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Abstract
Background  Using in vivo neuroimaging techniques, growing evidence has demonstrated that the choroid 
plexus (CP) volume is enlarged in patients with several neurodegenerative diseases, including Alzheimer’s disease 
and Parkinson’s disease. However, although animal and postmortem findings suggest that CP abnormalities are 
likely important pathological mechanisms underlying amyotrophic lateral sclerosis (ALS), the third most common 
neurodegenerative disease, no available study has been conducted to thoroughly assess CP abnormalities and their 
clinical relevance in vivo in ALS patients to date. Thus, we aimed to determine whether in vivo CP enlargement may 
occur in ALS patients. We also aimed to identify the relationships of CP volume with clinical disabilities and blood-CSF 
barrier (BCSFB) permeability in ALS patients.

Methods  In this retrospective study, based on structural MRI data, CP volume was assessed using a Gaussian mixture 
model and underwent further manual correction in 155 ALS patients and 105 age- and sex-matched HCs from 
October 2021 to April 2023. The ALS Functional Rating Scale-Revised (ALSFRS-R) was used to assess clinical disability. 
The CSF/serum albumin quotient (Qalb) was used to assess BCSFB permeability. Moreover, all the ALS patients 
completed genetic testing, and according to genetic testing, the ALS patients were further divided into genetic ALS 
subgroup and sporadic ALS subgroup.

Results  We found that compared with HCs, ALS patients had a significantly higher CP volume (p < 0.001). Moreover, 
compared with HCs, CP volume was significantly increased in both ALS patients with and without known genetic 
mutations after family-wise error correction (p = 0.006 and p < 0.001, respectively), while there were no significant 
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Background
Amyotrophic lateral sclerosis (ALS) is a rare neurode-
generative disease with both clinical and hereditary het-
erogeneity [1]. The aetiology of ALS remains unknown; 
however, interactions between genetic and environmen-
tal factors are likely to underpin disease susceptibility [1]. 
ALS likely derives from cortical influences, and the onset 
of ALS seems to involve a multistep process with a long 
preclinical stage [2–5]. Nearly 5–10% of ALS patients 
carry genetic mutations, most commonly in chromosome 
9 open reading frame 72 (C9orf72), superoxide dismutase 
1 (SOD1), fused in sarcoma (FUS), and TAR DNA-bind-
ing protein 43 (TARDBP), which are responsible for dis-
tinct pathological phenotypes [6, 7].

The choroid plexus (CP) is an important epithe-
lial–endothelial vascular structure that resides in the 
ventricular system and is crucial for maintaining the 
microenvironment of the central nervous system (CNS) 
[8–10]. CP epithelia can generate cerebrospinal fluid 
(CSF), secrete crucial proteins, mediate neuroimmune 
interactions, and form a blood-CSF barrier (BCSFB) that 
prevents peripheral blood toxicants from entering the 
CNS [8–10]. Moreover, the CP is also important for the 
glymphatic system and may have direct and indirect roles 
in brain-wide waste clearance [11, 12].

Recently, using in vivo neuroimaging techniques, it 
has become increasingly apparent that the CP volume is 
enlarged in multiple neurodegenerative diseases, includ-
ing Alzheimer’s disease (AD), Parkinson’s disease (PD), 
frontotemporal dementia (FTD) and multiple sclerosis 
(MS) [13–18]. For example, Choi et al. reported that a 
larger CP volume was significantly associated with cogni-
tive deficits across the AD spectrum, and they suggested 
that CP volume can be used as a neuroimaging marker 
for clinical prognosis and staging in AD patients [13]. 
Recently, Assogna et al. found that the CP is enlarged in a 
large cohort of FTD patients, and they suggested that CP 
volumetric analysis could represent an imaging marker 
across the FTD spectrum, particularly at the early stage 
of disease [16]. Thus, early CP enlargement is likely a 
common feature and may play an important pathogenetic 
role in patients with neurodegenerative diseases [13–18].

