vehicle control and compared to an HBMEC-free (endothelial barrier-free) culture. Graph shows mean ± standard deviation, n = 3–8 chips. Statistical analysis was performed using one-way ANOVA; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001

Back to article page