Skip to main content
Fig. 1 | Fluids and Barriers of the CNS

Fig. 1

From: Fabrication of three-dimensional hydrogel scaffolds for modeling shunt failure by tissue obstruction in hydrocephalus

Fig. 1

Three-dimensional hydrogel scaffold to model shunt obstruction by brain parenchyma. Representations of short-chambered (a, c) and long-chambered (b, d) perfusion systems. a, b Illustrations of cross-sections through the x,z plane provide details of the relative positions of the alginate scaffolds (blue profiles) and catheters. c, d Photographs of chambers provide views looking down on completed chambers. Short-chambered systems were first used with placement of the alginate scaffold over the four distal ventricular catheter CSF intake holes (a, c). Long-chambered systems were designed to enable alginate scaffolds to be placed in a more proximal position permitting all of the intake holes to be exposed to the perfusion system “ventricular” space (b, d). In a subset of experiments, media was pumped into the chamber, flowing to the outside of the catheter and through the catheter holes, then flowing through the inside of the catheter and out of the chamber and catheter (see flow dependent attachment and growth subsection)

Back to article page