Against this background, an interesting issue is whether 
early CP enlargement may also emerge in vivo in patients 
with ALS, the third most common neurodegenerative 

disease [1, 19]. Importantly, previous animal and post-
mortem findings imply that CP abnormalities may exist 
in ALS patients, either in ALS patients carrying known 
genetic mutations (defined as genetic ALS patients in 
this study) or in those without known genetic muta-
tions (defined as sporadic ALS patients in this study), and 
underpin the pathophysiological process of ALS [20–22]. 
Moreover, recently, using the CSF/serum albumin quo-
tient (Qalb), a marker of BCSFB permeability, we found 
that BCSFB integrity is also impaired in ALS [28]. Thus, 
these studies suggest that, similar to other neurodegen-
erative diseases, CP enlargement may also occur in ALS. 
However, to our knowledge, no available study has thor-
oughly assessed in vivo CP morphology and its correla-
tion with clinical disability and BCSFB permeability in 
patients with ALS to date, particularly in genetic ALS 
patients.

Thus, in this retrospective study, we included ALS 
patients who underwent clinical assessment, genetic test-
ing and structural MRI from a large newly diagnosed 
cohort of ALS patients. We have three aims. First, we 
aimed to explore whether CP enlargement can be iden-
tified in vivo in ALS patients compared with healthy 
controls (HCs). Second, according to genetic testing, we 
divided ALS patients into genetic ALS and sporadic ALS 
patients, and the CP volumes were further compared in 
the two ALS subgroups and HCs. Finally, we aimed to 
explore the relationships between CP volume and clinical 
disability in ALS patients. Moreover, because calculating 
the Qalb is an invasive approach to assess BCSFB integ-
rity, and the noninvasive and easy-to-implement nature 
of assessing CP volume, we further measured the rela-
tionships between CP volume and Qalb in ALS patients 
[13–18, 28].

Methods
Participants
In this retrospective study, the inclusion criteria for ALS 
patients were as follows: (1) newly diagnosed. (2) met 
the Awaji criteria for probable or definite ALS [25]. (3) 
underwent clinical assessment, genetic testing and struc-
tural MRI scan.

The exclusion criteria for ALS patients were as follows: 
(1) refusal to participate; (2) inability to complete an MRI 
scan; (3) combined with FTD, which we chose to exclude 

differences between the two ALS groups. Furthermore, the CP volume was significantly correlated with the ALSFRS-r 
score (r = -0.226; p = 0.005) and the Qalb (r = 0.479; p < 0.001) in ALS patients.

Conclusion  Our study first demonstrates CP enlargement in vivo in ALS patients, and continues to suggest an 
important pathogenetic role for CP abnormalities in ALS. Moreover, assessing CP volume is likely a noninvasive and 
easy-to-implement approach for screening BCSFB dysfunction in ALS patients.

Keywords  ALS, Choroid plexus, MRI, Blood-CSF barrier
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because FTD is uncommon (4.7%) in Chinese patients 
with sporadic ALS [16, 27]. The Rascovsky criteria were 
used to diagnose FTD [26]; and (4) comorbidity of other 
neuropsychiatric or systematic disorders.

Finally, from October 2021 to April 2023, 155 ALS 
patients were included in this study. In addition, 105 age- 
and sex-matched healthy controls (HCs) were recruited 
from the community and were subjected to the same 
exclusion criteria as the ALS patients. The flow diagram 
of the inclusion process is shown in Fig. 1.

Clinical assessments
ALS patients’ demographic and clinical information was 
recorded, including age, sex, education, family history of 
neurological diseases, comorbid conditions, site of symp-
tom onset, and disease duration (time from disease onset 
to diagnosis) [27]. Disease severity was assessed with the 
Amyotrophic Lateral Sclerosis Functional Rating Scale-
Revised (ALSFRS-R) [27]. Baseline progression rate 
(BPR) was also calculated. Similar to previous studies, 
BPR was defined as (48 - ALSFRS-R scores)/disease dura-
tion [28]. Depression and anxiety were assessed using the 
Hamilton Depression Rating Scale (HDRS) and Hamilton 
Anxiety Rating Scale (HARS), respectively [27]. All mea-
sures were performed within 2 days of MRI scans, and 
the clinical information was further corroborated by the 
primary caregivers.

Genetic testing
In the present study, similar to our previous study, 32 ALS 
genes were also screened using whole exome sequencing 
(WES) in ALS patients (see Supplemental material) [27].

According to genetic testing, a total of 12 mutation car-
riers were detected, and the detected mutations had an 

MAF < 0.5% in the population databases (Supplemental 
Table 1). Thus, these 12 patients were further divided into 
the genetic ALS group, and the remaining 143 patients 
were divided into the sporadic ALS group.

MRI acquisition
All MRI data were obtained on a 3.0 T magnetic reso-
nance system (Philips Medical System Ingenia scan-
ner) with a dStream head coil (8 channel). During the 
scan, all subjects were asked to be quiet and remain 
supine. Structural images of the whole brain were 
scanned using a three‑dimensional (3D) fast spoiled 
gradient-echo sequence: repetition time (TR) = 6.7 ms, 
echo time (TE) = 3.0 ms, matrix = 240 × 240 × 170, voxel 
size = 1 mm×1 mm×1 mm, field of view (FOV) = 240 mm 
× 240  mm, and a total of 180 slices. FLAIR data were 
scanned using 2D acceleration, TR = 7000 ms, Flip Angle 
90°, TE = 125 ms, acquisition matrix = 272 × 176, and slice 
thickness 6  mm. The scanning time for all sequences 
were approximately 11 min.

CP volume
Similar to previous studies, the CP volume of the lat-
eral ventricles was calculated in this study [15, 18]. First, 
T1-weighted MR images were auto-segmented into brain 
cortex regions, WM, and CSF using FreeSurfer software 
v7.1.1 (http://surfer.nmr.mgh.harvard.edu) [27]. Based 
on the ‘aparc + aseg.mgz’ file, the lateral ventricle, infe-
rior lateral ventricle, and CP regions in both the left and 
right cerebral hemispheres were extracted as the initial 
mask [15, 18]. After that, Bayesian Gaussian mixture 
models (GMMs) were used to cluster the initial mask 
into two groups using the scikit-learn page in Python 
software (https://www.python.org/): CSF voxels (low 

Fig. 1  Flow diagram of the inclusion process
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average intensity) and CP and lateral ventricle wall vox-
els (high average intensity) [18]. Next, SUSAN smoothing 
in FSL software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) 
was performed on the CP and lateral ventricle wall vox-
els (σ = 1  mm). Then, GMMs were again used to cluster 
the smoothed voxels into three groups, and the group 
with the highest average intensity was considered the CP 
group [18]. Each subject’s CP segmentation was further 
reviewed and manually corrected by two neuroradiolo-
gists (QGR and XSM) who had at least ten years of expe-
rience and were blinded to the clinical information and 
other neuroimaging data. After manual correction, the 
CP volume was extracted for further analysis. Moreover, 
similar to our previous study, using FreeSurfer, the total 
intracranial volume (TIV) was calculated as a covariate 
[27]. The flow diagram of the CP volume segmentation 
process is shown in Fig. 2.

Qalb analysis
In this retrospective study, 115 patients with ALS had 
available CSF and serum albumin data, and the proce-
dure of lumbar and vein punctures has been described 
in detail in our previous studies [28]. Then, quotients of 
albumin were calculated by comparing the level of albu-
min between serum and CSF (Qalb value = CSF-Alb/
serum-Alb) [28].

Ethics approval
This study was approved by the Research Ethics Commit-
tee of the School of Medicine, Shandong University. Par-
ticipant information was collected only after all patients 
and HCs had been made aware of the purpose of the 
study and provided their written informed consent.

Fig. 2  CP segmentation pipeline. (A) Using FreeSurfer, the lateral ventricle, inferior lateral ventricle, and CP regions in both the left and right cerebral 
hemispheres were extracted as the initial mask. (B) Bayesian Gaussian mixture models (GMMs) were used to cluster the initial mask into two groups: CSF 
voxels (low average intensity) and CP and lateral ventricle wall voxels (high average intensity. (C) SUSAN smoothing in FSL software was performed on the 
CP and lateral ventricle wall voxels. (D) GMMs were again used to cluster the smoothed voxels into three groups, and the group with the highest average 
intensity was considered the CP group. Each subject’s CP segmentation was further reviewed and manually corrected by two neuroradiologists, and the 
CP volume was extracted for further analysis
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Statistical analysis
For clinical data, continuous variables are reported as the 
means and standard deviations, and categorical variables 
are reported as frequencies and proportions. Student’s 
t-tests or analysis of variance (ANOVA) were used to 
compare continuous variables (with Mann–Whitney U 
tests if necessary). Categorical variables were compared 
using chi-squared tests. Values of p < 0.05 indicated sig-
nificance. Clinical data analyses were performed using 
SPSS version 20.0 (IBM Corp., Armonk, NY).

Moreover, general linear models were used to compare 
CP volume across groups, and age, sex, and total intra-
cranial volume (TIV) were used as covariates. For ALS 
subgroups and HCs, post hoc tests and family-wise error 
(FWE) correction were performed, and the threshold for 
statistical significance was set at p < 0.05. Then, partial 
correlation analyses were performed to identify the rela-
tionship of CP volume with clinical data in ALS patients 
using age, sex, and TIV as covariates. Values of p < 0.05 
were considered to indicate significant differences.

Results
Demographic and clinical information
In the present study, there were no significant differences 
in age, sex, or education between ALS patients and HCs. 
Compared with HCs, HDRS and HARS scores were sig-
nificantly higher in ALS patients (p < 0.05). Demographic 
and clinical information for the ALS patients and HCs is 
shown in Table 1.

Moreover, compared with sporadic ALS patients 
and HCs, age was significantly lower in genetic ALS 
patients (p < 0.05). Compared with sporadic ALS patients, 
ALSFRS-r scores were lower in genetic ALS patients 
(p < 0.05). Compared with HCs, HDRS and HARS scores 
were significantly higher in the two ALS groups (p < 0.05). 
There were no significant differences in other clinical 
data between the two ALS groups and the HCs. Demo-
graphic and clinical information for the two ALS groups 
and HCs are shown in Table 2.

CP volume in ALS patients
In the present study, compared with HCs, ALS patients 
had a significantly higher CP volume (p < 0.001). The 
CP volumes of ALS patients and HCs are presented in 
Fig. 3A.

Moreover, compared with HCs, CP volume was sig-
nificantly increased in genetic ALS patients and spo-
radic ALS patients after FWE correction (p = 0.006 and 
p < 0.001, respectively), while there were no significant 
differences between the two ALS groups. The CP vol-
umes of the two ALS groups and HCs are presented in 
Fig. 3B.

The correlation of CP volume with clinical disability and 
Qalb in ALS patients
Finally, partial correlation analyses showed that the 
CP volume was significantly correlated with the ALS-
FRS-r scores (r = -0.226; p = 0.005) and Qalb (r = 0.479; 
p < 0.001). There were no correlations between CP 

Table 1  Demographic and clinical features for ALS patients and 
HCs

ALS patients
(n = 155)

HCs
(n = 105)

P-value

Age (years) 57.1 ± 9.6 57.3 ± 7.9 0.88
Men/Women (n) 94/61 55/50 0.21
Education 9.4 ± 4.0 9.9 ± 3.2 0.26
ALS duration (month) 13.6 ± 7.9 - -
Bulbar ALS onset n, (%) 39 (25.1) - -
ALSFRS-R scores 40.3 ± 3.7 - -
Progression rate 0.78 ± 0.68 - -
CP volume (mm3) 2930.7 ± 724.8 2454.5 ± 781.3 <0.01
Qalb (mg/g) 5.9 ± 2.8 - -
HARS scores 8.7 ± 5.2 4.0 ± 3.9 <0.01
HDRS scores 10.5 ± 4.9 3.4 ± 4.2 <0.01
Abbreviations: ALS = amyotrophic lateral sclerosis; HC = healthy control; 
ALFRS-R = ALS Functional Rating Scale-Revised; HARS = Hamilton Anxiety 
Rating Scale; HDRS = Hamilton Depression Rating Scale

Table 2  Demographic and clinical information for patient subgroups and HCs
Genetic ALS patients (n = 12) Sporadic ALS patients (n = 143) HCs

(n = 105)
F or χ2 P-value

Age (years) 44.5 ± 10.3 58.2 ± 8.7 57.3 ± 7.9 14.17 <0.01
Men/Women (n) 9/3 85/58 55/50 2.84 0.24
Education 8.3 ± 3.3 9.5 ± 4.0 9.9 ± 3.2 1.23 0.29
ALS duration (month) 14.5 ± 9.7 13.6 ± 6.0 - 0.37 0.71
Bulbar ALS onset n, (%) 4 (33.3) 34 (23.7) - 0.54 0.49
ALSFRS-R scores 38.1 ± 6.1 40.5 ± 3.4 - 2.16 0.03
Progression rate 0.75 ± 0.62 0.78 ± 0.69 - 0.13 0.89
CP volume (mm3) 3161.8 ± 735.1 2911.3 ± 735.1 2454.5 ± 781.3 13.3 <0.01
HARS scores 8.7 ± 5.8 8.7 ± 5.1 4.0 ± 3.9 30.55 <0.01
HDRS scores 10.1 ± 5.9 10.5 ± 4.9 3.4 ± 4.2 66.92 <0.01
Abbreviations: ALS = amyotrophic lateral sclerosis; HC = healthy control; ALFRS-R = ALS Functional Rating Scale-Revised; HARS = Hamilton Anxiety Rating Scale; 
HDRS = Hamilton Depression Rating Scale
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volume and other metrics in this study. The relationship 
of CP volume with clinical disability and BCSFB perme-
ability are presented in Fig. 4.

Discussion
To our knowledge, we have conducted the first study, 
based on structural MRI, demonstrating in vivo CP 
enlargement in a large newly diagnosed cohort of ALS 
patients. Moreover, we found that CP enlargement was 
correlated with clinical disability and BCSFB permeability 

in ALS patients. We suggest that CP volume is noninva-
sive and easy-to-implement marker for screening BCSFB 
dysfunction in ALS patients. Thus, our findings may have 
an important role in advancing our current understand-
ing of the pathophysiological process underlying ALS and 
suggest that the CP is likely an important target in future 
research.

In the present study, using Gaussian mixture models 
combined with a further manual correction approach, 
we found that, compared with HCs, the CP volume was 

Fig. 4  The correlation of CP volume with clinical disability and BCSFB permeability in ALS patients. (A) Association of CP volume and ALSFRS-r scores in 
ALS patients. (B) Association of CP volume and Qalb value in ALS patients. Volume (mm3). Abbreviations: ALS = amyotrophic lateral sclerosis; CP = choroid 
plexus

 

Fig. 3  The CP volume in ALS patients and HCs. (A) Compared with HCs, ALS patients had a significantly higher CP volume after FWE correction (p < 0.05). 
(B) Compared with HCs, CP volume was significantly increased in genetic ALS patients and sporadic ALS patients after FWE correction (p < 0.05). Volume 
(mm3). Abbreviations: ALS = amyotrophic lateral sclerosis; CP = choroid plexus; HC = healthy control
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significantly enlarged in ALS patients [18]. We further 
found that both sporadic ALS patients and genetic ALS 
patients had a significantly larger CP volume than HCs. 
Moreover, although genetic ALS patients had a larger 
mean CP volume than sporadic ALS patients, the dif-
ference did not reach statistical significance which may 
be due to the small sample size of the genetic group. 
To the best of our knowledge, no previous study to 
date has systematically assessed CP volume abnormali-
ties in vivo in ALS patients, particularly in genetic ALS 
patients [20–22]. Importantly, animal and postmortem 
studies strongly support our findings [20–22]. For exam-
ple, Kunis et al. found that CP activation is impaired in 
an ALS SOD1 G93A mouse model [20]. Recently, in a 
postmortem study, Saul et al. reported that widespread 
CP disruptions could be detected in 11 sporadic ALS 
patients and 3 ALS patients associated with GGGGCC 
repeat expansion in C9orf72 [21]. Thus, these findings 
may provide complementary evidence, and suggest that 
in vivo CP enlargement is likely an important and com-
mon feature of ALS patients [20–21].

Moreover, as the mean disease duration of this newly 
diagnosed cohort was 13.6 months, we further suggest 
that CP enlargement is likely an early feature of ALS 
patients [34, 35]. To date, the diagnostic delay of ALS is 
commonly 9.1–27 months, and patients may thus fre-
quently miss the opportunity to benefit from early neu-
roprotective intervention and participate in clinical trials 
[34]. To facilitate early diagnosis, the “Gold Coast” cri-
teria were recently presented, and the diagnostic levels 
(definite, probable and possible ALS) were abandoned 
in the new criteria [36]. However, the diagnosis of ALS 
is still largely based on its clinical presentation at pres-
ent [36]. Due to its noninvasive and easy-to-implement 
nature, we suggest that early measurement of CP volume 
may be a potential approach for improving the diagnos-
tic delay in ALS, for example, CP volume may be consid-
ered as a potential variable in a diagnostic model in the 
future [37]. Moreover, because the onset of ALS seems to 
involve a multistep process with a long preclinical stage 
and widespread BCSFB dysfunction that can be detected 
even in the presymptomatic-stage of ALS, we suggest 
that, similar to other neurodegenerative diseases, CP 
enlargement may also emerge in earlier stages in ALS 
patients [2–5, 23, 24]. Thus, future studies should be 
conducted to further examine whether CP enlargement 
can be detected in the earlier stages of ALS patients, for 
example, in ALS patients at King’s stage 1 or even in pre-
symptomatic-stage patients with ALS, and the diagnostic 
performance of the CP volume in distinguishing between 
ALS and ALS-mimic diseases [1, 5, 34, 38].

Another key finding of the present study was that CP 
volume was significantly correlated with ALSFRS-r 
scores and Qalb value in ALS patients. In line with our 

findings, CP enlargement has been already reported to be 
associated with clinical disability in other neurodegenera-
tive conditions, including AD, PD, FTD and MS [13–18]. 
However, few studies have been conducted to determine 
the correlation between CP volume and BCSFB perme-
ability in neurodegenerative diseases to date [13–18]. 
To our knowledge, only one previous study has focused 
on this topic [13]. Recently, using dynamic contrast-
enhanced imaging and structural MRI, Choi et al. found 
that CP volume is associated with BCSFB permeabil-
ity in the AD spectrum [13]. Our findings suggest that 
CP volume is a potential marker for monitoring BCSFB 
dysfunction in ALS patients. Due to its noninvasive and 
easy-to-implement nature, further studies should be con-
ducted to verify the correlation in ALS and other neuro-
degenerative diseases.

Importantly, similar to other neurodegenerative dis-
eases, we suggest that the impact of CP abnormalities 
on the neurodegenerative process of ALS may largely be 
mediated by the accumulation of neurotoxic proteins, 
such as cytokines and reactive oxygen species, in the CSF 
due to increased blood leakage and/or reduced clearance 
[13–22, 39]. CP is crucial for maintaining BCSFB func-
tion in the CNS [10–12]. Thus, impaired CP barrier per-
meability may lead to the leakage of blood-borne toxins 
from the periphery to the CSF [8–12, 39]. In particular, 
impaired BCSFB integrity was supported by elevated CSF 
to serum ratios of albumin in ALS patients [40]. More-
over, as the CP is an important part of the glymphatic 
system, CP abnormalities may partly through impair 
waste clearance further accelerating neurodegeneration 
in ALS patients [10–12]. However, future studies still 
need to further confirm our viewpoints.

Moreover, as our findings and those of others, we sug-
gest that CP abnormalities may be a common feature 
in neurodegenerative diseases [13–18]. To date, similar 
to other neurodegenerative diseases, the drivers of CP 
abnormalities in ALS remain largely unclear [13–18]. 
Recently, Steinruecke et al. proposed that mitochondrial 
dysfunction, astrocyte abnormalities and inflammation 
may contribute to BCNSB abnormalities in ALS [23]. 
As the CP is an important part of the BCNSB system, 
we suggest that these factors may also be involved in CP 
abnormalities in ALS [23, 24]. In particular, in line with 
previous postmortem findings, we found that CP abnor-
malities can be detected in 12 genetic ALS patients, fur-
ther supporting this hypothesis [21, 36–40]. Moreover, 
as the CP enlargement has also been observed in other 
neurodegenerative diseases, enlargement of the CP may 
be a secondary consequence of larger ventricles in atro-
phic brains [13–15]. However, it is worth noting that 
very little is currently known about the causal relation-
ships of CP abnormalities with these mechanisms under-
lying ALS; these topics should be further clarified in the 
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future, which may be important for advancing our fur-
ther understanding of the pathogenesis of ALS and other 
neurodegenerative diseases [20–22].

Overall, as we mention above, to date, very few stud-
ies have focused on CP abnormalities in ALS, and our 
findings may provide important information on this 
topic for future studies [20–22]. However, inevitably, 
the present study had several limitations. First, although 
our sample size was large and the clinical and epidemio-
logical features of our ALS patients were consistent with 
those of a recent national population-based study, which 
may thus strengthen the validity and credibility of our 
results, the present study was a single centre study [27]. 
Thus, we suggest that further population-based or multi-
center studies should be conducted to confirm our find-
ings. Second, in this retrospective analysis, we could not 
analyze the causal relationship of CP abnormalities with 
clinical disability and brain damage in ALS. Thus, we sug-
gest that longitudinal studies should be conducted in the 
future. Third, because few Chinese ALS patients carried 
a known ALS mutation, only 12 ALS mutation gene car-
riers were identified in our sample [28-30]. Thus, unfor-
tunately, we could not determine the contribution of 
special mutations to the CP abnormalities in ALS, such 
as, SOD1, FUS and, in particular, C9orf72 [1, 29, 31–33]. 
Our findings need to be confirmed in a large sample of 
these ALS mutation gene carriers in the future. Finally, 
the racial composition of our cohorts was Chinese pop-
ulation; further studies should be conducted to identify 
whether CP abnormalities may emerge in Caucasian and 
other races of patients with ALS.

Conclusions
Our study provides evidence that in vivo early CP 
enlargement is a common feature of ALS patients and 
continues to suggest an important pathogenetic role 
for CP abnormalities in ALS. Moreover, CP volume is 
likely a noninvasive and easy-to-implement approach for 
screening BCSFB dysfunction in ALS patients. Our find-
ings may have an important role in advancing our cur-
rent understanding of the pathophysiological process 
underlying ALS and the common pathways underlying 
neurodegenerative diseases. Future studies are needed to 
confirm our findings and further explore the mechanisms 
of CP enlargement in patients with ALS and other neuro-
degenerative diseases.
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